From 64ceb784611e5ded0c715835a36490de1c3bb1ca Mon Sep 17 00:00:00 2001 From: Jasper Hugunin Date: Wed, 21 Feb 2018 23:27:04 -0800 Subject: Change Implicit Arguments to Arguments in algebra --- mathcomp/algebra/vector.v | 64 +++++++++++++++++++++++------------------------ 1 file changed, 32 insertions(+), 32 deletions(-) (limited to 'mathcomp/algebra/vector.v') diff --git a/mathcomp/algebra/vector.v b/mathcomp/algebra/vector.v index c4865ca..73354bf 100644 --- a/mathcomp/algebra/vector.v +++ b/mathcomp/algebra/vector.v @@ -303,7 +303,7 @@ Notation "U <= V <= W" := (subsetv U V && subsetv V W) : vspace_scope. Notation "<[ v ] >" := (vline v) : vspace_scope. Notation "<< X >>" := (span X) : vspace_scope. Notation "0" := (vline 0) : vspace_scope. -Implicit Arguments fullv [[K] [vT]]. +Arguments fullv {K vT}. Prenex Implicits subsetv addv capv complv diffv span free basis_of. Notation "U + V" := (addv U V) : vspace_scope. @@ -568,7 +568,7 @@ Implicit Type P : pred I. Lemma sumv_sup i0 P U Vs : P i0 -> (U <= Vs i0)%VS -> (U <= \sum_(i | P i) Vs i)%VS. Proof. by move=> Pi0 /subv_trans-> //; rewrite (bigD1 i0) ?addvSl. Qed. -Implicit Arguments sumv_sup [P U Vs]. +Arguments sumv_sup i0 [P U Vs]. Lemma subv_sumP {P Us V} : reflect (forall i, P i -> Us i <= V)%VS (\sum_(i | P i) Us i <= V)%VS. @@ -1223,27 +1223,27 @@ End BigSumBasis. End VectorTheory. Hint Resolve subvv. -Implicit Arguments subvP [K vT U V]. -Implicit Arguments addv_idPl [K vT U V]. -Implicit Arguments addv_idPr [K vT U V]. -Implicit Arguments memv_addP [K vT U V w]. -Implicit Arguments sumv_sup [K vT I P U Vs]. -Implicit Arguments memv_sumP [K vT I P Us v]. -Implicit Arguments subv_sumP [K vT I P Us V]. -Implicit Arguments capv_idPl [K vT U V]. -Implicit Arguments capv_idPr [K vT U V]. -Implicit Arguments memv_capP [K vT U V w]. -Implicit Arguments bigcapv_inf [K vT I P Us V]. -Implicit Arguments subv_bigcapP [K vT I P U Vs]. -Implicit Arguments directvP [K vT S]. -Implicit Arguments directv_addP [K vT U V]. -Implicit Arguments directv_add_unique [K vT U V]. -Implicit Arguments directv_sumP [K vT I P Us]. -Implicit Arguments directv_sumE [K vT I P Ss]. -Implicit Arguments directv_sum_independent [K vT I P Us]. -Implicit Arguments directv_sum_unique [K vT I P Us]. -Implicit Arguments span_subvP [K vT X U]. -Implicit Arguments freeP [K vT n X]. +Arguments subvP [K vT U V]. +Arguments addv_idPl [K vT U V]. +Arguments addv_idPr [K vT U V]. +Arguments memv_addP [K vT w U V ]. +Arguments sumv_sup [K vT I] i0 [P U Vs]. +Arguments memv_sumP [K vT I P Us v]. +Arguments subv_sumP [K vT I P Us V]. +Arguments capv_idPl [K vT U V]. +Arguments capv_idPr [K vT U V]. +Arguments memv_capP [K vT w U V]. +Arguments bigcapv_inf [K vT I] i0 [P Us V]. +Arguments subv_bigcapP [K vT I P U Vs]. +Arguments directvP [K vT S]. +Arguments directv_addP [K vT U V]. +Arguments directv_add_unique [K vT U V]. +Arguments directv_sumP [K vT I P Us]. +Arguments directv_sumE [K vT I P Ss]. +Arguments directv_sum_independent [K vT I P Us]. +Arguments directv_sum_unique [K vT I P Us]. +Arguments span_subvP [K vT X U]. +Arguments freeP [K vT n X]. Prenex Implicits coord. Notation directv S := (directv_def (Phantom _ S%VS)). @@ -1598,11 +1598,11 @@ Proof. by move/lker0_lfunK=> fK; apply/lfunP=> u; rewrite !lfunE /= fK. Qed. End LinearImage. -Implicit Arguments memv_imgP [K aT rT f U w]. -Implicit Arguments lfunPn [K aT rT f g]. -Implicit Arguments lker0P [K aT rT f]. -Implicit Arguments eqlfunP [K aT rT f g v]. -Implicit Arguments eqlfun_inP [K aT rT f g V]. +Arguments memv_imgP [K aT rT f w U]. +Arguments lfunPn [K aT rT f g]. +Arguments lker0P [K aT rT f]. +Arguments eqlfunP [K aT rT f g v]. +Arguments eqlfun_inP [K aT rT V f g]. Section FixedSpace. @@ -1632,8 +1632,8 @@ Qed. End FixedSpace. -Implicit Arguments fixedSpaceP [K vT f a]. -Implicit Arguments fixedSpacesP [K vT f U]. +Arguments fixedSpaceP [K vT f a]. +Arguments fixedSpacesP [K vT f U]. Section LinAut. @@ -1943,8 +1943,8 @@ Canonical subvs_vectType := VectType K subvs_of subvs_vectMixin. End SubVector. Prenex Implicits vsval vsproj vsvalK. -Implicit Arguments subvs_inj [[K] [vT] [U] x1 x2]. -Implicit Arguments vsprojK [[K] [vT] [U] x]. +Arguments subvs_inj {K vT U} [x1 x2]. +Arguments vsprojK {K vT U} [x]. Section MatrixVectType. -- cgit v1.2.3