From 64ceb784611e5ded0c715835a36490de1c3bb1ca Mon Sep 17 00:00:00 2001 From: Jasper Hugunin Date: Wed, 21 Feb 2018 23:27:04 -0800 Subject: Change Implicit Arguments to Arguments in algebra --- mathcomp/algebra/ssrnum.v | 38 +++++++++++++++++++------------------- 1 file changed, 19 insertions(+), 19 deletions(-) (limited to 'mathcomp/algebra/ssrnum.v') diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v index 219f804..0d9d135 100644 --- a/mathcomp/algebra/ssrnum.v +++ b/mathcomp/algebra/ssrnum.v @@ -1251,11 +1251,11 @@ Definition normrE x := (normr_id, normr0, normr1, normrN1, normr_ge0, normr_eq0, End NumIntegralDomainTheory. -Implicit Arguments ler01 [R]. -Implicit Arguments ltr01 [R]. -Implicit Arguments normr_idP [R x]. -Implicit Arguments normr0P [R x]. -Implicit Arguments lerifP [R x y C]. +Arguments ler01 [R]. +Arguments ltr01 [R]. +Arguments normr_idP [R x]. +Arguments normr0P [R x]. +Arguments lerifP [R x y C]. Hint Resolve @ler01 @ltr01 lerr ltrr ltrW ltr_eqF ltr0Sn ler0n normr_ge0. Section NumIntegralDomainMonotonyTheory. @@ -2680,7 +2680,7 @@ Lemma real_ler_normlP x y : Proof. by move=> Rx; rewrite real_ler_norml // ler_oppl; apply: (iffP andP) => [] []. Qed. -Implicit Arguments real_ler_normlP [x y]. +Arguments real_ler_normlP [x y]. Lemma real_eqr_norml x y : x \is real -> (`|x| == y) = ((x == y) || (x == -y)) && (0 <= y). @@ -2716,7 +2716,7 @@ Proof. move=> Rx; rewrite real_ltr_norml // ltr_oppl. by apply: (iffP (@andP _ _)); case. Qed. -Implicit Arguments real_ltr_normlP [x y]. +Arguments real_ltr_normlP [x y]. Lemma real_ler_normr x y : y \is real -> (x <= `|y|) = (x <= y) || (x <= - y). Proof. @@ -3138,16 +3138,16 @@ Qed. End NumDomainOperationTheory. Hint Resolve ler_opp2 ltr_opp2 real0 real1 normr_real. -Implicit Arguments ler_sqr [[R] x y]. -Implicit Arguments ltr_sqr [[R] x y]. -Implicit Arguments signr_inj [[R] x1 x2]. -Implicit Arguments real_ler_normlP [R x y]. -Implicit Arguments real_ltr_normlP [R x y]. -Implicit Arguments lerif_refl [R x C]. -Implicit Arguments mono_in_lerif [R A f C]. -Implicit Arguments nmono_in_lerif [R A f C]. -Implicit Arguments mono_lerif [R f C]. -Implicit Arguments nmono_lerif [R f C]. +Arguments ler_sqr {R} [x y]. +Arguments ltr_sqr {R} [x y]. +Arguments signr_inj {R} [x1 x2]. +Arguments real_ler_normlP [R x y]. +Arguments real_ltr_normlP [R x y]. +Arguments lerif_refl [R x C]. +Arguments mono_in_lerif [R A f C]. +Arguments nmono_in_lerif [R A f C]. +Arguments mono_lerif [R f C]. +Arguments nmono_lerif [R f C]. Section NumDomainMonotonyTheoryForReals. @@ -3631,7 +3631,7 @@ Proof. exact: real_ler_norml. Qed. Lemma ler_normlP x y : reflect ((- x <= y) * (x <= y)) (`|x| <= y). Proof. exact: real_ler_normlP. Qed. -Implicit Arguments ler_normlP [x y]. +Arguments ler_normlP [x y]. Lemma eqr_norml x y : (`|x| == y) = ((x == y) || (x == -y)) && (0 <= y). Proof. exact: real_eqr_norml. Qed. @@ -3646,7 +3646,7 @@ Definition lter_norml := (ler_norml, ltr_norml). Lemma ltr_normlP x y : reflect ((-x < y) * (x < y)) (`|x| < y). Proof. exact: real_ltr_normlP. Qed. -Implicit Arguments ltr_normlP [x y]. +Arguments ltr_normlP [x y]. Lemma ler_normr x y : (x <= `|y|) = (x <= y) || (x <= - y). Proof. by rewrite lerNgt ltr_norml negb_and -!lerNgt orbC ler_oppr. Qed. -- cgit v1.2.3