From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.ssreflect.tuple.html | 477 ----------------------------- 1 file changed, 477 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.ssreflect.tuple.html (limited to 'docs/htmldoc/mathcomp.ssreflect.tuple.html') diff --git a/docs/htmldoc/mathcomp.ssreflect.tuple.html b/docs/htmldoc/mathcomp.ssreflect.tuple.html deleted file mode 100644 index 4a62053..0000000 --- a/docs/htmldoc/mathcomp.ssreflect.tuple.html +++ /dev/null @@ -1,477 +0,0 @@ - - - - - -mathcomp.ssreflect.tuple - - - - -
- - - -
- -

Library mathcomp.ssreflect.tuple

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-Set Implicit Arguments.
- -
-
- -
- Tuples, i.e., sequences with a fixed (known) length. We define: - n.-tuple T == the type of n-tuples of elements of type T. - [tuple of s] == the tuple whose underlying sequence (value) is s. - The size of s must be known: specifically, Coq must - be able to infer a Canonical tuple projecting on s. - in_tuple s == the (size s)-tuple with value s. - [tuple] == the empty tuple. - [tuple x1; ..; xn] == the explicit n.-tuple <x1; ..; xn>. - [tuple E | i < n] == the n.-tuple with general term E (i : 'I_n is bound - in E). - tcast Emn t == the m-tuple t cast as an n-tuple using Emn : m = n. - As n.-tuple T coerces to seq t, all seq operations (size, nth, ...) can be - applied to t : n.-tuple T; we provide a few specialized instances when - avoids the need for a default value. - tsize t == the size of t (the n in n.-tuple T) - tnth t i == the i'th component of t, where i : 'I_n. - [tnth t i] == the i'th component of t, where i : nat and i < n - is convertible to true. - thead t == the first element of t, when n is m.+1 for some m. - Most seq constructors (cons, behead, cat, rcons, belast, take, drop, rot, - map, ...) can be used to build tuples via the [tuple of s] construct. - Tuples are actually a subType of seq, and inherit all combinatorial - structures, including the finType structure. - Some useful lemmas and definitions: - tuple0 : [tuple] is the only 0.-tuple - tupleP : elimination view for n.+1.-tuple - ord_tuple n : the n.-tuple of all i : 'I_n -
-
- -
-Section Def.
- -
-Variables (n : nat) (T : Type).
- -
-Structure tuple_of : Type := Tuple {tval :> seq T; _ : size tval == n}.
- -
-Canonical tuple_subType := Eval hnf in [subType for tval].
- -
-Implicit Type t : tuple_of.
- -
-Definition tsize of tuple_of := n.
- -
-Lemma size_tuple t : size t = n.
- -
-Lemma tnth_default t : 'I_n T.
- -
-Definition tnth t i := nth (tnth_default t i) t i.
- -
-Lemma tnth_nth x t i : tnth t i = nth x t i.
- -
-Lemma map_tnth_enum t : map (tnth t) (enum 'I_n) = t.
- -
-Lemma eq_from_tnth t1 t2 : tnth t1 =1 tnth t2 t1 = t2.
- -
-Definition tuple t mkT : tuple_of :=
-  mkT (let: Tuple _ tP := t return size t == n in tP).
- -
-Lemma tupleE t : tuple (fun sP ⇒ @Tuple t sP) = t.
- -
-End Def.
- -
-Notation "n .-tuple" := (tuple_of n)
-  (at level 2, format "n .-tuple") : type_scope.
- -
-Notation "{ 'tuple' n 'of' T }" := (n.-tuple T : predArgType)
-  (at level 0, only parsing) : form_scope.
- -
-Notation "[ 'tuple' 'of' s ]" := (tuple (fun sP ⇒ @Tuple _ _ s sP))
-  (at level 0, format "[ 'tuple' 'of' s ]") : form_scope.
- -
-Notation "[ 'tnth' t i ]" := (tnth t (@Ordinal (tsize t) i (erefl true)))
-  (at level 0, t, i at level 8, format "[ 'tnth' t i ]") : form_scope.
- -
-Canonical nil_tuple T := Tuple (isT : @size T [::] == 0).
-Canonical cons_tuple n T x (t : n.-tuple T) :=
-  Tuple (valP t : size (x :: t) == n.+1).
- -
-Notation "[ 'tuple' x1 ; .. ; xn ]" := [tuple of x1 :: .. [:: xn] ..]
-  (at level 0, format "[ 'tuple' '[' x1 ; '/' .. ; '/' xn ']' ]")
-  : form_scope.
- -
-Notation "[ 'tuple' ]" := [tuple of [::]]
- (at level 0, format "[ 'tuple' ]") : form_scope.
- -
-Section CastTuple.
- -
-Variable T : Type.
- -
-Definition in_tuple (s : seq T) := Tuple (eqxx (size s)).
- -
-Definition tcast m n (eq_mn : m = n) t :=
-  let: erefl in _ = n := eq_mn return n.-tuple T in t.
- -
-Lemma tcastE m n (eq_mn : m = n) t i :
-  tnth (tcast eq_mn t) i = tnth t (cast_ord (esym eq_mn) i).
- -
-Lemma tcast_id n (eq_nn : n = n) t : tcast eq_nn t = t.
- -
-Lemma tcastK m n (eq_mn : m = n) : cancel (tcast eq_mn) (tcast (esym eq_mn)).
- -
-Lemma tcastKV m n (eq_mn : m = n) : cancel (tcast (esym eq_mn)) (tcast eq_mn).
- -
-Lemma tcast_trans m n p (eq_mn : m = n) (eq_np : n = p) t:
-  tcast (etrans eq_mn eq_np) t = tcast eq_np (tcast eq_mn t).
- -
-Lemma tvalK n (t : n.-tuple T) : in_tuple t = tcast (esym (size_tuple t)) t.
- -
-Lemma in_tupleE s : in_tuple s = s :> seq T.
- -
-End CastTuple.
- -
-Section SeqTuple.
- -
-Variables (n m : nat) (T U rT : Type).
-Implicit Type t : n.-tuple T.
- -
-Lemma rcons_tupleP t x : size (rcons t x) == n.+1.
- Canonical rcons_tuple t x := Tuple (rcons_tupleP t x).
- -
-Lemma nseq_tupleP x : @size T (nseq n x) == n.
- Canonical nseq_tuple x := Tuple (nseq_tupleP x).
- -
-Lemma iota_tupleP : size (iota m n) == n.
- Canonical iota_tuple := Tuple iota_tupleP.
- -
-Lemma behead_tupleP t : size (behead t) == n.-1.
- Canonical behead_tuple t := Tuple (behead_tupleP t).
- -
-Lemma belast_tupleP x t : size (belast x t) == n.
- Canonical belast_tuple x t := Tuple (belast_tupleP x t).
- -
-Lemma cat_tupleP t (u : m.-tuple T) : size (t ++ u) == n + m.
- Canonical cat_tuple t u := Tuple (cat_tupleP t u).
- -
-Lemma take_tupleP t : size (take m t) == minn m n.
- Canonical take_tuple t := Tuple (take_tupleP t).
- -
-Lemma drop_tupleP t : size (drop m t) == n - m.
- Canonical drop_tuple t := Tuple (drop_tupleP t).
- -
-Lemma rev_tupleP t : size (rev t) == n.
- Canonical rev_tuple t := Tuple (rev_tupleP t).
- -
-Lemma rot_tupleP t : size (rot m t) == n.
- Canonical rot_tuple t := Tuple (rot_tupleP t).
- -
-Lemma rotr_tupleP t : size (rotr m t) == n.
- Canonical rotr_tuple t := Tuple (rotr_tupleP t).
- -
-Lemma map_tupleP f t : @size rT (map f t) == n.
- Canonical map_tuple f t := Tuple (map_tupleP f t).
- -
-Lemma scanl_tupleP f x t : @size rT (scanl f x t) == n.
- Canonical scanl_tuple f x t := Tuple (scanl_tupleP f x t).
- -
-Lemma pairmap_tupleP f x t : @size rT (pairmap f x t) == n.
- Canonical pairmap_tuple f x t := Tuple (pairmap_tupleP f x t).
- -
-Lemma zip_tupleP t (u : n.-tuple U) : size (zip t u) == n.
- Canonical zip_tuple t u := Tuple (zip_tupleP t u).
- -
-Lemma allpairs_tupleP f t (u : m.-tuple U) : @size rT (allpairs f t u) == n × m.
- Canonical allpairs_tuple f t u := Tuple (allpairs_tupleP f t u).
- -
-Definition thead (u : n.+1.-tuple T) := tnth u ord0.
- -
-Lemma tnth0 x t : tnth [tuple of x :: t] ord0 = x.
- -
-Lemma theadE x t : thead [tuple of x :: t] = x.
- -
-Lemma tuple0 : all_equal_to ([tuple] : 0.-tuple T).
- -
-Variant tuple1_spec : n.+1.-tuple T Type :=
-  Tuple1spec x t : tuple1_spec [tuple of x :: t].
- -
-Lemma tupleP u : tuple1_spec u.
- -
-Lemma tnth_map f t i : tnth [tuple of map f t] i = f (tnth t i) :> rT.
- -
-End SeqTuple.
- -
-Lemma tnth_behead n T (t : n.+1.-tuple T) i :
-  tnth [tuple of behead t] i = tnth t (inord i.+1).
- -
-Lemma tuple_eta n T (t : n.+1.-tuple T) : t = [tuple of thead t :: behead t].
- -
-Section TupleQuantifiers.
- -
-Variables (n : nat) (T : Type).
-Implicit Types (a : pred T) (t : n.-tuple T).
- -
-Lemma forallb_tnth a t : [ i, a (tnth t i)] = all a t.
- -
-Lemma existsb_tnth a t : [ i, a (tnth t i)] = has a t.
- -
-Lemma all_tnthP a t : reflect ( i, a (tnth t i)) (all a t).
- -
-Lemma has_tnthP a t : reflect ( i, a (tnth t i)) (has a t).
- -
-End TupleQuantifiers.
- -
- -
-Section EqTuple.
- -
-Variables (n : nat) (T : eqType).
- -
-Definition tuple_eqMixin := Eval hnf in [eqMixin of n.-tuple T by <:].
-Canonical tuple_eqType := Eval hnf in EqType (n.-tuple T) tuple_eqMixin.
- -
-Canonical tuple_predType := PredType (pred_of_seq : n.-tuple T pred T).
- -
-Lemma memtE (t : n.-tuple T) : mem t = mem (tval t).
- -
-Lemma mem_tnth i (t : n.-tuple T) : tnth t i \in t.
- -
-Lemma memt_nth x0 (t : n.-tuple T) i : i < n nth x0 t i \in t.
- -
-Lemma tnthP (t : n.-tuple T) x : reflect ( i, x = tnth t i) (x \in t).
- -
-Lemma seq_tnthP (s : seq T) x : x \in s {i | x = tnth (in_tuple s) i}.
- -
-End EqTuple.
- -
-Definition tuple_choiceMixin n (T : choiceType) :=
-  [choiceMixin of n.-tuple T by <:].
- -
-Canonical tuple_choiceType n (T : choiceType) :=
-  Eval hnf in ChoiceType (n.-tuple T) (tuple_choiceMixin n T).
- -
-Definition tuple_countMixin n (T : countType) :=
-  [countMixin of n.-tuple T by <:].
- -
-Canonical tuple_countType n (T : countType) :=
-  Eval hnf in CountType (n.-tuple T) (tuple_countMixin n T).
- -
-Canonical tuple_subCountType n (T : countType) :=
-  Eval hnf in [subCountType of n.-tuple T].
- -
-Module Type FinTupleSig.
-Section FinTupleSig.
-Variables (n : nat) (T : finType).
-Parameter enum : seq (n.-tuple T).
-Axiom enumP : Finite.axiom enum.
-Axiom size_enum : size enum = #|T| ^ n.
-End FinTupleSig.
-End FinTupleSig.
- -
-Module FinTuple : FinTupleSig.
-Section FinTuple.
-Variables (n : nat) (T : finType).
- -
-Definition enum : seq (n.-tuple T) :=
-  let extend e := flatten (codom (fun xmap (cons x) e)) in
-  pmap insub (iter n extend [::[::]]).
- -
-Lemma enumP : Finite.axiom enum.
- -
-Lemma size_enum : size enum = #|T| ^ n.
- -
-End FinTuple.
-End FinTuple.
- -
-Section UseFinTuple.
- -
-Variables (n : nat) (T : finType).
- -
-
- -
- tuple_finMixin could, in principle, be made Canonical to allow for folding - Finite.enum of a finite tuple type (see comments around eqE in eqtype.v), - but in practice it will not work because the mixin_enum projector - has been burried under an opaque alias, to avoid some performance issues - during type inference. -
-
-Definition tuple_finMixin := Eval hnf in FinMixin (@FinTuple.enumP n T).
-Canonical tuple_finType := Eval hnf in FinType (n.-tuple T) tuple_finMixin.
-Canonical tuple_subFinType := Eval hnf in [subFinType of n.-tuple T].
- -
-Lemma card_tuple : #|{:n.-tuple T}| = #|T| ^ n.
- -
-Lemma enum_tupleP (A : {pred T}) : size (enum A) == #|A|.
- Canonical enum_tuple A := Tuple (enum_tupleP A).
- -
-Definition ord_tuple : n.-tuple 'I_n := Tuple (introT eqP (size_enum_ord n)).
-Lemma val_ord_tuple : val ord_tuple = enum 'I_n.
- -
-Lemma tuple_map_ord U (t : n.-tuple U) : t = [tuple of map (tnth t) ord_tuple].
- -
-Lemma tnth_ord_tuple i : tnth ord_tuple i = i.
- -
-Section ImageTuple.
- -
-Variables (T' : Type) (f : T T') (A : {pred T}).
- -
-Canonical image_tuple : #|A|.-tuple T' := [tuple of image f A].
-Canonical codom_tuple : #|T|.-tuple T' := [tuple of codom f].
- -
-End ImageTuple.
- -
-Section MkTuple.
- -
-Variables (T' : Type) (f : 'I_n T').
- -
-Definition mktuple := map_tuple f ord_tuple.
- -
-Lemma tnth_mktuple i : tnth mktuple i = f i.
- -
-Lemma nth_mktuple x0 (i : 'I_n) : nth x0 mktuple i = f i.
- -
-End MkTuple.
- -
-Lemma eq_mktuple T' (f1 f2 : 'I_n T') :
-  f1 =1 f2 mktuple f1 = mktuple f2.
- -
-End UseFinTuple.
- -
-Notation "[ 'tuple' F | i < n ]" := (mktuple (fun i : 'I_nF))
-  (at level 0, i at level 0,
-   format "[ '[hv' 'tuple' F '/' | i < n ] ']'") : form_scope.
- -
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3