From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Wed, 22 May 2019 13:43:08 +0200 Subject: htmldoc regenerated --- docs/htmldoc/mathcomp.ssreflect.ssrbool.html | 55 ++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) (limited to 'docs/htmldoc/mathcomp.ssreflect.ssrbool.html') diff --git a/docs/htmldoc/mathcomp.ssreflect.ssrbool.html b/docs/htmldoc/mathcomp.ssreflect.ssrbool.html index dcb9a81..baaddd6 100644 --- a/docs/htmldoc/mathcomp.ssreflect.ssrbool.html +++ b/docs/htmldoc/mathcomp.ssreflect.ssrbool.html @@ -19,6 +19,61 @@

Library mathcomp.ssreflect.ssrbool

+ +
+
+ +
+ Local additions: + {pred T} == a type convertible to pred T but that presents the + pred_sort coercion class. + PredType toP == the predType structure for toP : A -> pred T. + relpre f r == the preimage of r by f, simplifying to r (f x) (f y). +> These will become part of the core SSReflect library with Coq 8.11. + This file also anticipates a v8.11 change in the definition of simpl_pred + to T -> simpl_pred T. This change ensures that inE expands the definition + of r : simpl_rel along with the \in, when rewriting in y \in r x. +
+
+ +
+Notation "{ 'pred' T }" := (pred_sort (predPredType T)) (at level 0,
+  format "{ 'pred' T }") : type_scope.
+ +
+Lemma simpl_pred_sortE T (p : pred T) : (SimplPred p : {pred T}) =1 p.
+ Definition inE := (inE, simpl_pred_sortE).
+ +
+Definition PredType : T pT, (pT pred T) predType T.
+Defined.
+ +
+Definition simpl_rel T := T simpl_pred T.
+Definition SimplRel {T} (r : rel T) : simpl_rel T := fun xSimplPred (r x).
+Coercion rel_of_simpl_rel T (sr : simpl_rel T) : rel T := sr.
+ +
+Notation "[ 'rel' x y | E ]" := (SimplRel (fun x yE%B)) (at level 0,
+  x ident, y ident, format "'[hv' [ 'rel' x y | '/ ' E ] ']'") : fun_scope.
+Notation "[ 'rel' x y : T | E ]" := (SimplRel (fun x y : TE%B)) (at level 0,
+  x ident, y ident, only parsing) : fun_scope.
+Notation "[ 'rel' x y 'in' A & B | E ]" :=
+  [rel x y | (x \in A) && (y \in B) && E] (at level 0, x ident, y ident,
+  format "'[hv' [ 'rel' x y 'in' A & B | '/ ' E ] ']'") : fun_scope.
+Notation "[ 'rel' x y 'in' A & B ]" := [rel x y | (x \in A) && (y \in B)]
+  (at level 0, x ident, y ident,
+  format "'[hv' [ 'rel' x y 'in' A & B ] ']'") : fun_scope.
+Notation "[ 'rel' x y 'in' A | E ]" := [rel x y in A & A | E]
+  (at level 0, x ident, y ident,
+  format "'[hv' [ 'rel' x y 'in' A | '/ ' E ] ']'") : fun_scope.
+Notation "[ 'rel' x y 'in' A ]" := [rel x y in A & A] (at level 0,
+  x ident, y ident, format "'[hv' [ 'rel' x y 'in' A ] ']'") : fun_scope.
+ +
+Notation xrelpre := (fun f (r : rel _) x yr (f x) (f y)).
+Definition relpre {T rT} (f : T rT) (r : rel rT) :=
+  [rel x y | r (f x) (f y)].
-- cgit v1.2.3