From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.ssreflect.prime.html | 888 +++++++++++++++++++++++++++++ 1 file changed, 888 insertions(+) create mode 100644 docs/htmldoc/mathcomp.ssreflect.prime.html (limited to 'docs/htmldoc/mathcomp.ssreflect.prime.html') diff --git a/docs/htmldoc/mathcomp.ssreflect.prime.html b/docs/htmldoc/mathcomp.ssreflect.prime.html new file mode 100644 index 0000000..c5c00d8 --- /dev/null +++ b/docs/htmldoc/mathcomp.ssreflect.prime.html @@ -0,0 +1,888 @@ + + + + + +mathcomp.ssreflect.prime + + + + +
+ + + +
+ +

Library mathcomp.ssreflect.prime

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ This file contains the definitions of: + prime p <=> p is a prime. + primes m == the sorted list of prime divisors of m > 1, else [:: ]. + pfactor == the type of prime factors, syntax (p ^ e)%pfactor. + prime_decomp m == the list of prime factors of m > 1, sorted by primes. + logn p m == the e such that (p ^ e) \in prime_decomp n, else 0. + trunc_log p m == the largest e such that p ^ e <= m, or 0 if p or m is 0. + pdiv n == the smallest prime divisor of n > 1, else 1. + max_pdiv n == the largest prime divisor of n > 1, else 1. + divisors m == the sorted list of divisors of m > 0, else [:: ]. + totient n == the Euler totient (#|{i < n | i and n coprime}|). + nat_pred == the type of explicit collective nat predicates. + := simpl_pred nat. +
    +
  • > We allow the coercion nat >-> nat_pred, interpreting p as pred1 p. + +
  • +
  • > We define a predType for nat_pred, enabling the notation p \in pi. + +
  • +
  • > We don't have nat_pred >-> pred, which would imply nat >-> Funclass. + pi^' == the complement of pi : nat_pred, i.e., the nat_pred such + that (p \in pi^') = (p \notin pi). + \pi(n) == the set of prime divisors of n, i.e., the nat_pred such + that (p \in \pi(n)) = (p \in primes n). + \pi(A) == the set of primes of #|A|, with A a collective predicate + over a finite Type. +
      +
    • > The notation \pi(A) is implemented with a collapsible Coercion, so + the type of A must coerce to finpred_class (e.g., by coercing to + {set T}), not merely implement the predType interface (as seq T + does). + +
    • +
    • > The expression #|A| will only appear in \pi(A) after simplification + collapses the coercion stack, so it is advisable to do so early on. + +
    • +
    + pi.-nat n <=> n > 0 and all prime divisors of n are in pi. + n`pi == the pi-part of n -- the largest pi.-nat divisor of n. + := \prod(0 <= p < n.+1 | p \in pi) p ^ logn p n. +
      +
    • > The nat >-> nat_pred coercion lets us write p.-nat n and n`p. + +
    • +
    + +
  • +
+ In addition to the lemmas relevant to these definitions, this file also + contains the dvdn_sum lemma, so that bigop.v doesn't depend on div.v. +
+
+ +
+Set Implicit Arguments.
+ +
+
+ +
+ The complexity of any arithmetic operation with the Peano representation + is pretty dreadful, so using algorithms for "harder" problems such as + factoring, that are geared for efficient artihmetic leads to dismal + performance -- it takes a significant time, for instance, to compute the + divisors of just a two-digit number. On the other hand, for Peano + integers, prime factoring (and testing) is linear-time with a small + constant factor -- indeed, the same as converting in and out of a binary + representation. This is implemented by the code below, which is then + used to give the "standard" definitions of prime, primes, and divisors, + which can then be used casually in proofs with moderately-sized numeric + values (indeed, the code here performs well for up to 6-digit numbers). +
+ + We start with faster mod-2 functions. +
+
+ +
+Fixpoint edivn2 q r := if r is r'.+2 then edivn2 q.+1 r' else (q, r).
+ +
+Lemma edivn2P n : edivn_spec n 2 (edivn2 0 n).
+ +
+Fixpoint elogn2 e q r {struct q} :=
+  match q, r with
+  | 0, _ | _, 0 ⇒ (e, q)
+  | q'.+1, 1 ⇒ elogn2 e.+1 q' q'
+  | q'.+1, r'.+2elogn2 e q' r'
+  end.
+ +
+CoInductive elogn2_spec n : nat × nat Type :=
+  Elogn2Spec e m of n = 2 ^ e × m.*2.+1 : elogn2_spec n (e, m).
+ +
+Lemma elogn2P n : elogn2_spec n.+1 (elogn2 0 n n).
+ +
+Definition ifnz T n (x y : T) := if n is 0 then y else x.
+ +
+CoInductive ifnz_spec T n (x y : T) : T Type :=
+  | IfnzPos of n > 0 : ifnz_spec n x y x
+  | IfnzZero of n = 0 : ifnz_spec n x y y.
+ +
+Lemma ifnzP T n (x y : T) : ifnz_spec n x y (ifnz n x y).
+ +
+
+ +
+ For pretty-printing. +
+
+Definition NumFactor (f : nat × nat) := ([Num of f.1], f.2).
+ +
+Definition pfactor p e := p ^ e.
+ +
+Definition cons_pfactor (p e : nat) pd := ifnz e ((p, e) :: pd) pd.
+ +
+ +
+Section prime_decomp.
+ +
+Import NatTrec.
+ +
+Fixpoint prime_decomp_rec m k a b c e :=
+  let p := k.*2.+1 in
+  if a is a'.+1 then
+    if b - (ifnz e 1 k - c) is b'.+1 then
+      [rec m, k, a', b', ifnz c c.-1 (ifnz e p.-2 1), e] else
+    if (b == 0) && (c == 0) then
+      let b' := k + a' in [rec b'.*2.+3, k, a', b', k.-1, e.+1] else
+    let bc' := ifnz e (ifnz b (k, 0) (edivn2 0 c)) (b, c) in
+    p ^? e :: ifnz a' [rec m, k.+1, a'.-1, bc'.1 + a', bc'.2, 0] [:: (m, 1)]
+  else if (b == 0) && (c == 0) then [:: (p, e.+2)] else p ^? e :: [:: (m, 1)]
+where "[ 'rec' m , k , a , b , c , e ]" := (prime_decomp_rec m k a b c e).
+ +
+Definition prime_decomp n :=
+  let: (e2, m2) := elogn2 0 n.-1 n.-1 in
+  if m2 < 2 then 2 ^? e2 :: 3 ^? m2 :: [::] else
+  let: (a, bc) := edivn m2.-2 3 in
+  let: (b, c) := edivn (2 - bc) 2 in
+  2 ^? e2 :: [rec m2.*2.+1, 1, a, b, c, 0].
+ +
+
+ +
+ The list of divisors and the Euler function are computed directly from + the decomposition, using a merge_sort variant sort the divisor list. +
+
+ +
+Definition add_divisors f divs :=
+  let: (p, e) := f in
+  let add1 divs' := merge leq (map (NatTrec.mul p) divs') divs in
+  iter e add1 divs.
+ +
+Definition add_totient_factor f m := let: (p, e) := f in p.-1 × p ^ e.-1 × m.
+ +
+End prime_decomp.
+ +
+Definition primes n := unzip1 (prime_decomp n).
+ +
+Definition prime p := if prime_decomp p is [:: (_ , 1)] then true else false.
+ +
+Definition nat_pred := simpl_pred nat.
+ +
+Definition pi_unwrapped_arg := nat.
+Definition pi_wrapped_arg := wrapped nat.
+Coercion unwrap_pi_arg (wa : pi_wrapped_arg) : pi_unwrapped_arg := unwrap wa.
+Coercion pi_arg_of_nat (n : nat) := Wrap n : pi_wrapped_arg.
+Coercion pi_arg_of_fin_pred T pT (A : @fin_pred_sort T pT) : pi_wrapped_arg :=
+  Wrap #|A|.
+ +
+Definition pi_of (n : pi_unwrapped_arg) : nat_pred := [pred p in primes n].
+ +
+Notation "\pi ( n )" := (pi_of n)
+  (at level 2, format "\pi ( n )") : nat_scope.
+Notation "\p 'i' ( A )" := \pi(#|A|)
+  (at level 2, format "\p 'i' ( A )") : nat_scope.
+ +
+Definition pdiv n := head 1 (primes n).
+ +
+Definition max_pdiv n := last 1 (primes n).
+ +
+Definition divisors n := foldr add_divisors [:: 1] (prime_decomp n).
+ +
+Definition totient n := foldr add_totient_factor (n > 0) (prime_decomp n).
+ +
+
+ +
+ Correctness of the decomposition algorithm. +
+
+ +
+Lemma prime_decomp_correct :
+  let pd_val pd := \prod_(f <- pd) pfactor f.1 f.2 in
+  let lb_dvd q m := ~~ has [pred d | d %| m] (index_iota 2 q) in
+  let pf_ok f := lb_dvd f.1 f.1 && (0 < f.2) in
+  let pd_ord q pd := path ltn q (unzip1 pd) in
+  let pd_ok q n pd := [/\ n = pd_val pd, all pf_ok pd & pd_ord q pd] in
+   n, n > 0 pd_ok 1 n (prime_decomp n).
+ +
+Lemma primePn n :
+  reflect (n < 2 exists2 d, 1 < d < n & d %| n) (~~ prime n).
+ +
+Lemma primeP p :
+  reflect (p > 1 d, d %| p xpred2 1 p d) (prime p).
+ +
+Lemma prime_nt_dvdP d p : prime p d != 1 reflect (d = p) (d %| p).
+ +
+ +
+Lemma prime_gt1 p : prime p 1 < p.
+ +
+Lemma prime_gt0 p : prime p 0 < p.
+ +
+Hint Resolve prime_gt1 prime_gt0.
+ +
+Lemma prod_prime_decomp n :
+  n > 0 n = \prod_(f <- prime_decomp n) f.1 ^ f.2.
+ +
+Lemma even_prime p : prime p p = 2 odd p.
+ +
+Lemma prime_oddPn p : prime p reflect (p = 2) (~~ odd p).
+ +
+Lemma odd_prime_gt2 p : odd p prime p p > 2.
+ +
+Lemma mem_prime_decomp n p e :
+  (p, e) \in prime_decomp n [/\ prime p, e > 0 & p ^ e %| n].
+ +
+Lemma prime_coprime p m : prime p coprime p m = ~~ (p %| m).
+ +
+Lemma dvdn_prime2 p q : prime p prime q (p %| q) = (p == q).
+ +
+Lemma Euclid_dvdM m n p : prime p (p %| m × n) = (p %| m) || (p %| n).
+ +
+Lemma Euclid_dvd1 p : prime p (p %| 1) = false.
+ +
+Lemma Euclid_dvdX m n p : prime p (p %| m ^ n) = (p %| m) && (n > 0).
+ +
+Lemma mem_primes p n : (p \in primes n) = [&& prime p, n > 0 & p %| n].
+ +
+Lemma sorted_primes n : sorted ltn (primes n).
+ +
+Lemma eq_primes m n : (primes m =i primes n) (primes m = primes n).
+ +
+Lemma primes_uniq n : uniq (primes n).
+ +
+
+ +
+ The smallest prime divisor +
+
+ +
+Lemma pi_pdiv n : (pdiv n \in \pi(n)) = (n > 1).
+ +
+Lemma pdiv_prime n : 1 < n prime (pdiv n).
+ +
+Lemma pdiv_dvd n : pdiv n %| n.
+ +
+Lemma pi_max_pdiv n : (max_pdiv n \in \pi(n)) = (n > 1).
+ +
+Lemma max_pdiv_prime n : n > 1 prime (max_pdiv n).
+ +
+Lemma max_pdiv_dvd n : max_pdiv n %| n.
+ +
+Lemma pdiv_leq n : 0 < n pdiv n n.
+ +
+Lemma max_pdiv_leq n : 0 < n max_pdiv n n.
+ +
+Lemma pdiv_gt0 n : 0 < pdiv n.
+ +
+Lemma max_pdiv_gt0 n : 0 < max_pdiv n.
+ Hint Resolve pdiv_gt0 max_pdiv_gt0.
+ +
+Lemma pdiv_min_dvd m d : 1 < d d %| m pdiv m d.
+ +
+Lemma max_pdiv_max n p : p \in \pi(n) p max_pdiv n.
+ +
+Lemma ltn_pdiv2_prime n : 0 < n n < pdiv n ^ 2 prime n.
+ +
+Lemma primePns n :
+  reflect (n < 2 p, [/\ prime p, p ^ 2 n & p %| n]) (~~ prime n).
+ +
+ +
+Lemma pdivP n : n > 1 {p | prime p & p %| n}.
+ +
+Lemma primes_mul m n p : m > 0 n > 0
+  (p \in primes (m × n)) = (p \in primes m) || (p \in primes n).
+ +
+Lemma primes_exp m n : n > 0 primes (m ^ n) = primes m.
+ +
+Lemma primes_prime p : prime p primes p = [::p].
+ +
+Lemma coprime_has_primes m n : m > 0 n > 0
+  coprime m n = ~~ has (mem (primes m)) (primes n).
+ +
+Lemma pdiv_id p : prime p pdiv p = p.
+ +
+Lemma pdiv_pfactor p k : prime p pdiv (p ^ k.+1) = p.
+ +
+
+ +
+ Primes are unbounded. +
+
+ +
+Lemma prime_above m : {p | m < p & prime p}.
+ +
+
+ +
+ "prime" logarithms and p-parts. +
+
+ +
+Fixpoint logn_rec d m r :=
+  match r, edivn m d with
+  | r'.+1, (_.+1 as m', 0)(logn_rec d m' r').+1
+  | _, _ ⇒ 0
+  end.
+ +
+Definition logn p m := if prime p then logn_rec p m m else 0.
+ +
+Lemma lognE p m :
+  logn p m = if [&& prime p, 0 < m & p %| m] then (logn p (m %/ p)).+1 else 0.
+ +
+Lemma logn_gt0 p n : (0 < logn p n) = (p \in primes n).
+ +
+Lemma ltn_log0 p n : n < p logn p n = 0.
+ +
+Lemma logn0 p : logn p 0 = 0.
+ +
+Lemma logn1 p : logn p 1 = 0.
+ +
+Lemma pfactor_gt0 p n : 0 < p ^ logn p n.
+ Hint Resolve pfactor_gt0.
+ +
+Lemma pfactor_dvdn p n m : prime p m > 0 (p ^ n %| m) = (n logn p m).
+ +
+Lemma pfactor_dvdnn p n : p ^ logn p n %| n.
+ +
+Lemma logn_prime p q : prime q logn p q = (p == q).
+ +
+Lemma pfactor_coprime p n :
+  prime p n > 0 {m | coprime p m & n = m × p ^ logn p n}.
+ +
+Lemma pfactorK p n : prime p logn p (p ^ n) = n.
+ +
+Lemma pfactorKpdiv p n : prime p logn (pdiv (p ^ n)) (p ^ n) = n.
+ +
+Lemma dvdn_leq_log p m n : 0 < n m %| n logn p m logn p n.
+ +
+Lemma ltn_logl p n : 0 < n logn p n < n.
+ +
+Lemma logn_Gauss p m n : coprime p m logn p (m × n) = logn p n.
+ +
+Lemma lognM p m n : 0 < m 0 < n logn p (m × n) = logn p m + logn p n.
+ +
+Lemma lognX p m n : logn p (m ^ n) = n × logn p m.
+ +
+Lemma logn_div p m n : m %| n logn p (n %/ m) = logn p n - logn p m.
+ +
+Lemma dvdn_pfactor p d n : prime p
+  reflect (exists2 m, m n & d = p ^ m) (d %| p ^ n).
+ +
+Lemma prime_decompE n : prime_decomp n = [seq (p, logn p n) | p <- primes n].
+ +
+
+ +
+ Some combinatorial formulae. +
+
+ +
+Lemma divn_count_dvd d n : n %/ d = \sum_(1 i < n.+1) (d %| i).
+ +
+Lemma logn_count_dvd p n : prime p logn p n = \sum_(1 k < n) (p ^ k %| n).
+ +
+
+ +
+ Truncated real log. +
+
+ +
+Definition trunc_log p n :=
+  let fix loop n k :=
+    if k is k'.+1 then if p n then (loop (n %/ p) k').+1 else 0 else 0
+  in loop n n.
+ +
+Lemma trunc_log_bounds p n :
+  1 < p 0 < n let k := trunc_log p n in p ^ k n < p ^ k.+1.
+ +
+Lemma trunc_log_ltn p n : 1 < p n < p ^ (trunc_log p n).+1.
+ +
+Lemma trunc_logP p n : 1 < p 0 < n p ^ trunc_log p n n.
+ +
+Lemma trunc_log_max p k j : 1 < p p ^ j k j trunc_log p k.
+ +
+
+ +
+ pi- parts +
+ + Testing for membership in set of prime factors. +
+
+ +
+Canonical nat_pred_pred := Eval hnf in [predType of nat_pred].
+ +
+Coercion nat_pred_of_nat (p : nat) : nat_pred := pred1 p.
+ +
+Section NatPreds.
+ +
+Variables (n : nat) (pi : nat_pred).
+ +
+Definition negn : nat_pred := [predC pi].
+ +
+Definition pnat : pred nat := fun m(m > 0) && all (mem pi) (primes m).
+ +
+Definition partn := \prod_(0 p < n.+1 | p \in pi) p ^ logn p n.
+ +
+End NatPreds.
+ +
+Notation "pi ^'" := (negn pi) (at level 2, format "pi ^'") : nat_scope.
+ +
+Notation "pi .-nat" := (pnat pi) (at level 2, format "pi .-nat") : nat_scope.
+ +
+Notation "n `_ pi" := (partn n pi) : nat_scope.
+ +
+Section PnatTheory.
+ +
+Implicit Types (n p : nat) (pi rho : nat_pred).
+ +
+Lemma negnK pi : pi^'^' =i pi.
+ +
+Lemma eq_negn pi1 pi2 : pi1 =i pi2 pi1^' =i pi2^'.
+ +
+Lemma eq_piP m n : \pi(m) =i \pi(n) \pi(m) = \pi(n).
+ +
+Lemma part_gt0 pi n : 0 < n`_pi.
+ Hint Resolve part_gt0.
+ +
+Lemma sub_in_partn pi1 pi2 n :
+  {in \pi(n), {subset pi1 pi2}} n`_pi1 %| n`_pi2.
+ +
+Lemma eq_in_partn pi1 pi2 n : {in \pi(n), pi1 =i pi2} n`_pi1 = n`_pi2.
+ +
+Lemma eq_partn pi1 pi2 n : pi1 =i pi2 n`_pi1 = n`_pi2.
+ +
+Lemma partnNK pi n : n`_pi^'^' = n`_pi.
+ +
+Lemma widen_partn m pi n :
+  n m n`_pi = \prod_(0 p < m.+1 | p \in pi) p ^ logn p n.
+ +
+Lemma partn0 pi : 0`_pi = 1.
+ +
+Lemma partn1 pi : 1`_pi = 1.
+ +
+Lemma partnM pi m n : m > 0 n > 0 (m × n)`_pi = m`_pi × n`_pi.
+ +
+Lemma partnX pi m n : (m ^ n)`_pi = m`_pi ^ n.
+ +
+Lemma partn_dvd pi m n : n > 0 m %| n m`_pi %| n`_pi.
+ +
+Lemma p_part p n : n`_p = p ^ logn p n.
+ +
+Lemma p_part_eq1 p n : (n`_p == 1) = (p \notin \pi(n)).
+ +
+Lemma p_part_gt1 p n : (n`_p > 1) = (p \in \pi(n)).
+ +
+Lemma primes_part pi n : primes n`_pi = filter (mem pi) (primes n).
+ +
+Lemma filter_pi_of n m : n < m filter \pi(n) (index_iota 0 m) = primes n.
+ +
+Lemma partn_pi n : n > 0 n`_\pi(n) = n.
+ +
+Lemma partnT n : n > 0 n`_predT = n.
+ +
+Lemma partnC pi n : n > 0 n`_pi × n`_pi^' = n.
+ +
+Lemma dvdn_part pi n : n`_pi %| n.
+ +
+Lemma logn_part p m : logn p m`_p = logn p m.
+ +
+Lemma partn_lcm pi m n : m > 0 n > 0 (lcmn m n)`_pi = lcmn m`_pi n`_pi.
+ +
+Lemma partn_gcd pi m n : m > 0 n > 0 (gcdn m n)`_pi = gcdn m`_pi n`_pi.
+ +
+Lemma partn_biglcm (I : finType) (P : pred I) F pi :
+    ( i, P i F i > 0)
+  (\big[lcmn/1%N]_(i | P i) F i)`_pi = \big[lcmn/1%N]_(i | P i) (F i)`_pi.
+ +
+Lemma partn_biggcd (I : finType) (P : pred I) F pi :
+    #|SimplPred P| > 0 ( i, P i F i > 0)
+  (\big[gcdn/0]_(i | P i) F i)`_pi = \big[gcdn/0]_(i | P i) (F i)`_pi.
+ +
+Lemma sub_in_pnat pi rho n :
+  {in \pi(n), {subset pi rho}} pi.-nat n rho.-nat n.
+ +
+Lemma eq_in_pnat pi rho n : {in \pi(n), pi =i rho} pi.-nat n = rho.-nat n.
+ +
+Lemma eq_pnat pi rho n : pi =i rho pi.-nat n = rho.-nat n.
+ +
+Lemma pnatNK pi n : pi^'^'.-nat n = pi.-nat n.
+ +
+Lemma pnatI pi rho n : [predI pi & rho].-nat n = pi.-nat n && rho.-nat n.
+ +
+Lemma pnat_mul pi m n : pi.-nat (m × n) = pi.-nat m && pi.-nat n.
+ +
+Lemma pnat_exp pi m n : pi.-nat (m ^ n) = pi.-nat m || (n == 0).
+ +
+Lemma part_pnat pi n : pi.-nat n`_pi.
+ +
+Lemma pnatE pi p : prime p pi.-nat p = (p \in pi).
+ +
+Lemma pnat_id p : prime p p.-nat p.
+ +
+Lemma coprime_pi' m n : m > 0 n > 0 coprime m n = \pi(m)^'.-nat n.
+ +
+Lemma pnat_pi n : n > 0 \pi(n).-nat n.
+ +
+Lemma pi_of_dvd m n : m %| n n > 0 {subset \pi(m) \pi(n)}.
+ +
+Lemma pi_ofM m n : m > 0 n > 0 \pi(m × n) =i [predU \pi(m) & \pi(n)].
+ +
+Lemma pi_of_part pi n : n > 0 \pi(n`_pi) =i [predI \pi(n) & pi].
+ +
+Lemma pi_of_exp p n : n > 0 \pi(p ^ n) = \pi(p).
+ +
+Lemma pi_of_prime p : prime p \pi(p) =i (p : nat_pred).
+ +
+Lemma p'natEpi p n : n > 0 p^'.-nat n = (p \notin \pi(n)).
+ +
+Lemma p'natE p n : prime p p^'.-nat n = ~~ (p %| n).
+ +
+Lemma pnatPpi pi n p : pi.-nat n p \in \pi(n) p \in pi.
+ +
+Lemma pnat_dvd m n pi : m %| n pi.-nat n pi.-nat m.
+ +
+Lemma pnat_div m n pi : m %| n pi.-nat n pi.-nat (n %/ m).
+ +
+Lemma pnat_coprime pi m n : pi.-nat m pi^'.-nat n coprime m n.
+ +
+Lemma p'nat_coprime pi m n : pi^'.-nat m pi.-nat n coprime m n.
+ +
+Lemma sub_pnat_coprime pi rho m n :
+  {subset rho pi^'} pi.-nat m rho.-nat n coprime m n.
+ +
+Lemma coprime_partC pi m n : coprime m`_pi n`_pi^'.
+ +
+Lemma pnat_1 pi n : pi.-nat n pi^'.-nat n n = 1.
+ +
+Lemma part_pnat_id pi n : pi.-nat n n`_pi = n.
+ +
+Lemma part_p'nat pi n : pi^'.-nat n n`_pi = 1.
+ +
+Lemma partn_eq1 pi n : n > 0 (n`_pi == 1) = pi^'.-nat n.
+ +
+Lemma pnatP pi n :
+  n > 0 reflect ( p, prime p p %| n p \in pi) (pi.-nat n).
+ +
+Lemma pi_pnat pi p n : p.-nat n p \in pi pi.-nat n.
+ +
+Lemma p_natP p n : p.-nat n {k | n = p ^ k}.
+ +
+Lemma pi'_p'nat pi p n : pi^'.-nat n p \in pi p^'.-nat n.
+ +
+Lemma pi_p'nat p pi n : pi.-nat n p \in pi^' p^'.-nat n.
+ +
+Lemma partn_part pi rho n : {subset pi rho} n`_rho`_pi = n`_pi.
+ +
+Lemma partnI pi rho n : n`_[predI pi & rho] = n`_pi`_rho.
+ +
+Lemma odd_2'nat n : odd n = 2^'.-nat n.
+ +
+End PnatTheory.
+Hint Resolve part_gt0.
+ +
+
+ +
+ Properties of the divisors list. +
+
+ +
+Lemma divisors_correct n : n > 0
+  [/\ uniq (divisors n), sorted leq (divisors n)
+    & d, (d \in divisors n) = (d %| n)].
+ +
+Lemma sorted_divisors n : sorted leq (divisors n).
+ +
+Lemma divisors_uniq n : uniq (divisors n).
+ +
+Lemma sorted_divisors_ltn n : sorted ltn (divisors n).
+ +
+Lemma dvdn_divisors d m : 0 < m (d %| m) = (d \in divisors m).
+ +
+Lemma divisor1 n : 1 \in divisors n.
+ +
+Lemma divisors_id n : 0 < n n \in divisors n.
+ +
+
+ +
+ Big sum / product lemmas +
+
+ +
+Lemma dvdn_sum d I r (K : pred I) F :
+  ( i, K i d %| F i) d %| \sum_(i <- r | K i) F i.
+ +
+Lemma dvdn_partP n m : 0 < n
+  reflect ( p, p \in \pi(n) n`_p %| m) (n %| m).
+ +
+Lemma modn_partP n a b : 0 < n
+  reflect ( p : nat, p \in \pi(n) a = b %[mod n`_p]) (a == b %[mod n]).
+ +
+
+ +
+ The Euler totient function +
+
+ +
+Lemma totientE n :
+  n > 0 totient n = \prod_(p <- primes n) (p.-1 × p ^ (logn p n).-1).
+ +
+Lemma totient_gt0 n : (0 < totient n) = (0 < n).
+ +
+Lemma totient_pfactor p e :
+  prime p e > 0 totient (p ^ e) = p.-1 × p ^ e.-1.
+ +
+Lemma totient_coprime m n :
+  coprime m n totient (m × n) = totient m × totient n.
+ +
+Lemma totient_count_coprime n : totient n = \sum_(0 d < n) coprime n d.
+ +
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3