Library mathcomp.ssreflect.prime
- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.
- Distributed under the terms of CeCILL-B. *)
- -
-
-
-- Distributed under the terms of CeCILL-B. *)
- -
-
- This file contains the definitions of:
- prime p <=> p is a prime.
- primes m == the sorted list of prime divisors of m > 1, else [:: ].
- pfactor p e == the value p ^ e of a prime factor (p, e).
- NumFactor f == print version of a prime factor, converting the prime
- component to a Num (which can print large values).
- prime_decomp m == the list of prime factors of m > 1, sorted by primes.
- logn p m == the e such that (p ^ e) \in prime_decomp n, else 0.
- trunc_log p m == the largest e such that p ^ e <= m, or 0 if p or m is 0.
- pdiv n == the smallest prime divisor of n > 1, else 1.
- max_pdiv n == the largest prime divisor of n > 1, else 1.
- divisors m == the sorted list of divisors of m > 0, else [:: ].
- totient n == the Euler totient (#|{i < n | i and n coprime}|).
- nat_pred == the type of explicit collective nat predicates.
- := simpl_pred nat.
-
--
-
- > We allow the coercion nat >-> nat_pred, interpreting p as pred1 p. - - -
- > We define a predType for nat_pred, enabling the notation p \in pi. - - -
- > We don't have nat_pred >-> pred, which would imply nat >-> Funclass. - pi^' == the complement of pi : nat_pred, i.e., the nat_pred such - that (p \in pi^') = (p \notin pi). - \pi(n) == the set of prime divisors of n, i.e., the nat_pred such - that (p \in \pi(n)) = (p \in primes n). - \pi(A) == the set of primes of #|A|, with A a collective predicate - over a finite Type. - - -
- > The notation \pi(A) is implemented with a collapsible Coercion. The - type of A must coerce to finpred_sort (e.g., by coercing to {set T}) - and not merely implement the predType interface (as seq T does). - - -
- > The expression #|A| will only appear in \pi(A) after simplification - collapses the coercion, so it is advisable to do so early on. - pi.-nat n <=> n > 0 and all prime divisors of n are in pi. - n`pi == the pi-part of n -- the largest pi.-nat divisor of n. - := \prod(0 <= p < n.+1 | p \in pi) p ^ logn p n. - - -
- > The nat >-> nat_pred coercion lets us write p.-nat n and n`p. - - -
-
-
-Set Implicit Arguments.
- -
-
-
--Set Implicit Arguments.
- -
-
- The complexity of any arithmetic operation with the Peano representation
- is pretty dreadful, so using algorithms for "harder" problems such as
- factoring, that are geared for efficient artihmetic leads to dismal
- performance -- it takes a significant time, for instance, to compute the
- divisors of just a two-digit number. On the other hand, for Peano
- integers, prime factoring (and testing) is linear-time with a small
- constant factor -- indeed, the same as converting in and out of a binary
- representation. This is implemented by the code below, which is then
- used to give the "standard" definitions of prime, primes, and divisors,
- which can then be used casually in proofs with moderately-sized numeric
- values (indeed, the code here performs well for up to 6-digit numbers).
-
-
-
-
- We start with faster mod-2 and 2-valuation functions.
-
-
-
-
-Fixpoint edivn2 q r := if r is r'.+2 then edivn2 q.+1 r' else (q, r).
- -
-Lemma edivn2P n : edivn_spec n 2 (edivn2 0 n).
- -
-Fixpoint elogn2 e q r {struct q} :=
- match q, r with
- | 0, _ | _, 0 ⇒ (e, q)
- | q'.+1, 1 ⇒ elogn2 e.+1 q' q'
- | q'.+1, r'.+2 ⇒ elogn2 e q' r'
- end.
- -
-Variant elogn2_spec n : nat × nat → Type :=
- Elogn2Spec e m of n = 2 ^ e × m.*2.+1 : elogn2_spec n (e, m).
- -
-Lemma elogn2P n : elogn2_spec n.+1 (elogn2 0 n n).
- -
-Definition ifnz T n (x y : T) := if n is 0 then y else x.
- -
-Variant ifnz_spec T n (x y : T) : T → Type :=
- | IfnzPos of n > 0 : ifnz_spec n x y x
- | IfnzZero of n = 0 : ifnz_spec n x y y.
- -
-Lemma ifnzP T n (x y : T) : ifnz_spec n x y (ifnz n x y).
- -
-
-
--Fixpoint edivn2 q r := if r is r'.+2 then edivn2 q.+1 r' else (q, r).
- -
-Lemma edivn2P n : edivn_spec n 2 (edivn2 0 n).
- -
-Fixpoint elogn2 e q r {struct q} :=
- match q, r with
- | 0, _ | _, 0 ⇒ (e, q)
- | q'.+1, 1 ⇒ elogn2 e.+1 q' q'
- | q'.+1, r'.+2 ⇒ elogn2 e q' r'
- end.
- -
-Variant elogn2_spec n : nat × nat → Type :=
- Elogn2Spec e m of n = 2 ^ e × m.*2.+1 : elogn2_spec n (e, m).
- -
-Lemma elogn2P n : elogn2_spec n.+1 (elogn2 0 n n).
- -
-Definition ifnz T n (x y : T) := if n is 0 then y else x.
- -
-Variant ifnz_spec T n (x y : T) : T → Type :=
- | IfnzPos of n > 0 : ifnz_spec n x y x
- | IfnzZero of n = 0 : ifnz_spec n x y y.
- -
-Lemma ifnzP T n (x y : T) : ifnz_spec n x y (ifnz n x y).
- -
-
- The list of divisors and the Euler function are computed directly from
- the decomposition, using a merge_sort variant sort of the divisor list.
-
-
-
-
-Definition add_divisors f divs :=
- let: (p, e) := f in
- let add1 divs' := merge leq (map (NatTrec.mul p) divs') divs in
- iter e add1 divs.
- -
-Import NatTrec.
- -
-Definition add_totient_factor f m := let: (p, e) := f in p.-1 × p ^ e.-1 × m.
- -
-Definition cons_pfactor (p e : nat) pd := ifnz e ((p, e) :: pd) pd.
- -
-Notation "p ^? e :: pd" := (cons_pfactor p e pd)
- (at level 30, e at level 30, pd at level 60) : nat_scope.
- -
-End PrimeDecompAux.
- -
-
-
--Definition add_divisors f divs :=
- let: (p, e) := f in
- let add1 divs' := merge leq (map (NatTrec.mul p) divs') divs in
- iter e add1 divs.
- -
-Import NatTrec.
- -
-Definition add_totient_factor f m := let: (p, e) := f in p.-1 × p ^ e.-1 × m.
- -
-Definition cons_pfactor (p e : nat) pd := ifnz e ((p, e) :: pd) pd.
- -
-Notation "p ^? e :: pd" := (cons_pfactor p e pd)
- (at level 30, e at level 30, pd at level 60) : nat_scope.
- -
-End PrimeDecompAux.
- -
-
- For pretty-printing.
-
-
-Definition NumFactor (f : nat × nat) := ([Num of f.1], f.2).
- -
-Definition pfactor p e := p ^ e.
- -
-Section prime_decomp.
- -
-Import NatTrec.
- -
- -
-Definition prime_decomp n :=
- let: (e2, m2) := elogn2 0 n.-1 n.-1 in
- if m2 < 2 then 2 ^? e2 :: 3 ^? m2 :: [::] else
- let: (a, bc) := edivn m2.-2 3 in
- let: (b, c) := edivn (2 - bc) 2 in
- 2 ^? e2 :: [rec m2.*2.+1, 1, a, b, c, 0].
- -
-End prime_decomp.
- -
-Definition primes n := unzip1 (prime_decomp n).
- -
-Definition prime p := if prime_decomp p is [:: (_ , 1)] then true else false.
- -
-Definition nat_pred := simpl_pred nat.
- -
-Definition pi_arg := nat.
-Coercion pi_arg_of_nat (n : nat) : pi_arg := n.
-Coercion pi_arg_of_fin_pred T pT (A : @fin_pred_sort T pT) : pi_arg := #|A|.
-Definition pi_of (n : pi_arg) : nat_pred := [pred p in primes n].
- -
-Notation "\pi ( n )" := (pi_of n)
- (at level 2, format "\pi ( n )") : nat_scope.
-Notation "\p 'i' ( A )" := \pi(#|A|)
- (at level 2, format "\p 'i' ( A )") : nat_scope.
- -
-Definition pdiv n := head 1 (primes n).
- -
-Definition max_pdiv n := last 1 (primes n).
- -
-Definition divisors n := foldr add_divisors [:: 1] (prime_decomp n).
- -
-Definition totient n := foldr add_totient_factor (n > 0) (prime_decomp n).
- -
-
-
-- -
-Definition pfactor p e := p ^ e.
- -
-Section prime_decomp.
- -
-Import NatTrec.
- -
- -
-Definition prime_decomp n :=
- let: (e2, m2) := elogn2 0 n.-1 n.-1 in
- if m2 < 2 then 2 ^? e2 :: 3 ^? m2 :: [::] else
- let: (a, bc) := edivn m2.-2 3 in
- let: (b, c) := edivn (2 - bc) 2 in
- 2 ^? e2 :: [rec m2.*2.+1, 1, a, b, c, 0].
- -
-End prime_decomp.
- -
-Definition primes n := unzip1 (prime_decomp n).
- -
-Definition prime p := if prime_decomp p is [:: (_ , 1)] then true else false.
- -
-Definition nat_pred := simpl_pred nat.
- -
-Definition pi_arg := nat.
-Coercion pi_arg_of_nat (n : nat) : pi_arg := n.
-Coercion pi_arg_of_fin_pred T pT (A : @fin_pred_sort T pT) : pi_arg := #|A|.
-Definition pi_of (n : pi_arg) : nat_pred := [pred p in primes n].
- -
-Notation "\pi ( n )" := (pi_of n)
- (at level 2, format "\pi ( n )") : nat_scope.
-Notation "\p 'i' ( A )" := \pi(#|A|)
- (at level 2, format "\p 'i' ( A )") : nat_scope.
- -
-Definition pdiv n := head 1 (primes n).
- -
-Definition max_pdiv n := last 1 (primes n).
- -
-Definition divisors n := foldr add_divisors [:: 1] (prime_decomp n).
- -
-Definition totient n := foldr add_totient_factor (n > 0) (prime_decomp n).
- -
-
- Correctness of the decomposition algorithm.
-
-
-
-
-Lemma prime_decomp_correct :
- let pd_val pd := \prod_(f <- pd) pfactor f.1 f.2 in
- let lb_dvd q m := ~~ has [pred d | d %| m] (index_iota 2 q) in
- let pf_ok f := lb_dvd f.1 f.1 && (0 < f.2) in
- let pd_ord q pd := path ltn q (unzip1 pd) in
- let pd_ok q n pd := [/\ n = pd_val pd, all pf_ok pd & pd_ord q pd] in
- ∀ n, n > 0 → pd_ok 1 n (prime_decomp n).
- -
-Lemma primePn n :
- reflect (n < 2 ∨ exists2 d, 1 < d < n & d %| n) (~~ prime n).
- -
-Lemma primeP p :
- reflect (p > 1 ∧ ∀ d, d %| p → xpred2 1 p d) (prime p).
- -
-Lemma prime_nt_dvdP d p : prime p → d != 1 → reflect (d = p) (d %| p).
- -
- -
-Lemma prime_gt1 p : prime p → 1 < p.
- -
-Lemma prime_gt0 p : prime p → 0 < p.
- -
-Hint Resolve prime_gt1 prime_gt0 : core.
- -
-Lemma prod_prime_decomp n :
- n > 0 → n = \prod_(f <- prime_decomp n) f.1 ^ f.2.
- -
-Lemma even_prime p : prime p → p = 2 ∨ odd p.
- -
-Lemma prime_oddPn p : prime p → reflect (p = 2) (~~ odd p).
- -
-Lemma odd_prime_gt2 p : odd p → prime p → p > 2.
- -
-Lemma mem_prime_decomp n p e :
- (p, e) \in prime_decomp n → [/\ prime p, e > 0 & p ^ e %| n].
- -
-Lemma prime_coprime p m : prime p → coprime p m = ~~ (p %| m).
- -
-Lemma dvdn_prime2 p q : prime p → prime q → (p %| q) = (p == q).
- -
-Lemma Euclid_dvdM m n p : prime p → (p %| m × n) = (p %| m) || (p %| n).
- -
-Lemma Euclid_dvd1 p : prime p → (p %| 1) = false.
- -
-Lemma Euclid_dvdX m n p : prime p → (p %| m ^ n) = (p %| m) && (n > 0).
- -
-Lemma mem_primes p n : (p \in primes n) = [&& prime p, n > 0 & p %| n].
- -
-Lemma sorted_primes n : sorted ltn (primes n).
- -
-Lemma eq_primes m n : (primes m =i primes n) ↔ (primes m = primes n).
- -
-Lemma primes_uniq n : uniq (primes n).
- -
-
-
--Lemma prime_decomp_correct :
- let pd_val pd := \prod_(f <- pd) pfactor f.1 f.2 in
- let lb_dvd q m := ~~ has [pred d | d %| m] (index_iota 2 q) in
- let pf_ok f := lb_dvd f.1 f.1 && (0 < f.2) in
- let pd_ord q pd := path ltn q (unzip1 pd) in
- let pd_ok q n pd := [/\ n = pd_val pd, all pf_ok pd & pd_ord q pd] in
- ∀ n, n > 0 → pd_ok 1 n (prime_decomp n).
- -
-Lemma primePn n :
- reflect (n < 2 ∨ exists2 d, 1 < d < n & d %| n) (~~ prime n).
- -
-Lemma primeP p :
- reflect (p > 1 ∧ ∀ d, d %| p → xpred2 1 p d) (prime p).
- -
-Lemma prime_nt_dvdP d p : prime p → d != 1 → reflect (d = p) (d %| p).
- -
- -
-Lemma prime_gt1 p : prime p → 1 < p.
- -
-Lemma prime_gt0 p : prime p → 0 < p.
- -
-Hint Resolve prime_gt1 prime_gt0 : core.
- -
-Lemma prod_prime_decomp n :
- n > 0 → n = \prod_(f <- prime_decomp n) f.1 ^ f.2.
- -
-Lemma even_prime p : prime p → p = 2 ∨ odd p.
- -
-Lemma prime_oddPn p : prime p → reflect (p = 2) (~~ odd p).
- -
-Lemma odd_prime_gt2 p : odd p → prime p → p > 2.
- -
-Lemma mem_prime_decomp n p e :
- (p, e) \in prime_decomp n → [/\ prime p, e > 0 & p ^ e %| n].
- -
-Lemma prime_coprime p m : prime p → coprime p m = ~~ (p %| m).
- -
-Lemma dvdn_prime2 p q : prime p → prime q → (p %| q) = (p == q).
- -
-Lemma Euclid_dvdM m n p : prime p → (p %| m × n) = (p %| m) || (p %| n).
- -
-Lemma Euclid_dvd1 p : prime p → (p %| 1) = false.
- -
-Lemma Euclid_dvdX m n p : prime p → (p %| m ^ n) = (p %| m) && (n > 0).
- -
-Lemma mem_primes p n : (p \in primes n) = [&& prime p, n > 0 & p %| n].
- -
-Lemma sorted_primes n : sorted ltn (primes n).
- -
-Lemma eq_primes m n : (primes m =i primes n) ↔ (primes m = primes n).
- -
-Lemma primes_uniq n : uniq (primes n).
- -
-
- The smallest prime divisor
-
-
-
-
-Lemma pi_pdiv n : (pdiv n \in \pi(n)) = (n > 1).
- -
-Lemma pdiv_prime n : 1 < n → prime (pdiv n).
- -
-Lemma pdiv_dvd n : pdiv n %| n.
- -
-Lemma pi_max_pdiv n : (max_pdiv n \in \pi(n)) = (n > 1).
- -
-Lemma max_pdiv_prime n : n > 1 → prime (max_pdiv n).
- -
-Lemma max_pdiv_dvd n : max_pdiv n %| n.
- -
-Lemma pdiv_leq n : 0 < n → pdiv n ≤ n.
- -
-Lemma max_pdiv_leq n : 0 < n → max_pdiv n ≤ n.
- -
-Lemma pdiv_gt0 n : 0 < pdiv n.
- -
-Lemma max_pdiv_gt0 n : 0 < max_pdiv n.
- Hint Resolve pdiv_gt0 max_pdiv_gt0 : core.
- -
-Lemma pdiv_min_dvd m d : 1 < d → d %| m → pdiv m ≤ d.
- -
-Lemma max_pdiv_max n p : p \in \pi(n) → p ≤ max_pdiv n.
- -
-Lemma ltn_pdiv2_prime n : 0 < n → n < pdiv n ^ 2 → prime n.
- -
-Lemma primePns n :
- reflect (n < 2 ∨ ∃ p, [/\ prime p, p ^ 2 ≤ n & p %| n]) (~~ prime n).
- -
- -
-Lemma pdivP n : n > 1 → {p | prime p & p %| n}.
- -
-Lemma primes_mul m n p : m > 0 → n > 0 →
- (p \in primes (m × n)) = (p \in primes m) || (p \in primes n).
- -
-Lemma primes_exp m n : n > 0 → primes (m ^ n) = primes m.
- -
-Lemma primes_prime p : prime p → primes p = [::p].
- -
-Lemma coprime_has_primes m n :
- 0 < m → 0 < n → coprime m n = ~~ has (mem (primes m)) (primes n).
- -
-Lemma pdiv_id p : prime p → pdiv p = p.
- -
-Lemma pdiv_pfactor p k : prime p → pdiv (p ^ k.+1) = p.
- -
-
-
--Lemma pi_pdiv n : (pdiv n \in \pi(n)) = (n > 1).
- -
-Lemma pdiv_prime n : 1 < n → prime (pdiv n).
- -
-Lemma pdiv_dvd n : pdiv n %| n.
- -
-Lemma pi_max_pdiv n : (max_pdiv n \in \pi(n)) = (n > 1).
- -
-Lemma max_pdiv_prime n : n > 1 → prime (max_pdiv n).
- -
-Lemma max_pdiv_dvd n : max_pdiv n %| n.
- -
-Lemma pdiv_leq n : 0 < n → pdiv n ≤ n.
- -
-Lemma max_pdiv_leq n : 0 < n → max_pdiv n ≤ n.
- -
-Lemma pdiv_gt0 n : 0 < pdiv n.
- -
-Lemma max_pdiv_gt0 n : 0 < max_pdiv n.
- Hint Resolve pdiv_gt0 max_pdiv_gt0 : core.
- -
-Lemma pdiv_min_dvd m d : 1 < d → d %| m → pdiv m ≤ d.
- -
-Lemma max_pdiv_max n p : p \in \pi(n) → p ≤ max_pdiv n.
- -
-Lemma ltn_pdiv2_prime n : 0 < n → n < pdiv n ^ 2 → prime n.
- -
-Lemma primePns n :
- reflect (n < 2 ∨ ∃ p, [/\ prime p, p ^ 2 ≤ n & p %| n]) (~~ prime n).
- -
- -
-Lemma pdivP n : n > 1 → {p | prime p & p %| n}.
- -
-Lemma primes_mul m n p : m > 0 → n > 0 →
- (p \in primes (m × n)) = (p \in primes m) || (p \in primes n).
- -
-Lemma primes_exp m n : n > 0 → primes (m ^ n) = primes m.
- -
-Lemma primes_prime p : prime p → primes p = [::p].
- -
-Lemma coprime_has_primes m n :
- 0 < m → 0 < n → coprime m n = ~~ has (mem (primes m)) (primes n).
- -
-Lemma pdiv_id p : prime p → pdiv p = p.
- -
-Lemma pdiv_pfactor p k : prime p → pdiv (p ^ k.+1) = p.
- -
-
- Primes are unbounded.
-
-
-
-
- "prime" logarithms and p-parts.
-
-
-
-
-Fixpoint logn_rec d m r :=
- match r, edivn m d with
- | r'.+1, (_.+1 as m', 0) ⇒ (logn_rec d m' r').+1
- | _, _ ⇒ 0
- end.
- -
-Definition logn p m := if prime p then logn_rec p m m else 0.
- -
-Lemma lognE p m :
- logn p m = if [&& prime p, 0 < m & p %| m] then (logn p (m %/ p)).+1 else 0.
- -
-Lemma logn_gt0 p n : (0 < logn p n) = (p \in primes n).
- -
-Lemma ltn_log0 p n : n < p → logn p n = 0.
- -
-Lemma logn0 p : logn p 0 = 0.
- -
-Lemma logn1 p : logn p 1 = 0.
- -
-Lemma pfactor_gt0 p n : 0 < p ^ logn p n.
- Hint Resolve pfactor_gt0 : core.
- -
-Lemma pfactor_dvdn p n m : prime p → m > 0 → (p ^ n %| m) = (n ≤ logn p m).
- -
-Lemma pfactor_dvdnn p n : p ^ logn p n %| n.
- -
-Lemma logn_prime p q : prime q → logn p q = (p == q).
- -
-Lemma pfactor_coprime p n :
- prime p → n > 0 → {m | coprime p m & n = m × p ^ logn p n}.
- -
-Lemma pfactorK p n : prime p → logn p (p ^ n) = n.
- -
-Lemma pfactorKpdiv p n : prime p → logn (pdiv (p ^ n)) (p ^ n) = n.
- -
-Lemma dvdn_leq_log p m n : 0 < n → m %| n → logn p m ≤ logn p n.
- -
-Lemma ltn_logl p n : 0 < n → logn p n < n.
- -
-Lemma logn_Gauss p m n : coprime p m → logn p (m × n) = logn p n.
- -
-Lemma lognM p m n : 0 < m → 0 < n → logn p (m × n) = logn p m + logn p n.
- -
-Lemma lognX p m n : logn p (m ^ n) = n × logn p m.
- -
-Lemma logn_div p m n : m %| n → logn p (n %/ m) = logn p n - logn p m.
- -
-Lemma dvdn_pfactor p d n : prime p →
- reflect (exists2 m, m ≤ n & d = p ^ m) (d %| p ^ n).
- -
-Lemma prime_decompE n : prime_decomp n = [seq (p, logn p n) | p <- primes n].
- -
-
-
--Fixpoint logn_rec d m r :=
- match r, edivn m d with
- | r'.+1, (_.+1 as m', 0) ⇒ (logn_rec d m' r').+1
- | _, _ ⇒ 0
- end.
- -
-Definition logn p m := if prime p then logn_rec p m m else 0.
- -
-Lemma lognE p m :
- logn p m = if [&& prime p, 0 < m & p %| m] then (logn p (m %/ p)).+1 else 0.
- -
-Lemma logn_gt0 p n : (0 < logn p n) = (p \in primes n).
- -
-Lemma ltn_log0 p n : n < p → logn p n = 0.
- -
-Lemma logn0 p : logn p 0 = 0.
- -
-Lemma logn1 p : logn p 1 = 0.
- -
-Lemma pfactor_gt0 p n : 0 < p ^ logn p n.
- Hint Resolve pfactor_gt0 : core.
- -
-Lemma pfactor_dvdn p n m : prime p → m > 0 → (p ^ n %| m) = (n ≤ logn p m).
- -
-Lemma pfactor_dvdnn p n : p ^ logn p n %| n.
- -
-Lemma logn_prime p q : prime q → logn p q = (p == q).
- -
-Lemma pfactor_coprime p n :
- prime p → n > 0 → {m | coprime p m & n = m × p ^ logn p n}.
- -
-Lemma pfactorK p n : prime p → logn p (p ^ n) = n.
- -
-Lemma pfactorKpdiv p n : prime p → logn (pdiv (p ^ n)) (p ^ n) = n.
- -
-Lemma dvdn_leq_log p m n : 0 < n → m %| n → logn p m ≤ logn p n.
- -
-Lemma ltn_logl p n : 0 < n → logn p n < n.
- -
-Lemma logn_Gauss p m n : coprime p m → logn p (m × n) = logn p n.
- -
-Lemma lognM p m n : 0 < m → 0 < n → logn p (m × n) = logn p m + logn p n.
- -
-Lemma lognX p m n : logn p (m ^ n) = n × logn p m.
- -
-Lemma logn_div p m n : m %| n → logn p (n %/ m) = logn p n - logn p m.
- -
-Lemma dvdn_pfactor p d n : prime p →
- reflect (exists2 m, m ≤ n & d = p ^ m) (d %| p ^ n).
- -
-Lemma prime_decompE n : prime_decomp n = [seq (p, logn p n) | p <- primes n].
- -
-
- Some combinatorial formulae.
-
-
-
-
-Lemma divn_count_dvd d n : n %/ d = \sum_(1 ≤ i < n.+1) (d %| i).
- -
-Lemma logn_count_dvd p n : prime p → logn p n = \sum_(1 ≤ k < n) (p ^ k %| n).
- -
-
-
--Lemma divn_count_dvd d n : n %/ d = \sum_(1 ≤ i < n.+1) (d %| i).
- -
-Lemma logn_count_dvd p n : prime p → logn p n = \sum_(1 ≤ k < n) (p ^ k %| n).
- -
-
- Truncated real log.
-
-
-
-
-Definition trunc_log p n :=
- let fix loop n k :=
- if k is k'.+1 then if p ≤ n then (loop (n %/ p) k').+1 else 0 else 0
- in loop n n.
- -
-Lemma trunc_log_bounds p n :
- 1 < p → 0 < n → let k := trunc_log p n in p ^ k ≤ n < p ^ k.+1.
- -
-Lemma trunc_log_ltn p n : 1 < p → n < p ^ (trunc_log p n).+1.
- -
-Lemma trunc_logP p n : 1 < p → 0 < n → p ^ trunc_log p n ≤ n.
- -
-Lemma trunc_log_max p k j : 1 < p → p ^ j ≤ k → j ≤ trunc_log p k.
- -
-
-
--Definition trunc_log p n :=
- let fix loop n k :=
- if k is k'.+1 then if p ≤ n then (loop (n %/ p) k').+1 else 0 else 0
- in loop n n.
- -
-Lemma trunc_log_bounds p n :
- 1 < p → 0 < n → let k := trunc_log p n in p ^ k ≤ n < p ^ k.+1.
- -
-Lemma trunc_log_ltn p n : 1 < p → n < p ^ (trunc_log p n).+1.
- -
-Lemma trunc_logP p n : 1 < p → 0 < n → p ^ trunc_log p n ≤ n.
- -
-Lemma trunc_log_max p k j : 1 < p → p ^ j ≤ k → j ≤ trunc_log p k.
- -
-
- pi- parts
-
-
- Testing for membership in set of prime factors.
-
-
-
-
-Canonical nat_pred_pred := Eval hnf in [predType of nat_pred].
- -
-Coercion nat_pred_of_nat (p : nat) : nat_pred := pred1 p.
- -
-Section NatPreds.
- -
-Variables (n : nat) (pi : nat_pred).
- -
-Definition negn : nat_pred := [predC pi].
- -
-Definition pnat : pred nat := fun m ⇒ (m > 0) && all (mem pi) (primes m).
- -
-Definition partn := \prod_(0 ≤ p < n.+1 | p \in pi) p ^ logn p n.
- -
-End NatPreds.
- -
-Notation "pi ^'" := (negn pi) (at level 2, format "pi ^'") : nat_scope.
- -
-Notation "pi .-nat" := (pnat pi) (at level 2, format "pi .-nat") : nat_scope.
- -
-Notation "n `_ pi" := (partn n pi) : nat_scope.
- -
-Section PnatTheory.
- -
-Implicit Types (n p : nat) (pi rho : nat_pred).
- -
-Lemma negnK pi : pi^'^' =i pi.
- -
-Lemma eq_negn pi1 pi2 : pi1 =i pi2 → pi1^' =i pi2^'.
- -
-Lemma eq_piP m n : \pi(m) =i \pi(n) ↔ \pi(m) = \pi(n).
- -
-Lemma part_gt0 pi n : 0 < n`_pi.
- Hint Resolve part_gt0 : core.
- -
-Lemma sub_in_partn pi1 pi2 n :
- {in \pi(n), {subset pi1 ≤ pi2}} → n`_pi1 %| n`_pi2.
- -
-Lemma eq_in_partn pi1 pi2 n : {in \pi(n), pi1 =i pi2} → n`_pi1 = n`_pi2.
- -
-Lemma eq_partn pi1 pi2 n : pi1 =i pi2 → n`_pi1 = n`_pi2.
- -
-Lemma partnNK pi n : n`_pi^'^' = n`_pi.
- -
-Lemma widen_partn m pi n :
- n ≤ m → n`_pi = \prod_(0 ≤ p < m.+1 | p \in pi) p ^ logn p n.
- -
-Lemma partn0 pi : 0`_pi = 1.
- -
-Lemma partn1 pi : 1`_pi = 1.
- -
-Lemma partnM pi m n : m > 0 → n > 0 → (m × n)`_pi = m`_pi × n`_pi.
- -
-Lemma partnX pi m n : (m ^ n)`_pi = m`_pi ^ n.
- -
-Lemma partn_dvd pi m n : n > 0 → m %| n → m`_pi %| n`_pi.
- -
-Lemma p_part p n : n`_p = p ^ logn p n.
- -
-Lemma p_part_eq1 p n : (n`_p == 1) = (p \notin \pi(n)).
- -
-Lemma p_part_gt1 p n : (n`_p > 1) = (p \in \pi(n)).
- -
-Lemma primes_part pi n : primes n`_pi = filter (mem pi) (primes n).
- -
-Lemma filter_pi_of n m : n < m → filter \pi(n) (index_iota 0 m) = primes n.
- -
-Lemma partn_pi n : n > 0 → n`_\pi(n) = n.
- -
-Lemma partnT n : n > 0 → n`_predT = n.
- -
-Lemma partnC pi n : n > 0 → n`_pi × n`_pi^' = n.
- -
-Lemma dvdn_part pi n : n`_pi %| n.
- -
-Lemma logn_part p m : logn p m`_p = logn p m.
- -
-Lemma partn_lcm pi m n : m > 0 → n > 0 → (lcmn m n)`_pi = lcmn m`_pi n`_pi.
- -
-Lemma partn_gcd pi m n : m > 0 → n > 0 → (gcdn m n)`_pi = gcdn m`_pi n`_pi.
- -
-Lemma partn_biglcm (I : finType) (P : pred I) F pi :
- (∀ i, P i → F i > 0) →
- (\big[lcmn/1%N]_(i | P i) F i)`_pi = \big[lcmn/1%N]_(i | P i) (F i)`_pi.
- -
-Lemma partn_biggcd (I : finType) (P : pred I) F pi :
- #|SimplPred P| > 0 → (∀ i, P i → F i > 0) →
- (\big[gcdn/0]_(i | P i) F i)`_pi = \big[gcdn/0]_(i | P i) (F i)`_pi.
- -
-Lemma sub_in_pnat pi rho n :
- {in \pi(n), {subset pi ≤ rho}} → pi.-nat n → rho.-nat n.
- -
-Lemma eq_in_pnat pi rho n : {in \pi(n), pi =i rho} → pi.-nat n = rho.-nat n.
- -
-Lemma eq_pnat pi rho n : pi =i rho → pi.-nat n = rho.-nat n.
- -
-Lemma pnatNK pi n : pi^'^'.-nat n = pi.-nat n.
- -
-Lemma pnatI pi rho n : [predI pi & rho].-nat n = pi.-nat n && rho.-nat n.
- -
-Lemma pnat_mul pi m n : pi.-nat (m × n) = pi.-nat m && pi.-nat n.
- -
-Lemma pnat_exp pi m n : pi.-nat (m ^ n) = pi.-nat m || (n == 0).
- -
-Lemma part_pnat pi n : pi.-nat n`_pi.
- -
-Lemma pnatE pi p : prime p → pi.-nat p = (p \in pi).
- -
-Lemma pnat_id p : prime p → p.-nat p.
- -
-Lemma coprime_pi' m n : m > 0 → n > 0 → coprime m n = \pi(m)^'.-nat n.
- -
-Lemma pnat_pi n : n > 0 → \pi(n).-nat n.
- -
-Lemma pi_of_dvd m n : m %| n → n > 0 → {subset \pi(m) ≤ \pi(n)}.
- -
-Lemma pi_ofM m n : m > 0 → n > 0 → \pi(m × n) =i [predU \pi(m) & \pi(n)].
- -
-Lemma pi_of_part pi n : n > 0 → \pi(n`_pi) =i [predI \pi(n) & pi].
- -
-Lemma pi_of_exp p n : n > 0 → \pi(p ^ n) = \pi(p).
- -
-Lemma pi_of_prime p : prime p → \pi(p) =i (p : nat_pred).
- -
-Lemma p'natEpi p n : n > 0 → p^'.-nat n = (p \notin \pi(n)).
- -
-Lemma p'natE p n : prime p → p^'.-nat n = ~~ (p %| n).
- -
-Lemma pnatPpi pi n p : pi.-nat n → p \in \pi(n) → p \in pi.
- -
-Lemma pnat_dvd m n pi : m %| n → pi.-nat n → pi.-nat m.
- -
-Lemma pnat_div m n pi : m %| n → pi.-nat n → pi.-nat (n %/ m).
- -
-Lemma pnat_coprime pi m n : pi.-nat m → pi^'.-nat n → coprime m n.
- -
-Lemma p'nat_coprime pi m n : pi^'.-nat m → pi.-nat n → coprime m n.
- -
-Lemma sub_pnat_coprime pi rho m n :
- {subset rho ≤ pi^'} → pi.-nat m → rho.-nat n → coprime m n.
- -
-Lemma coprime_partC pi m n : coprime m`_pi n`_pi^'.
- -
-Lemma pnat_1 pi n : pi.-nat n → pi^'.-nat n → n = 1.
- -
-Lemma part_pnat_id pi n : pi.-nat n → n`_pi = n.
- -
-Lemma part_p'nat pi n : pi^'.-nat n → n`_pi = 1.
- -
-Lemma partn_eq1 pi n : n > 0 → (n`_pi == 1) = pi^'.-nat n.
- -
-Lemma pnatP pi n :
- n > 0 → reflect (∀ p, prime p → p %| n → p \in pi) (pi.-nat n).
- -
-Lemma pi_pnat pi p n : p.-nat n → p \in pi → pi.-nat n.
- -
-Lemma p_natP p n : p.-nat n → {k | n = p ^ k}.
- -
-Lemma pi'_p'nat pi p n : pi^'.-nat n → p \in pi → p^'.-nat n.
- -
-Lemma pi_p'nat p pi n : pi.-nat n → p \in pi^' → p^'.-nat n.
- -
-Lemma partn_part pi rho n : {subset pi ≤ rho} → n`_rho`_pi = n`_pi.
- -
-Lemma partnI pi rho n : n`_[predI pi & rho] = n`_pi`_rho.
- -
-Lemma odd_2'nat n : odd n = 2^'.-nat n.
- -
-End PnatTheory.
-Hint Resolve part_gt0 : core.
- -
-
-
--Canonical nat_pred_pred := Eval hnf in [predType of nat_pred].
- -
-Coercion nat_pred_of_nat (p : nat) : nat_pred := pred1 p.
- -
-Section NatPreds.
- -
-Variables (n : nat) (pi : nat_pred).
- -
-Definition negn : nat_pred := [predC pi].
- -
-Definition pnat : pred nat := fun m ⇒ (m > 0) && all (mem pi) (primes m).
- -
-Definition partn := \prod_(0 ≤ p < n.+1 | p \in pi) p ^ logn p n.
- -
-End NatPreds.
- -
-Notation "pi ^'" := (negn pi) (at level 2, format "pi ^'") : nat_scope.
- -
-Notation "pi .-nat" := (pnat pi) (at level 2, format "pi .-nat") : nat_scope.
- -
-Notation "n `_ pi" := (partn n pi) : nat_scope.
- -
-Section PnatTheory.
- -
-Implicit Types (n p : nat) (pi rho : nat_pred).
- -
-Lemma negnK pi : pi^'^' =i pi.
- -
-Lemma eq_negn pi1 pi2 : pi1 =i pi2 → pi1^' =i pi2^'.
- -
-Lemma eq_piP m n : \pi(m) =i \pi(n) ↔ \pi(m) = \pi(n).
- -
-Lemma part_gt0 pi n : 0 < n`_pi.
- Hint Resolve part_gt0 : core.
- -
-Lemma sub_in_partn pi1 pi2 n :
- {in \pi(n), {subset pi1 ≤ pi2}} → n`_pi1 %| n`_pi2.
- -
-Lemma eq_in_partn pi1 pi2 n : {in \pi(n), pi1 =i pi2} → n`_pi1 = n`_pi2.
- -
-Lemma eq_partn pi1 pi2 n : pi1 =i pi2 → n`_pi1 = n`_pi2.
- -
-Lemma partnNK pi n : n`_pi^'^' = n`_pi.
- -
-Lemma widen_partn m pi n :
- n ≤ m → n`_pi = \prod_(0 ≤ p < m.+1 | p \in pi) p ^ logn p n.
- -
-Lemma partn0 pi : 0`_pi = 1.
- -
-Lemma partn1 pi : 1`_pi = 1.
- -
-Lemma partnM pi m n : m > 0 → n > 0 → (m × n)`_pi = m`_pi × n`_pi.
- -
-Lemma partnX pi m n : (m ^ n)`_pi = m`_pi ^ n.
- -
-Lemma partn_dvd pi m n : n > 0 → m %| n → m`_pi %| n`_pi.
- -
-Lemma p_part p n : n`_p = p ^ logn p n.
- -
-Lemma p_part_eq1 p n : (n`_p == 1) = (p \notin \pi(n)).
- -
-Lemma p_part_gt1 p n : (n`_p > 1) = (p \in \pi(n)).
- -
-Lemma primes_part pi n : primes n`_pi = filter (mem pi) (primes n).
- -
-Lemma filter_pi_of n m : n < m → filter \pi(n) (index_iota 0 m) = primes n.
- -
-Lemma partn_pi n : n > 0 → n`_\pi(n) = n.
- -
-Lemma partnT n : n > 0 → n`_predT = n.
- -
-Lemma partnC pi n : n > 0 → n`_pi × n`_pi^' = n.
- -
-Lemma dvdn_part pi n : n`_pi %| n.
- -
-Lemma logn_part p m : logn p m`_p = logn p m.
- -
-Lemma partn_lcm pi m n : m > 0 → n > 0 → (lcmn m n)`_pi = lcmn m`_pi n`_pi.
- -
-Lemma partn_gcd pi m n : m > 0 → n > 0 → (gcdn m n)`_pi = gcdn m`_pi n`_pi.
- -
-Lemma partn_biglcm (I : finType) (P : pred I) F pi :
- (∀ i, P i → F i > 0) →
- (\big[lcmn/1%N]_(i | P i) F i)`_pi = \big[lcmn/1%N]_(i | P i) (F i)`_pi.
- -
-Lemma partn_biggcd (I : finType) (P : pred I) F pi :
- #|SimplPred P| > 0 → (∀ i, P i → F i > 0) →
- (\big[gcdn/0]_(i | P i) F i)`_pi = \big[gcdn/0]_(i | P i) (F i)`_pi.
- -
-Lemma sub_in_pnat pi rho n :
- {in \pi(n), {subset pi ≤ rho}} → pi.-nat n → rho.-nat n.
- -
-Lemma eq_in_pnat pi rho n : {in \pi(n), pi =i rho} → pi.-nat n = rho.-nat n.
- -
-Lemma eq_pnat pi rho n : pi =i rho → pi.-nat n = rho.-nat n.
- -
-Lemma pnatNK pi n : pi^'^'.-nat n = pi.-nat n.
- -
-Lemma pnatI pi rho n : [predI pi & rho].-nat n = pi.-nat n && rho.-nat n.
- -
-Lemma pnat_mul pi m n : pi.-nat (m × n) = pi.-nat m && pi.-nat n.
- -
-Lemma pnat_exp pi m n : pi.-nat (m ^ n) = pi.-nat m || (n == 0).
- -
-Lemma part_pnat pi n : pi.-nat n`_pi.
- -
-Lemma pnatE pi p : prime p → pi.-nat p = (p \in pi).
- -
-Lemma pnat_id p : prime p → p.-nat p.
- -
-Lemma coprime_pi' m n : m > 0 → n > 0 → coprime m n = \pi(m)^'.-nat n.
- -
-Lemma pnat_pi n : n > 0 → \pi(n).-nat n.
- -
-Lemma pi_of_dvd m n : m %| n → n > 0 → {subset \pi(m) ≤ \pi(n)}.
- -
-Lemma pi_ofM m n : m > 0 → n > 0 → \pi(m × n) =i [predU \pi(m) & \pi(n)].
- -
-Lemma pi_of_part pi n : n > 0 → \pi(n`_pi) =i [predI \pi(n) & pi].
- -
-Lemma pi_of_exp p n : n > 0 → \pi(p ^ n) = \pi(p).
- -
-Lemma pi_of_prime p : prime p → \pi(p) =i (p : nat_pred).
- -
-Lemma p'natEpi p n : n > 0 → p^'.-nat n = (p \notin \pi(n)).
- -
-Lemma p'natE p n : prime p → p^'.-nat n = ~~ (p %| n).
- -
-Lemma pnatPpi pi n p : pi.-nat n → p \in \pi(n) → p \in pi.
- -
-Lemma pnat_dvd m n pi : m %| n → pi.-nat n → pi.-nat m.
- -
-Lemma pnat_div m n pi : m %| n → pi.-nat n → pi.-nat (n %/ m).
- -
-Lemma pnat_coprime pi m n : pi.-nat m → pi^'.-nat n → coprime m n.
- -
-Lemma p'nat_coprime pi m n : pi^'.-nat m → pi.-nat n → coprime m n.
- -
-Lemma sub_pnat_coprime pi rho m n :
- {subset rho ≤ pi^'} → pi.-nat m → rho.-nat n → coprime m n.
- -
-Lemma coprime_partC pi m n : coprime m`_pi n`_pi^'.
- -
-Lemma pnat_1 pi n : pi.-nat n → pi^'.-nat n → n = 1.
- -
-Lemma part_pnat_id pi n : pi.-nat n → n`_pi = n.
- -
-Lemma part_p'nat pi n : pi^'.-nat n → n`_pi = 1.
- -
-Lemma partn_eq1 pi n : n > 0 → (n`_pi == 1) = pi^'.-nat n.
- -
-Lemma pnatP pi n :
- n > 0 → reflect (∀ p, prime p → p %| n → p \in pi) (pi.-nat n).
- -
-Lemma pi_pnat pi p n : p.-nat n → p \in pi → pi.-nat n.
- -
-Lemma p_natP p n : p.-nat n → {k | n = p ^ k}.
- -
-Lemma pi'_p'nat pi p n : pi^'.-nat n → p \in pi → p^'.-nat n.
- -
-Lemma pi_p'nat p pi n : pi.-nat n → p \in pi^' → p^'.-nat n.
- -
-Lemma partn_part pi rho n : {subset pi ≤ rho} → n`_rho`_pi = n`_pi.
- -
-Lemma partnI pi rho n : n`_[predI pi & rho] = n`_pi`_rho.
- -
-Lemma odd_2'nat n : odd n = 2^'.-nat n.
- -
-End PnatTheory.
-Hint Resolve part_gt0 : core.
- -
-
- Properties of the divisors list.
-
-
-
-
-Lemma divisors_correct n : n > 0 →
- [/\ uniq (divisors n), sorted leq (divisors n)
- & ∀ d, (d \in divisors n) = (d %| n)].
- -
-Lemma sorted_divisors n : sorted leq (divisors n).
- -
-Lemma divisors_uniq n : uniq (divisors n).
- -
-Lemma sorted_divisors_ltn n : sorted ltn (divisors n).
- -
-Lemma dvdn_divisors d m : 0 < m → (d %| m) = (d \in divisors m).
- -
-Lemma divisor1 n : 1 \in divisors n.
- -
-Lemma divisors_id n : 0 < n → n \in divisors n.
- -
-
-
--Lemma divisors_correct n : n > 0 →
- [/\ uniq (divisors n), sorted leq (divisors n)
- & ∀ d, (d \in divisors n) = (d %| n)].
- -
-Lemma sorted_divisors n : sorted leq (divisors n).
- -
-Lemma divisors_uniq n : uniq (divisors n).
- -
-Lemma sorted_divisors_ltn n : sorted ltn (divisors n).
- -
-Lemma dvdn_divisors d m : 0 < m → (d %| m) = (d \in divisors m).
- -
-Lemma divisor1 n : 1 \in divisors n.
- -
-Lemma divisors_id n : 0 < n → n \in divisors n.
- -
-
- Big sum / product lemmas
-
-
-
-
-Lemma dvdn_sum d I r (K : pred I) F :
- (∀ i, K i → d %| F i) → d %| \sum_(i <- r | K i) F i.
- -
-Lemma dvdn_partP n m : 0 < n →
- reflect (∀ p, p \in \pi(n) → n`_p %| m) (n %| m).
- -
-Lemma modn_partP n a b : 0 < n →
- reflect (∀ p : nat, p \in \pi(n) → a = b %[mod n`_p]) (a == b %[mod n]).
- -
-
-
--Lemma dvdn_sum d I r (K : pred I) F :
- (∀ i, K i → d %| F i) → d %| \sum_(i <- r | K i) F i.
- -
-Lemma dvdn_partP n m : 0 < n →
- reflect (∀ p, p \in \pi(n) → n`_p %| m) (n %| m).
- -
-Lemma modn_partP n a b : 0 < n →
- reflect (∀ p : nat, p \in \pi(n) → a = b %[mod n`_p]) (a == b %[mod n]).
- -
-
- The Euler totient function
-
-
-
-
-Lemma totientE n :
- n > 0 → totient n = \prod_(p <- primes n) (p.-1 × p ^ (logn p n).-1).
- -
-Lemma totient_gt0 n : (0 < totient n) = (0 < n).
- -
-Lemma totient_pfactor p e :
- prime p → e > 0 → totient (p ^ e) = p.-1 × p ^ e.-1.
- -
-Lemma totient_coprime m n :
- coprime m n → totient (m × n) = totient m × totient n.
- -
-Lemma totient_count_coprime n : totient n = \sum_(0 ≤ d < n) coprime n d.
- -
-
--Lemma totientE n :
- n > 0 → totient n = \prod_(p <- primes n) (p.-1 × p ^ (logn p n).-1).
- -
-Lemma totient_gt0 n : (0 < totient n) = (0 < n).
- -
-Lemma totient_pfactor p e :
- prime p → e > 0 → totient (p ^ e) = p.-1 × p ^ e.-1.
- -
-Lemma totient_coprime m n :
- coprime m n → totient (m × n) = totient m × totient n.
- -
-Lemma totient_count_coprime n : totient n = \sum_(0 ≤ d < n) coprime n d.
- -
-