From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.ssreflect.finset.html | 2044 --------------------------- 1 file changed, 2044 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.ssreflect.finset.html (limited to 'docs/htmldoc/mathcomp.ssreflect.finset.html') diff --git a/docs/htmldoc/mathcomp.ssreflect.finset.html b/docs/htmldoc/mathcomp.ssreflect.finset.html deleted file mode 100644 index b9f69c8..0000000 --- a/docs/htmldoc/mathcomp.ssreflect.finset.html +++ /dev/null @@ -1,2044 +0,0 @@ - - - - - -mathcomp.ssreflect.finset - - - - -
- - - -
- -

Library mathcomp.ssreflect.finset

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- This file defines a type for sets over a finite Type, similar to the type - of functions over a finite Type defined in finfun.v (indeed, based in it): - {set T} where T must have a finType structure - We equip {set T} itself with a finType structure, hence Leibnitz and - extensional equalities coincide on {set T}, and we can form {set {set T}} - If A, B : {set T} and P : {set {set T}}, we define: - x \in A == x belongs to A (i.e., {set T} implements predType, - by coercion to pred_sort). - mem A == the predicate corresponding to A. - finset p == the set corresponding to a predicate p. - [set x | P] == the set containing the x such that P is true (x may - appear in P). - [set x | P & Q] := [set x | P && Q]. - [set x in A] == the set containing the x in a collective predicate A. - [set x in A | P] == the set containing the x in A such that P is true. - [set x in A | P & Q] := [set x in A | P && Q]. - All these have typed variants [set x : T | P], [set x : T in A], etc. - set0 == the empty set. - [set: T] or setT == the full set (the A containing all x : T). - A :|: B == the union of A and B. - x |: A == A with the element x added (:= [set x] :| A). - A :&: B == the intersection of A and B. - ~: A == the complement of A. - A :\: B == the difference A minus B. - A :\ x == A with the element x removed (:= A :\: [set x]). - \bigcup<range> A == the union of all A, for i in <range> (i is bound in - A, see bigop.v). - \bigcap<range> A == the intersection of all A, for i in <range>. - cover P == the union of the set of sets P. - trivIset P <=> the elements of P are pairwise disjoint. - partition P A <=> P is a partition of A. - pblock P x == a block of P containing x, or else set0. - equivalence_partition R D == the partition induced on D by the relation R - (provided R is an equivalence relation in D). - preim_partition f D == the partition induced on D by the equivalence - [rel x y | f x == f y]. - is_transversal X P D <=> X is a transversal of the partition P of D. - transversal P D == a transversal of P, provided P is a partition of D. - transversal_repr x0 X B == a representative of B \in P selected by the - tranversal X of P, or else x0. - powerset A == the set of all subset of the set A. - P ::&: A == those sets in P that are subsets of the set A. - f @^-1: A == the preimage of the collective predicate A under f. - f @: A == the image set of the collective predicate A by f. - f @2:(A, B) == the image set of A x B by the binary function f. - [set E | x in A] == the set of all the values of the expression E, for x - drawn from the collective predicate A. - [set E | x in A & P] == the set of values of E for x drawn from A, such - that P is true. - [set E | x in A, y in B] == the set of values of E for x drawn from A and - and y drawn from B; B may depend on x. - [set E | x <- A, y <- B & P] == the set of values of E for x drawn from A - y drawn from B, such that P is trye. - [set E | x : T] == the set of all values of E, with x in type T. - [set E | x : T & P] == the set of values of E for x : T s.t. P is true. - [set E | x : T, y : U in B], [set E | x : T, y : U in B & P], - [set E | x : T in A, y : U], [set E | x : T in A, y : U & P], - [set E | x : T, y : U], [set E | x : T, y : U & P] - == type-ranging versions of the binary comprehensions. - [set E | x : T in A], [set E | x in A, y], [set E | x, y & P], etc. - == typed and untyped variants of the comprehensions above. - The types may be required as type inference processes E - before considering A or B. Note that type casts in the - binary comprehension must either be both present or absent - and that there are no untyped variants for single-type - comprehension as Coq parsing confuses [x | P] and [E | x]. - minset p A == A is a minimal set satisfying p. - maxset p A == A is a maximal set satisfying p. - We also provide notations A :=: B, A :<>: B, A :==: B, A :!=: B, A :=P: B - that specialize A = B, A <> B, A == B, etc., to {set _}. This is useful - for subtypes of {set T}, such as {group T}, that coerce to {set T}. - We give many lemmas on these operations, on card, and on set inclusion. - In addition to the standard suffixes described in ssrbool.v, we associate - the following suffixes to set operations: - 0 -- the empty set, as in in_set0 : (x \in set0) = false. - T -- the full set, as in in_setT : x \in [set: T]. - 1 -- a singleton set, as in in_set1 : (x \in [set a]) = (x == a). - 2 -- an unordered pair, as in - in_set2 : (x \in [set a; b]) = (x == a) || (x == b). - C -- complement, as in setCK : ~: ~: A = A. - I -- intersection, as in setIid : A :&: A = A. - U -- union, as in setUid : A :|: A = A. - D -- difference, as in setDv : A :\: A = set0. - S -- a subset argument, as in - setIS: B \subset C -> A :&: B \subset A :&: C - These suffixes are sometimes preceded with an `s' to distinguish them from - their basic ssrbool interpretation, e.g., - card1 : #|pred1 x| = 1 and cards1 : #| [set x]| = 1 - We also use a trailling `r' to distinguish a right-hand complement from - commutativity, e.g., - setIC : A :&: B = B :&: A and setICr : A :&: ~: A = set0. -
-
- -
-Set Implicit Arguments.
-Section SetType.
- -
-Variable T : finType.
- -
-Inductive set_type : predArgType := FinSet of {ffun pred T}.
-Definition finfun_of_set A := let: FinSet f := A in f.
-Definition set_of of phant T := set_type.
-Identity Coercion type_of_set_of : set_of >-> set_type.
- -
-Canonical set_subType := Eval hnf in [newType for finfun_of_set].
-Definition set_eqMixin := Eval hnf in [eqMixin of set_type by <:].
-Canonical set_eqType := Eval hnf in EqType set_type set_eqMixin.
-Definition set_choiceMixin := [choiceMixin of set_type by <:].
-Canonical set_choiceType := Eval hnf in ChoiceType set_type set_choiceMixin.
-Definition set_countMixin := [countMixin of set_type by <:].
-Canonical set_countType := Eval hnf in CountType set_type set_countMixin.
-Canonical set_subCountType := Eval hnf in [subCountType of set_type].
-Definition set_finMixin := [finMixin of set_type by <:].
-Canonical set_finType := Eval hnf in FinType set_type set_finMixin.
-Canonical set_subFinType := Eval hnf in [subFinType of set_type].
- -
-End SetType.
- -
-Delimit Scope set_scope with SET.
-Open Scope set_scope.
- -
-Notation "{ 'set' T }" := (set_of (Phant T))
-  (at level 0, format "{ 'set' T }") : type_scope.
- -
-
- -
- We later define several subtypes that coerce to set; for these it is - preferable to state equalities at the {set _} level, even when comparing - subtype values, because the primitive "injection" tactic tends to diverge - on complex types (e.g., quotient groups). We provide some parse-only - notation to make this technicality less obstrusive. -
-
-Notation "A :=: B" := (A = B :> {set _})
-  (at level 70, no associativity, only parsing) : set_scope.
-Notation "A :<>: B" := (A B :> {set _})
-  (at level 70, no associativity, only parsing) : set_scope.
-Notation "A :==: B" := (A == B :> {set _})
-  (at level 70, no associativity, only parsing) : set_scope.
-Notation "A :!=: B" := (A != B :> {set _})
-  (at level 70, no associativity, only parsing) : set_scope.
-Notation "A :=P: B" := (A =P B :> {set _})
-  (at level 70, no associativity, only parsing) : set_scope.
- -
- -
- -
-Module Type SetDefSig.
-Parameter finset : T : finType, pred T {set T}.
-Parameter pred_of_set : T, set_type T fin_pred_sort (predPredType T).
-
- -
- The weird type of pred_of_set is imposed by the syntactic restrictions on - coercion declarations; it is unfortunately not possible to use a functor - to retype the declaration, because this triggers an ugly bug in the Coq - coercion chaining code. -
-
-Axiom finsetE : finset = finset_def.
-Axiom pred_of_setE : pred_of_set = pred_of_set_def.
-End SetDefSig.
- -
-Module SetDef : SetDefSig.
-Definition finset := finset_def.
-Definition pred_of_set := pred_of_set_def.
-Lemma finsetE : finset = finset_def.
-Lemma pred_of_setE : pred_of_set = pred_of_set_def.
-End SetDef.
- -
-Notation finset := SetDef.finset.
-Notation pred_of_set := SetDef.pred_of_set.
-Canonical finset_unlock := Unlockable SetDef.finsetE.
-Canonical pred_of_set_unlock := Unlockable SetDef.pred_of_setE.
- -
-Notation "[ 'set' x : T | P ]" := (finset (fun x : TP%B))
-  (at level 0, x at level 99, only parsing) : set_scope.
-Notation "[ 'set' x | P ]" := [set x : _ | P]
-  (at level 0, x, P at level 99, format "[ 'set' x | P ]") : set_scope.
-Notation "[ 'set' x 'in' A ]" := [set x | x \in A]
-  (at level 0, x at level 99, format "[ 'set' x 'in' A ]") : set_scope.
-Notation "[ 'set' x : T 'in' A ]" := [set x : T | x \in A]
-  (at level 0, x at level 99, only parsing) : set_scope.
-Notation "[ 'set' x : T | P & Q ]" := [set x : T | P && Q]
-  (at level 0, x at level 99, only parsing) : set_scope.
-Notation "[ 'set' x | P & Q ]" := [set x | P && Q ]
-  (at level 0, x, P at level 99, format "[ 'set' x | P & Q ]") : set_scope.
-Notation "[ 'set' x : T 'in' A | P ]" := [set x : T | x \in A & P]
-  (at level 0, x at level 99, only parsing) : set_scope.
-Notation "[ 'set' x 'in' A | P ]" := [set x | x \in A & P]
-  (at level 0, x at level 99, format "[ 'set' x 'in' A | P ]") : set_scope.
-Notation "[ 'set' x 'in' A | P & Q ]" := [set x in A | P && Q]
-  (at level 0, x at level 99,
-   format "[ 'set' x 'in' A | P & Q ]") : set_scope.
-Notation "[ 'set' x : T 'in' A | P & Q ]" := [set x : T in A | P && Q]
-  (at level 0, x at level 99, only parsing) : set_scope.
- -
-
- -
- This lets us use set and subtypes of set, like group or coset_of, both as - collective predicates and as arguments of the \pi(_) notation. -
- - -
- Declare pred_of_set as a canonical instance of topred, but use the - coercion to resolve mem A to @mem (predPredType T) (pred_of_set A). -
-
-Canonical set_predType T := @PredType _ (unkeyed (set_type T)) (@pred_of_set T).
- -
-Section BasicSetTheory.
- -
-Variable T : finType.
-Implicit Types (x : T) (A B : {set T}) (pA : pred T).
- -
-Canonical set_of_subType := Eval hnf in [subType of {set T}].
-Canonical set_of_eqType := Eval hnf in [eqType of {set T}].
-Canonical set_of_choiceType := Eval hnf in [choiceType of {set T}].
-Canonical set_of_countType := Eval hnf in [countType of {set T}].
-Canonical set_of_subCountType := Eval hnf in [subCountType of {set T}].
-Canonical set_of_finType := Eval hnf in [finType of {set T}].
-Canonical set_of_subFinType := Eval hnf in [subFinType of {set T}].
- -
-Lemma in_set pA x : x \in finset pA = pA x.
- -
-Lemma setP A B : A =i B A = B.
- -
-Definition set0 := [set x : T | false].
-Definition setTfor (phT : phant T) := [set x : T | true].
- -
-Lemma in_setT x : x \in setTfor (Phant T).
- -
-Lemma eqsVneq A B : {A = B} + {A != B}.
- -
-Lemma eq_finset (pA pB : pred T) : pA =1 pB finset pA = finset pB.
- -
-End BasicSetTheory.
- -
-Definition inE := (in_set, inE).
- -
-Hint Resolve in_setT : core.
- -
-Notation "[ 'set' : T ]" := (setTfor (Phant T))
-  (at level 0, format "[ 'set' : T ]") : set_scope.
- -
-Notation setT := [set: _] (only parsing).
- -
-Section setOpsDefs.
- -
-Variable T : finType.
-Implicit Types (a x : T) (A B D : {set T}) (P : {set {set T}}).
- -
-Definition set1 a := [set x | x == a].
-Definition setU A B := [set x | (x \in A) || (x \in B)].
-Definition setI A B := [set x in A | x \in B].
-Definition setC A := [set x | x \notin A].
-Definition setD A B := [set x | x \notin B & x \in A].
-Definition ssetI P D := [set A in P | A \subset D].
-Definition powerset D := [set A : {set T} | A \subset D].
- -
-End setOpsDefs.
- -
-Notation "[ 'set' a ]" := (set1 a)
-  (at level 0, a at level 99, format "[ 'set' a ]") : set_scope.
-Notation "[ 'set' a : T ]" := [set (a : T)]
-  (at level 0, a at level 99, format "[ 'set' a : T ]") : set_scope.
-Notation "A :|: B" := (setU A B) : set_scope.
-Notation "a |: A" := ([set a] :|: A) : set_scope.
-
- -
- This is left-associative due to historical limitations of the .. Notation. -
-
-Notation "[ 'set' a1 ; a2 ; .. ; an ]" := (setU .. (a1 |: [set a2]) .. [set an])
-  (at level 0, a1 at level 99,
-   format "[ 'set' a1 ; a2 ; .. ; an ]") : set_scope.
-Notation "A :&: B" := (setI A B) : set_scope.
-Notation "~: A" := (setC A) (at level 35, right associativity) : set_scope.
-Notation "[ 'set' ~ a ]" := (~: [set a])
-  (at level 0, format "[ 'set' ~ a ]") : set_scope.
-Notation "A :\: B" := (setD A B) : set_scope.
-Notation "A :\ a" := (A :\: [set a]) : set_scope.
-Notation "P ::&: D" := (ssetI P D) (at level 48) : set_scope.
- -
-Section setOps.
- -
-Variable T : finType.
-Implicit Types (a x : T) (A B C D : {set T}) (pA pB pC : pred T).
- -
-Lemma eqEsubset A B : (A == B) = (A \subset B) && (B \subset A).
- -
-Lemma subEproper A B : A \subset B = (A == B) || (A \proper B).
- -
-Lemma eqVproper A B : A \subset B A = B A \proper B.
- -
-Lemma properEneq A B : A \proper B = (A != B) && (A \subset B).
- -
-Lemma proper_neq A B : A \proper B A != B.
- -
-Lemma eqEproper A B : (A == B) = (A \subset B) && ~~ (A \proper B).
- -
-Lemma eqEcard A B : (A == B) = (A \subset B) && (#|B| #|A|).
- -
-Lemma properEcard A B : (A \proper B) = (A \subset B) && (#|A| < #|B|).
- -
-Lemma subset_leqif_cards A B : A \subset B (#|A| #|B| ?= iff (A == B)).
- -
-Lemma in_set0 x : x \in set0 = false.
- -
-Lemma sub0set A : set0 \subset A.
- -
-Lemma subset0 A : (A \subset set0) = (A == set0).
- -
-Lemma proper0 A : (set0 \proper A) = (A != set0).
- -
-Lemma subset_neq0 A B : A \subset B A != set0 B != set0.
- -
-Lemma set_0Vmem A : (A = set0) + {x : T | x \in A}.
- -
-Lemma enum_set0 : enum set0 = [::] :> seq T.
- -
-Lemma subsetT A : A \subset setT.
- -
-Lemma subsetT_hint mA : subset mA (mem [set: T]).
- Hint Resolve subsetT_hint : core.
- -
-Lemma subTset A : (setT \subset A) = (A == setT).
- -
-Lemma properT A : (A \proper setT) = (A != setT).
- -
-Lemma set1P x a : reflect (x = a) (x \in [set a]).
- -
-Lemma enum_setT : enum [set: T] = Finite.enum T.
- -
-Lemma in_set1 x a : (x \in [set a]) = (x == a).
- -
-Lemma set11 x : x \in [set x].
- -
-Lemma set1_inj : injective (@set1 T).
- -
-Lemma enum_set1 a : enum [set a] = [:: a].
- -
-Lemma setU1P x a B : reflect (x = a x \in B) (x \in a |: B).
- -
-Lemma in_setU1 x a B : (x \in a |: B) = (x == a) || (x \in B).
- -
-Lemma set_cons a s : [set x in a :: s] = a |: [set x in s].
- -
-Lemma setU11 x B : x \in x |: B.
- -
-Lemma setU1r x a B : x \in B x \in a |: B.
- -
-
- -
- We need separate lemmas for the explicit enumerations since they - associate on the left. -
-
-Lemma set1Ul x A b : x \in A x \in A :|: [set b].
- -
-Lemma set1Ur A b : b \in A :|: [set b].
- -
-Lemma in_setC1 x a : (x \in [set¬ a]) = (x != a).
- -
-Lemma setC11 x : (x \in [set¬ x]) = false.
- -
-Lemma setD1P x A b : reflect (x != b x \in A) (x \in A :\ b).
- -
-Lemma in_setD1 x A b : (x \in A :\ b) = (x != b) && (x \in A) .
- -
-Lemma setD11 b A : (b \in A :\ b) = false.
- -
-Lemma setD1K a A : a \in A a |: (A :\ a) = A.
- -
-Lemma setU1K a B : a \notin B (a |: B) :\ a = B.
- -
-Lemma set2P x a b : reflect (x = a x = b) (x \in [set a; b]).
- -
-Lemma in_set2 x a b : (x \in [set a; b]) = (x == a) || (x == b).
- -
-Lemma set21 a b : a \in [set a; b].
- -
-Lemma set22 a b : b \in [set a; b].
- -
-Lemma setUP x A B : reflect (x \in A x \in B) (x \in A :|: B).
- -
-Lemma in_setU x A B : (x \in A :|: B) = (x \in A) || (x \in B).
- -
-Lemma setUC A B : A :|: B = B :|: A.
- -
-Lemma setUS A B C : A \subset B C :|: A \subset C :|: B.
- -
-Lemma setSU A B C : A \subset B A :|: C \subset B :|: C.
- -
-Lemma setUSS A B C D : A \subset C B \subset D A :|: B \subset C :|: D.
- -
-Lemma set0U A : set0 :|: A = A.
- -
-Lemma setU0 A : A :|: set0 = A.
- -
-Lemma setUA A B C : A :|: (B :|: C) = A :|: B :|: C.
- -
-Lemma setUCA A B C : A :|: (B :|: C) = B :|: (A :|: C).
- -
-Lemma setUAC A B C : A :|: B :|: C = A :|: C :|: B.
- -
-Lemma setUACA A B C D : (A :|: B) :|: (C :|: D) = (A :|: C) :|: (B :|: D).
- -
-Lemma setTU A : setT :|: A = setT.
- -
-Lemma setUT A : A :|: setT = setT.
- -
-Lemma setUid A : A :|: A = A.
- -
-Lemma setUUl A B C : A :|: B :|: C = (A :|: C) :|: (B :|: C).
- -
-Lemma setUUr A B C : A :|: (B :|: C) = (A :|: B) :|: (A :|: C).
- -
-
- -
- intersection -
- - setIdP is a generalisation of setIP that applies to comprehensions. -
-
-Lemma setIdP x pA pB : reflect (pA x pB x) (x \in [set y | pA y & pB y]).
- -
-Lemma setId2P x pA pB pC :
-  reflect [/\ pA x, pB x & pC x] (x \in [set y | pA y & pB y && pC y]).
- -
-Lemma setIdE A pB : [set x in A | pB x] = A :&: [set x | pB x].
- -
-Lemma setIP x A B : reflect (x \in A x \in B) (x \in A :&: B).
- -
-Lemma in_setI x A B : (x \in A :&: B) = (x \in A) && (x \in B).
- -
-Lemma setIC A B : A :&: B = B :&: A.
- -
-Lemma setIS A B C : A \subset B C :&: A \subset C :&: B.
- -
-Lemma setSI A B C : A \subset B A :&: C \subset B :&: C.
- -
-Lemma setISS A B C D : A \subset C B \subset D A :&: B \subset C :&: D.
- -
-Lemma setTI A : setT :&: A = A.
- -
-Lemma setIT A : A :&: setT = A.
- -
-Lemma set0I A : set0 :&: A = set0.
- -
-Lemma setI0 A : A :&: set0 = set0.
- -
-Lemma setIA A B C : A :&: (B :&: C) = A :&: B :&: C.
- -
-Lemma setICA A B C : A :&: (B :&: C) = B :&: (A :&: C).
- -
-Lemma setIAC A B C : A :&: B :&: C = A :&: C :&: B.
- -
-Lemma setIACA A B C D : (A :&: B) :&: (C :&: D) = (A :&: C) :&: (B :&: D).
- -
-Lemma setIid A : A :&: A = A.
- -
-Lemma setIIl A B C : A :&: B :&: C = (A :&: C) :&: (B :&: C).
- -
-Lemma setIIr A B C : A :&: (B :&: C) = (A :&: B) :&: (A :&: C).
- -
-
- -
- distribute /cancel -
-
- -
-Lemma setIUr A B C : A :&: (B :|: C) = (A :&: B) :|: (A :&: C).
- -
-Lemma setIUl A B C : (A :|: B) :&: C = (A :&: C) :|: (B :&: C).
- -
-Lemma setUIr A B C : A :|: (B :&: C) = (A :|: B) :&: (A :|: C).
- -
-Lemma setUIl A B C : (A :&: B) :|: C = (A :|: C) :&: (B :|: C).
- -
-Lemma setUK A B : (A :|: B) :&: A = A.
- -
-Lemma setKU A B : A :&: (B :|: A) = A.
- -
-Lemma setIK A B : (A :&: B) :|: A = A.
- -
-Lemma setKI A B : A :|: (B :&: A) = A.
- -
-
- -
- complement -
-
- -
-Lemma setCP x A : reflect (¬ x \in A) (x \in ~: A).
- -
-Lemma in_setC x A : (x \in ~: A) = (x \notin A).
- -
-Lemma setCK : involutive (@setC T).
- -
-Lemma setC_inj : injective (@setC T).
- -
-Lemma subsets_disjoint A B : (A \subset B) = [disjoint A & ~: B].
- -
-Lemma disjoints_subset A B : [disjoint A & B] = (A \subset ~: B).
- -
-Lemma powersetCE A B : (A \in powerset (~: B)) = [disjoint A & B].
- -
-Lemma setCS A B : (~: A \subset ~: B) = (B \subset A).
- -
-Lemma setCU A B : ~: (A :|: B) = ~: A :&: ~: B.
- -
-Lemma setCI A B : ~: (A :&: B) = ~: A :|: ~: B.
- -
-Lemma setUCr A : A :|: ~: A = setT.
- -
-Lemma setICr A : A :&: ~: A = set0.
- -
-Lemma setC0 : ~: set0 = [set: T].
- -
-Lemma setCT : ~: [set: T] = set0.
- -
-
- -
- difference -
-
- -
-Lemma setDP A B x : reflect (x \in A x \notin B) (x \in A :\: B).
- -
-Lemma in_setD A B x : (x \in A :\: B) = (x \notin B) && (x \in A).
- -
-Lemma setDE A B : A :\: B = A :&: ~: B.
- -
-Lemma setSD A B C : A \subset B A :\: C \subset B :\: C.
- -
-Lemma setDS A B C : A \subset B C :\: B \subset C :\: A.
- -
-Lemma setDSS A B C D : A \subset C D \subset B A :\: B \subset C :\: D.
- -
-Lemma setD0 A : A :\: set0 = A.
- -
-Lemma set0D A : set0 :\: A = set0.
- -
-Lemma setDT A : A :\: setT = set0.
- -
-Lemma setTD A : setT :\: A = ~: A.
- -
-Lemma setDv A : A :\: A = set0.
- -
-Lemma setCD A B : ~: (A :\: B) = ~: A :|: B.
- -
-Lemma setID A B : A :&: B :|: A :\: B = A.
- -
-Lemma setDUl A B C : (A :|: B) :\: C = (A :\: C) :|: (B :\: C).
- -
-Lemma setDUr A B C : A :\: (B :|: C) = (A :\: B) :&: (A :\: C).
- -
-Lemma setDIl A B C : (A :&: B) :\: C = (A :\: C) :&: (B :\: C).
- -
-Lemma setIDA A B C : A :&: (B :\: C) = (A :&: B) :\: C.
- -
-Lemma setIDAC A B C : (A :\: B) :&: C = (A :&: C) :\: B.
- -
-Lemma setDIr A B C : A :\: (B :&: C) = (A :\: B) :|: (A :\: C).
- -
-Lemma setDDl A B C : (A :\: B) :\: C = A :\: (B :|: C).
- -
-Lemma setDDr A B C : A :\: (B :\: C) = (A :\: B) :|: (A :&: C).
- -
-
- -
- powerset -
-
- -
-Lemma powersetE A B : (A \in powerset B) = (A \subset B).
- -
-Lemma powersetS A B : (powerset A \subset powerset B) = (A \subset B).
- -
-Lemma powerset0 : powerset set0 = [set set0] :> {set {set T}}.
- -
-Lemma powersetT : powerset [set: T] = [set: {set T}].
- -
-Lemma setI_powerset P A : P :&: powerset A = P ::&: A.
- -
-
- -
- cardinal lemmas for sets -
-
- -
-Lemma cardsE pA : #|[set x in pA]| = #|pA|.
- -
-Lemma sum1dep_card pA : \sum_(x | pA x) 1 = #|[set x | pA x]|.
- -
-Lemma sum_nat_cond_const pA n : \sum_(x | pA x) n = #|[set x | pA x]| × n.
- -
-Lemma cards0 : #|@set0 T| = 0.
- -
-Lemma cards_eq0 A : (#|A| == 0) = (A == set0).
- -
-Lemma set0Pn A : reflect ( x, x \in A) (A != set0).
- -
-Lemma card_gt0 A : (0 < #|A|) = (A != set0).
- -
-Lemma cards0_eq A : #|A| = 0 A = set0.
- -
-Lemma cards1 x : #|[set x]| = 1.
- -
-Lemma cardsUI A B : #|A :|: B| + #|A :&: B| = #|A| + #|B|.
- -
-Lemma cardsU A B : #|A :|: B| = (#|A| + #|B| - #|A :&: B|)%N.
- -
-Lemma cardsI A B : #|A :&: B| = (#|A| + #|B| - #|A :|: B|)%N.
- -
-Lemma cardsT : #|[set: T]| = #|T|.
- -
-Lemma cardsID B A : #|A :&: B| + #|A :\: B| = #|A|.
- -
-Lemma cardsD A B : #|A :\: B| = (#|A| - #|A :&: B|)%N.
- -
-Lemma cardsC A : #|A| + #|~: A| = #|T|.
- -
-Lemma cardsCs A : #|A| = #|T| - #|~: A|.
- -
-Lemma cardsU1 a A : #|a |: A| = (a \notin A) + #|A|.
- -
-Lemma cards2 a b : #|[set a; b]| = (a != b).+1.
- -
-Lemma cardsC1 a : #|[set¬ a]| = #|T|.-1.
- -
-Lemma cardsD1 a A : #|A| = (a \in A) + #|A :\ a|.
- -
-
- -
- other inclusions -
-
- -
-Lemma subsetIl A B : A :&: B \subset A.
- -
-Lemma subsetIr A B : A :&: B \subset B.
- -
-Lemma subsetUl A B : A \subset A :|: B.
- -
-Lemma subsetUr A B : B \subset A :|: B.
- -
-Lemma subsetU1 x A : A \subset x |: A.
- -
-Lemma subsetDl A B : A :\: B \subset A.
- -
-Lemma subD1set A x : A :\ x \subset A.
- -
-Lemma subsetDr A B : A :\: B \subset ~: B.
- -
-Lemma sub1set A x : ([set x] \subset A) = (x \in A).
- -
-Lemma cards1P A : reflect ( x, A = [set x]) (#|A| == 1).
- -
-Lemma subset1 A x : (A \subset [set x]) = (A == [set x]) || (A == set0).
- -
-Lemma powerset1 x : powerset [set x] = [set set0; [set x]].
- -
-Lemma setIidPl A B : reflect (A :&: B = A) (A \subset B).
- -
-Lemma setIidPr A B : reflect (A :&: B = B) (B \subset A).
- -
-Lemma cardsDS A B : B \subset A #|A :\: B| = (#|A| - #|B|)%N.
- -
-Lemma setUidPl A B : reflect (A :|: B = A) (B \subset A).
- -
-Lemma setUidPr A B : reflect (A :|: B = B) (A \subset B).
- -
-Lemma setDidPl A B : reflect (A :\: B = A) [disjoint A & B].
- -
-Lemma subIset A B C : (B \subset A) || (C \subset A) (B :&: C \subset A).
- -
-Lemma subsetI A B C : (A \subset B :&: C) = (A \subset B) && (A \subset C).
- -
-Lemma subsetIP A B C : reflect (A \subset B A \subset C) (A \subset B :&: C).
- -
-Lemma subsetIidl A B : (A \subset A :&: B) = (A \subset B).
- -
-Lemma subsetIidr A B : (B \subset A :&: B) = (B \subset A).
- -
-Lemma powersetI A B : powerset (A :&: B) = powerset A :&: powerset B.
- -
-Lemma subUset A B C : (B :|: C \subset A) = (B \subset A) && (C \subset A).
- -
-Lemma subsetU A B C : (A \subset B) || (A \subset C) A \subset B :|: C.
- -
-Lemma subUsetP A B C : reflect (A \subset C B \subset C) (A :|: B \subset C).
- -
-Lemma subsetC A B : (A \subset ~: B) = (B \subset ~: A).
- -
-Lemma subCset A B : (~: A \subset B) = (~: B \subset A).
- -
-Lemma subsetD A B C : (A \subset B :\: C) = (A \subset B) && [disjoint A & C].
- -
-Lemma subDset A B C : (A :\: B \subset C) = (A \subset B :|: C).
- -
-Lemma subsetDP A B C :
-  reflect (A \subset B [disjoint A & C]) (A \subset B :\: C).
- -
-Lemma setU_eq0 A B : (A :|: B == set0) = (A == set0) && (B == set0).
- -
-Lemma setD_eq0 A B : (A :\: B == set0) = (A \subset B).
- -
-Lemma setI_eq0 A B : (A :&: B == set0) = [disjoint A & B].
- -
-Lemma disjoint_setI0 A B : [disjoint A & B] A :&: B = set0.
- -
-Lemma subsetD1 A B x : (A \subset B :\ x) = (A \subset B) && (x \notin A).
- -
-Lemma subsetD1P A B x : reflect (A \subset B x \notin A) (A \subset B :\ x).
- -
-Lemma properD1 A x : x \in A A :\ x \proper A.
- -
-Lemma properIr A B : ~~ (B \subset A) A :&: B \proper B.
- -
-Lemma properIl A B : ~~ (A \subset B) A :&: B \proper A.
- -
-Lemma properUr A B : ~~ (A \subset B) B \proper A :|: B.
- -
-Lemma properUl A B : ~~ (B \subset A) A \proper A :|: B.
- -
-Lemma proper1set A x : ([set x] \proper A) (x \in A).
- -
-Lemma properIset A B C : (B \proper A) || (C \proper A) (B :&: C \proper A).
- -
-Lemma properI A B C : (A \proper B :&: C) (A \proper B) && (A \proper C).
- -
-Lemma properU A B C : (B :|: C \proper A) (B \proper A) && (C \proper A).
- -
-Lemma properD A B C : (A \proper B :\: C) (A \proper B) && [disjoint A & C].
- -
-End setOps.
- -
-Hint Resolve subsetT_hint : core.
- -
-Section setOpsAlgebra.
- -
-Import Monoid.
- -
-Variable T : finType.
- -
-Canonical setI_monoid := Law (@setIA T) (@setTI T) (@setIT T).
- -
-Canonical setI_comoid := ComLaw (@setIC T).
-Canonical setI_muloid := MulLaw (@set0I T) (@setI0 T).
- -
-Canonical setU_monoid := Law (@setUA T) (@set0U T) (@setU0 T).
-Canonical setU_comoid := ComLaw (@setUC T).
-Canonical setU_muloid := MulLaw (@setTU T) (@setUT T).
- -
-Canonical setI_addoid := AddLaw (@setUIl T) (@setUIr T).
-Canonical setU_addoid := AddLaw (@setIUl T) (@setIUr T).
- -
-End setOpsAlgebra.
- -
-Section CartesianProd.
- -
-Variables fT1 fT2 : finType.
-Variables (A1 : {set fT1}) (A2 : {set fT2}).
- -
-Definition setX := [set u | u.1 \in A1 & u.2 \in A2].
- -
-Lemma in_setX x1 x2 : ((x1, x2) \in setX) = (x1 \in A1) && (x2 \in A2).
- -
-Lemma setXP x1 x2 : reflect (x1 \in A1 x2 \in A2) ((x1, x2) \in setX).
- -
-Lemma cardsX : #|setX| = #|A1| × #|A2|.
- -
-End CartesianProd.
- -
- -
- -
-Module Type ImsetSig.
-Parameter imset : aT rT : finType,
(aT rT) mem_pred aT {set rT}.
-Parameter imset2 : aT1 aT2 rT : finType,
(aT1 aT2 rT) mem_pred aT1 (aT1 mem_pred aT2) {set rT}.
-Axiom imsetE : imset = imset_def.
-Axiom imset2E : imset2 = imset2_def.
-End ImsetSig.
- -
-Module Imset : ImsetSig.
-Definition imset := imset_def.
-Definition imset2 := imset2_def.
-Lemma imsetE : imset = imset_def.
-Lemma imset2E : imset2 = imset2_def.
-End Imset.
- -
-Notation imset := Imset.imset.
-Notation imset2 := Imset.imset2.
-Canonical imset_unlock := Unlockable Imset.imsetE.
-Canonical imset2_unlock := Unlockable Imset.imset2E.
-Definition preimset (aT : finType) rT f (R : mem_pred rT) :=
-  [set x : aT | in_mem (f x) R].
- -
-Notation "f @^-1: A" := (preimset f (mem A)) (at level 24) : set_scope.
-Notation "f @: A" := (imset f (mem A)) (at level 24) : set_scope.
-Notation "f @2: ( A , B )" := (imset2 f (mem A) (fun _mem B))
-  (at level 24, format "f @2: ( A , B )") : set_scope.
- -
-
- -
- Comprehensions -
-
-Notation "[ 'set' E | x 'in' A ]" := ((fun xE) @: A)
-  (at level 0, E, x at level 99,
-   format "[ '[hv' 'set' E '/ ' | x 'in' A ] ']'") : set_scope.
-Notation "[ 'set' E | x 'in' A & P ]" := [set E | x in [set x in A | P]]
- (at level 0, E, x at level 99,
-   format "[ '[hv' 'set' E '/ ' | x 'in' A '/ ' & P ] ']'") : set_scope.
-Notation "[ 'set' E | x 'in' A , y 'in' B ]" :=
-  (imset2 (fun x yE) (mem A) (fun x ⇒ (mem B)))
-  (at level 0, E, x, y at level 99, format
-   "[ '[hv' 'set' E '/ ' | x 'in' A , '/ ' y 'in' B ] ']'"
-  ) : set_scope.
-Notation "[ 'set' E | x 'in' A , y 'in' B & P ]" :=
-  [set E | x in A, y in [set y in B | P]]
- (at level 0, E, x, y at level 99, format
-   "[ '[hv' 'set' E '/ ' | x 'in' A , '/ ' y 'in' B '/ ' & P ] ']'"
-  ) : set_scope.
- -
-
- -
- Typed variants. -
-
-Notation "[ 'set' E | x : T 'in' A ]" := ((fun x : TE) @: A)
-  (at level 0, E, x at level 99, only parsing) : set_scope.
-Notation "[ 'set' E | x : T 'in' A & P ]" :=
-  [set E | x : T in [set x : T in A | P]]
- (at level 0, E, x at level 99, only parsing) : set_scope.
-Notation "[ 'set' E | x : T 'in' A , y : U 'in' B ]" :=
-  (imset2 (fun (x : T) (y : U) ⇒ E) (mem A) (fun (x : T) ⇒ (mem B)))
-  (at level 0, E, x, y at level 99, only parsing) : set_scope.
-Notation "[ 'set' E | x : T 'in' A , y : U 'in' B & P ]" :=
-  [set E | x : T in A, y : U in [set y : U in B | P]]
- (at level 0, E, x, y at level 99, only parsing) : set_scope.
- -
-
- -
- Comprehensions over a type. -
-
-Notation "[ 'set' E | x : T ]" := [set E | x : T in predOfType T]
-  (at level 0, E, x at level 99,
-   format "[ '[hv' 'set' E '/ ' | x : T ] ']'") : set_scope.
-Notation "[ 'set' E | x : T & P ]" := [set E | x : T in [set x : T | P]]
- (at level 0, E, x at level 99,
-   format "[ '[hv' 'set' E '/ ' | x : T '/ ' & P ] ']'") : set_scope.
-Notation "[ 'set' E | x : T , y : U 'in' B ]" :=
-  [set E | x : T in predOfType T, y : U in B]
-  (at level 0, E, x, y at level 99, format
-   "[ '[hv' 'set' E '/ ' | x : T , '/ ' y : U 'in' B ] ']'")
-   : set_scope.
-Notation "[ 'set' E | x : T , y : U 'in' B & P ]" :=
-  [set E | x : T, y : U in [set y in B | P]]
- (at level 0, E, x, y at level 99, format
- "[ '[hv ' 'set' E '/' | x : T , '/ ' y : U 'in' B '/' & P ] ']'"
-  ) : set_scope.
-Notation "[ 'set' E | x : T 'in' A , y : U ]" :=
-  [set E | x : T in A, y : U in predOfType U]
-  (at level 0, E, x, y at level 99, format
-   "[ '[hv' 'set' E '/ ' | x : T 'in' A , '/ ' y : U ] ']'")
-   : set_scope.
-Notation "[ 'set' E | x : T 'in' A , y : U & P ]" :=
-  [set E | x : T in A, y : U in [set y in P]]
- (at level 0, E, x, y at level 99, format
-   "[ '[hv' 'set' E '/ ' | x : T 'in' A , '/ ' y : U & P ] ']'")
-   : set_scope.
-Notation "[ 'set' E | x : T , y : U ]" :=
-  [set E | x : T, y : U in predOfType U]
-  (at level 0, E, x, y at level 99, format
-   "[ '[hv' 'set' E '/ ' | x : T , '/ ' y : U ] ']'")
-   : set_scope.
-Notation "[ 'set' E | x : T , y : U & P ]" :=
-  [set E | x : T, y : U in [set y in P]]
- (at level 0, E, x, y at level 99, format
-   "[ '[hv' 'set' E '/ ' | x : T , '/ ' y : U & P ] ']'")
-   : set_scope.
- -
-
- -
- Untyped variants. -
-
-Notation "[ 'set' E | x , y 'in' B ]" := [set E | x : _, y : _ in B]
-  (at level 0, E, x, y at level 99, only parsing) : set_scope.
-Notation "[ 'set' E | x , y 'in' B & P ]" := [set E | x : _, y : _ in B & P]
-  (at level 0, E, x, y at level 99, only parsing) : set_scope.
-Notation "[ 'set' E | x 'in' A , y ]" := [set E | x : _ in A, y : _]
-  (at level 0, E, x, y at level 99, only parsing) : set_scope.
-Notation "[ 'set' E | x 'in' A , y & P ]" := [set E | x : _ in A, y : _ & P]
-  (at level 0, E, x, y at level 99, only parsing) : set_scope.
-Notation "[ 'set' E | x , y ]" := [set E | x : _, y : _]
-  (at level 0, E, x, y at level 99, only parsing) : set_scope.
-Notation "[ 'set' E | x , y & P ]" := [set E | x : _, y : _ & P ]
-  (at level 0, E, x, y at level 99, only parsing) : set_scope.
- -
-
- -
- Print-only variants to work around the Coq pretty-printer K-term kink. -
-
-Notation "[ 'se' 't' E | x 'in' A , y 'in' B ]" :=
-  (imset2 (fun x yE) (mem A) (fun _mem B))
-  (at level 0, E, x, y at level 99, format
-   "[ '[hv' 'se' 't' E '/ ' | x 'in' A , '/ ' y 'in' B ] ']'")
-   : set_scope.
-Notation "[ 'se' 't' E | x 'in' A , y 'in' B & P ]" :=
-  [se t E | x in A, y in [set y in B | P]]
- (at level 0, E, x, y at level 99, format
- "[ '[hv ' 'se' 't' E '/' | x 'in' A , '/ ' y 'in' B '/' & P ] ']'"
-  ) : set_scope.
-Notation "[ 'se' 't' E | x : T , y : U 'in' B ]" :=
-  (imset2 (fun x (y : U) ⇒ E) (mem (predOfType T)) (fun _mem B))
-  (at level 0, E, x, y at level 99, format
-   "[ '[hv ' 'se' 't' E '/' | x : T , '/ ' y : U 'in' B ] ']'")
-   : set_scope.
-Notation "[ 'se' 't' E | x : T , y : U 'in' B & P ]" :=
-  [se t E | x : T, y : U in [set y in B | P]]
- (at level 0, E, x, y at level 99, format
-"[ '[hv ' 'se' 't' E '/' | x : T , '/ ' y : U 'in' B '/' & P ] ']'"
-  ) : set_scope.
-Notation "[ 'se' 't' E | x : T 'in' A , y : U ]" :=
-  (imset2 (fun x yE) (mem A) (fun _ : Tmem (predOfType U)))
-  (at level 0, E, x, y at level 99, format
-   "[ '[hv' 'se' 't' E '/ ' | x : T 'in' A , '/ ' y : U ] ']'")
-   : set_scope.
-Notation "[ 'se' 't' E | x : T 'in' A , y : U & P ]" :=
-  (imset2 (fun x (y : U) ⇒ E) (mem A) (fun _ : Tmem [set y \in P]))
-  (at level 0, E, x, y at level 99, format
-"[ '[hv ' 'se' 't' E '/' | x : T 'in' A , '/ ' y : U '/' & P ] ']'"
-  ) : set_scope.
-Notation "[ 'se' 't' E | x : T , y : U ]" :=
-  [se t E | x : T, y : U in predOfType U]
-  (at level 0, E, x, y at level 99, format
-   "[ '[hv' 'se' 't' E '/ ' | x : T , '/ ' y : U ] ']'")
-   : set_scope.
-Notation "[ 'se' 't' E | x : T , y : U & P ]" :=
-  [se t E | x : T, y : U in [set y in P]]
- (at level 0, E, x, y at level 99, format
-   "[ '[hv' 'se' 't' E '/' | x : T , '/ ' y : U '/' & P ] ']'")
-   : set_scope.
- -
-Section FunImage.
- -
-Variables aT aT2 : finType.
- -
-Section ImsetTheory.
- -
-Variable rT : finType.
- -
-Section ImsetProp.
- -
-Variables (f : aT rT) (f2 : aT aT2 rT).
- -
-Lemma imsetP D y : reflect (exists2 x, in_mem x D & y = f x) (y \in imset f D).
- -
-Variant imset2_spec D1 D2 y : Prop :=
-  Imset2spec x1 x2 of in_mem x1 D1 & in_mem x2 (D2 x1) & y = f2 x1 x2.
- -
-Lemma imset2P D1 D2 y : reflect (imset2_spec D1 D2 y) (y \in imset2 f2 D1 D2).
- -
-Lemma mem_imset (D : {pred aT}) x : x \in D f x \in f @: D.
- -
-Lemma imset0 : f @: set0 = set0.
- -
-Lemma imset_eq0 (A : {set aT}) : (f @: A == set0) = (A == set0).
- -
-Lemma imset_set1 x : f @: [set x] = [set f x].
- -
-Lemma mem_imset2 (D : {pred aT}) (D2 : aT {pred aT2}) x x2 :
-    x \in D x2 \in D2 x
-  f2 x x2 \in imset2 f2 (mem D) (fun x1mem (D2 x1)).
- -
-Lemma sub_imset_pre (A : {pred aT}) (B : {pred rT}) :
-  (f @: A \subset B) = (A \subset f @^-1: B).
- -
-Lemma preimsetS (A B : {pred rT}) :
-  A \subset B (f @^-1: A) \subset (f @^-1: B).
- -
-Lemma preimset0 : f @^-1: set0 = set0.
- -
-Lemma preimsetT : f @^-1: setT = setT.
- -
-Lemma preimsetI (A B : {set rT}) :
-  f @^-1: (A :&: B) = (f @^-1: A) :&: (f @^-1: B).
- -
-Lemma preimsetU (A B : {set rT}) :
-  f @^-1: (A :|: B) = (f @^-1: A) :|: (f @^-1: B).
- -
-Lemma preimsetD (A B : {set rT}) :
-  f @^-1: (A :\: B) = (f @^-1: A) :\: (f @^-1: B).
- -
-Lemma preimsetC (A : {set rT}) : f @^-1: (~: A) = ~: f @^-1: A.
- -
-Lemma imsetS (A B : {pred aT}) : A \subset B f @: A \subset f @: B.
- -
-Lemma imset_proper (A B : {set aT}) :
-   {in B &, injective f} A \proper B f @: A \proper f @: B.
- -
-Lemma preimset_proper (A B : {set rT}) :
-  B \subset codom f A \proper B (f @^-1: A) \proper (f @^-1: B).
- -
-Lemma imsetU (A B : {set aT}) : f @: (A :|: B) = (f @: A) :|: (f @: B).
- -
-Lemma imsetU1 a (A : {set aT}) : f @: (a |: A) = f a |: (f @: A).
- -
-Lemma imsetI (A B : {set aT}) :
-  {in A & B, injective f} f @: (A :&: B) = f @: A :&: f @: B.
- -
-Lemma imset2Sl (A B : {pred aT}) (C : {pred aT2}) :
-  A \subset B f2 @2: (A, C) \subset f2 @2: (B, C).
- -
-Lemma imset2Sr (A B : {pred aT2}) (C : {pred aT}) :
-  A \subset B f2 @2: (C, A) \subset f2 @2: (C, B).
- -
-Lemma imset2S (A B : {pred aT}) (A2 B2 : {pred aT2}) :
-  A \subset B A2 \subset B2 f2 @2: (A, A2) \subset f2 @2: (B, B2).
- -
-End ImsetProp.
- -
-Implicit Types (f g : aT rT) (D : {set aT}) (R : {pred rT}).
- -
-Lemma eq_preimset f g R : f =1 g f @^-1: R = g @^-1: R.
- -
-Lemma eq_imset f g D : f =1 g f @: D = g @: D.
- -
-Lemma eq_in_imset f g D : {in D, f =1 g} f @: D = g @: D.
- -
-Lemma eq_in_imset2 (f g : aT aT2 rT) (D : {pred aT}) (D2 : {pred aT2}) :
-  {in D & D2, f =2 g} f @2: (D, D2) = g @2: (D, D2).
- -
-End ImsetTheory.
- -
-Lemma imset2_pair (A : {set aT}) (B : {set aT2}) :
-  [set (x, y) | x in A, y in B] = setX A B.
- -
-Lemma setXS (A1 B1 : {set aT}) (A2 B2 : {set aT2}) :
-  A1 \subset B1 A2 \subset B2 setX A1 A2 \subset setX B1 B2.
- -
-End FunImage.
- -
- -
-Section BigOps.
- -
-Variables (R : Type) (idx : R).
-Variables (op : Monoid.law idx) (aop : Monoid.com_law idx).
-Variables I J : finType.
-Implicit Type A B : {set I}.
-Implicit Type h : I J.
-Implicit Type P : pred I.
-Implicit Type F : I R.
- -
-Lemma big_set0 F : \big[op/idx]_(i in set0) F i = idx.
- -
-Lemma big_set1 a F : \big[op/idx]_(i in [set a]) F i = F a.
- -
-Lemma big_setID A B F :
-  \big[aop/idx]_(i in A) F i =
-     aop (\big[aop/idx]_(i in A :&: B) F i)
-         (\big[aop/idx]_(i in A :\: B) F i).
- -
-Lemma big_setIDcond A B P F :
-  \big[aop/idx]_(i in A | P i) F i =
-     aop (\big[aop/idx]_(i in A :&: B | P i) F i)
-         (\big[aop/idx]_(i in A :\: B | P i) F i).
- -
-Lemma big_setD1 a A F : a \in A
-  \big[aop/idx]_(i in A) F i = aop (F a) (\big[aop/idx]_(i in A :\ a) F i).
- -
-Lemma big_setU1 a A F : a \notin A
-  \big[aop/idx]_(i in a |: A) F i = aop (F a) (\big[aop/idx]_(i in A) F i).
- -
-Lemma big_imset h (A : {pred I}) G : {in A &, injective h}
-  \big[aop/idx]_(j in h @: A) G j = \big[aop/idx]_(i in A) G (h i).
- -
-Lemma big_imset_cond h (A : {pred I}) (P : pred J) G : {in A &, injective h}
-  \big[aop/idx]_(j in h @: A | P j) G j =
-    \big[aop/idx]_(i in A | P (h i)) G (h i).
- -
-Lemma partition_big_imset h (A : {pred I}) F :
-  \big[aop/idx]_(i in A) F i =
-     \big[aop/idx]_(j in h @: A) \big[aop/idx]_(i in A | h i == j) F i.
- -
-End BigOps.
- -
- -
-Section Fun2Set1.
- -
-Variables aT1 aT2 rT : finType.
-Variables (f : aT1 aT2 rT).
- -
-Lemma imset2_set1l x1 (D2 : {pred aT2}) : f @2: ([set x1], D2) = f x1 @: D2.
- -
-Lemma imset2_set1r x2 (D1 : {pred aT1}) : f @2: (D1, [set x2]) = f^~ x2 @: D1.
- -
-End Fun2Set1.
- -
-Section CardFunImage.
- -
-Variables aT aT2 rT : finType.
-Variables (f : aT rT) (g : rT aT) (f2 : aT aT2 rT).
-Variables (D : {pred aT}) (D2 : {pred aT}).
- -
-Lemma imset_card : #|f @: D| = #|image f D|.
- -
-Lemma leq_imset_card : #|f @: D| #|D|.
- -
-Lemma card_in_imset : {in D &, injective f} #|f @: D| = #|D|.
- -
-Lemma card_imset : injective f #|f @: D| = #|D|.
- -
-Lemma imset_injP : reflect {in D &, injective f} (#|f @: D| == #|D|).
- -
-Lemma can2_in_imset_pre :
-  {in D, cancel f g} {on D, cancel g & f} f @: D = g @^-1: D.
- -
-Lemma can2_imset_pre : cancel f g cancel g f f @: D = g @^-1: D.
- -
-End CardFunImage.
- -
- -
-Lemma on_card_preimset (aT rT : finType) (f : aT rT) (R : {pred rT}) :
-  {on R, bijective f} #|f @^-1: R| = #|R|.
- -
-Lemma can_imset_pre (T : finType) f g (A : {set T}) :
-  cancel f g f @: A = g @^-1: A :> {set T}.
- -
-Lemma imset_id (T : finType) (A : {set T}) : [set x | x in A] = A.
- -
-Lemma card_preimset (T : finType) (f : T T) (A : {set T}) :
-  injective f #|f @^-1: A| = #|A|.
- -
-Lemma card_powerset (T : finType) (A : {set T}) : #|powerset A| = 2 ^ #|A|.
- -
-Section FunImageComp.
- -
-Variables T T' U : finType.
- -
-Lemma imset_comp (f : T' U) (g : T T') (H : {pred T}) :
-  (f \o g) @: H = f @: (g @: H).
- -
-End FunImageComp.
- -
-Notation "\bigcup_ ( i <- r | P ) F" :=
-  (\big[@setU _/set0]_(i <- r | P) F%SET) : set_scope.
-Notation "\bigcup_ ( i <- r ) F" :=
-  (\big[@setU _/set0]_(i <- r) F%SET) : set_scope.
-Notation "\bigcup_ ( m <= i < n | P ) F" :=
-  (\big[@setU _/set0]_(m i < n | P%B) F%SET) : set_scope.
-Notation "\bigcup_ ( m <= i < n ) F" :=
-  (\big[@setU _/set0]_(m i < n) F%SET) : set_scope.
-Notation "\bigcup_ ( i | P ) F" :=
-  (\big[@setU _/set0]_(i | P%B) F%SET) : set_scope.
-Notation "\bigcup_ i F" :=
-  (\big[@setU _/set0]_i F%SET) : set_scope.
-Notation "\bigcup_ ( i : t | P ) F" :=
-  (\big[@setU _/set0]_(i : t | P%B) F%SET) (only parsing): set_scope.
-Notation "\bigcup_ ( i : t ) F" :=
-  (\big[@setU _/set0]_(i : t) F%SET) (only parsing) : set_scope.
-Notation "\bigcup_ ( i < n | P ) F" :=
-  (\big[@setU _/set0]_(i < n | P%B) F%SET) : set_scope.
-Notation "\bigcup_ ( i < n ) F" :=
-  (\big[@setU _/set0]_ (i < n) F%SET) : set_scope.
-Notation "\bigcup_ ( i 'in' A | P ) F" :=
-  (\big[@setU _/set0]_(i in A | P%B) F%SET) : set_scope.
-Notation "\bigcup_ ( i 'in' A ) F" :=
-  (\big[@setU _/set0]_(i in A) F%SET) : set_scope.
- -
-Notation "\bigcap_ ( i <- r | P ) F" :=
-  (\big[@setI _/setT]_(i <- r | P%B) F%SET) : set_scope.
-Notation "\bigcap_ ( i <- r ) F" :=
-  (\big[@setI _/setT]_(i <- r) F%SET) : set_scope.
-Notation "\bigcap_ ( m <= i < n | P ) F" :=
-  (\big[@setI _/setT]_(m i < n | P%B) F%SET) : set_scope.
-Notation "\bigcap_ ( m <= i < n ) F" :=
-  (\big[@setI _/setT]_(m i < n) F%SET) : set_scope.
-Notation "\bigcap_ ( i | P ) F" :=
-  (\big[@setI _/setT]_(i | P%B) F%SET) : set_scope.
-Notation "\bigcap_ i F" :=
-  (\big[@setI _/setT]_i F%SET) : set_scope.
-Notation "\bigcap_ ( i : t | P ) F" :=
-  (\big[@setI _/setT]_(i : t | P%B) F%SET) (only parsing): set_scope.
-Notation "\bigcap_ ( i : t ) F" :=
-  (\big[@setI _/setT]_(i : t) F%SET) (only parsing) : set_scope.
-Notation "\bigcap_ ( i < n | P ) F" :=
-  (\big[@setI _/setT]_(i < n | P%B) F%SET) : set_scope.
-Notation "\bigcap_ ( i < n ) F" :=
-  (\big[@setI _/setT]_(i < n) F%SET) : set_scope.
-Notation "\bigcap_ ( i 'in' A | P ) F" :=
-  (\big[@setI _/setT]_(i in A | P%B) F%SET) : set_scope.
-Notation "\bigcap_ ( i 'in' A ) F" :=
-  (\big[@setI _/setT]_(i in A) F%SET) : set_scope.
- -
-Section BigSetOps.
- -
-Variables T I : finType.
-Implicit Types (U : {pred T}) (P : pred I) (A B : {set I}) (F : I {set T}).
- -
-
- -
- It is very hard to use this lemma, because the unification fails to - defer the F j pattern (even though it's a Miller pattern!). -
-
-Lemma bigcup_sup j P F : P j F j \subset \bigcup_(i | P i) F i.
- -
-Lemma bigcup_max j U P F :
-  P j U \subset F j U \subset \bigcup_(i | P i) F i.
- -
-Lemma bigcupP x P F :
-  reflect (exists2 i, P i & x \in F i) (x \in \bigcup_(i | P i) F i).
- -
-Lemma bigcupsP U P F :
-  reflect ( i, P i F i \subset U) (\bigcup_(i | P i) F i \subset U).
- -
-Lemma bigcup_disjoint U P F :
-  ( i, P i [disjoint U & F i]) [disjoint U & \bigcup_(i | P i) F i].
- -
-Lemma bigcup_setU A B F :
-  \bigcup_(i in A :|: B) F i =
-     (\bigcup_(i in A) F i) :|: (\bigcup_ (i in B) F i).
- -
-Lemma bigcup_seq r F : \bigcup_(i <- r) F i = \bigcup_(i in r) F i.
- -
-
- -
- Unlike its setU counterpart, this lemma is useable. -
-
-Lemma bigcap_inf j P F : P j \bigcap_(i | P i) F i \subset F j.
- -
-Lemma bigcap_min j U P F :
-  P j F j \subset U \bigcap_(i | P i) F i \subset U.
- -
-Lemma bigcapsP U P F :
-  reflect ( i, P i U \subset F i) (U \subset \bigcap_(i | P i) F i).
- -
-Lemma bigcapP x P F :
-  reflect ( i, P i x \in F i) (x \in \bigcap_(i | P i) F i).
- -
-Lemma setC_bigcup J r (P : pred J) (F : J {set T}) :
-  ~: (\bigcup_(j <- r | P j) F j) = \bigcap_(j <- r | P j) ~: F j.
- -
-Lemma setC_bigcap J r (P : pred J) (F : J {set T}) :
-  ~: (\bigcap_(j <- r | P j) F j) = \bigcup_(j <- r | P j) ~: F j.
- -
-Lemma bigcap_setU A B F :
-  (\bigcap_(i in A :|: B) F i) =
-    (\bigcap_(i in A) F i) :&: (\bigcap_(i in B) F i).
- -
-Lemma bigcap_seq r F : \bigcap_(i <- r) F i = \bigcap_(i in r) F i.
- -
-End BigSetOps.
- -
- -
-Section ImsetCurry.
- -
-Variables (aT1 aT2 rT : finType) (f : aT1 aT2 rT).
- -
-Section Curry.
- -
-Variables (A1 : {set aT1}) (A2 : {set aT2}).
-Variables (D1 : {pred aT1}) (D2 : {pred aT2}).
- -
-Lemma curry_imset2X : f @2: (A1, A2) = prod_curry f @: (setX A1 A2).
- -
-Lemma curry_imset2l : f @2: (D1, D2) = \bigcup_(x1 in D1) f x1 @: D2.
- -
-Lemma curry_imset2r : f @2: (D1, D2) = \bigcup_(x2 in D2) f^~ x2 @: D1.
- -
-End Curry.
- -
-Lemma imset2Ul (A B : {set aT1}) (C : {set aT2}) :
-  f @2: (A :|: B, C) = f @2: (A, C) :|: f @2: (B, C).
- -
-Lemma imset2Ur (A : {set aT1}) (B C : {set aT2}) :
-  f @2: (A, B :|: C) = f @2: (A, B) :|: f @2: (A, C).
- -
-End ImsetCurry.
- -
-Section Partitions.
- -
-Variables T I : finType.
-Implicit Types (x y z : T) (A B D X : {set T}) (P Q : {set {set T}}).
-Implicit Types (J : pred I) (F : I {set T}).
- -
-Definition cover P := \bigcup_(B in P) B.
-Definition pblock P x := odflt set0 (pick [pred B in P | x \in B]).
-Definition trivIset P := \sum_(B in P) #|B| == #|cover P|.
-Definition partition P D := [&& cover P == D, trivIset P & set0 \notin P].
- -
-Definition is_transversal X P D :=
-  [&& partition P D, X \subset D & [ B in P, #|X :&: B| == 1]].
-Definition transversal P D := [set odflt x [pick y in pblock P x] | x in D].
-Definition transversal_repr x0 X B := odflt x0 [pick x in X :&: B].
- -
-Lemma leq_card_setU A B : #|A :|: B| #|A| + #|B| ?= iff [disjoint A & B].
- -
-Lemma leq_card_cover P : #|cover P| \sum_(A in P) #|A| ?= iff trivIset P.
- -
-Lemma trivIsetP P :
-  reflect {in P &, A B, A != B [disjoint A & B]} (trivIset P).
- -
-Lemma trivIsetS P Q : P \subset Q trivIset Q trivIset P.
- -
-Lemma trivIsetI P D : trivIset P trivIset (P ::&: D).
- -
-Lemma cover_setI P D : cover (P ::&: D) \subset cover P :&: D.
- -
-Lemma mem_pblock P x : (x \in pblock P x) = (x \in cover P).
- -
-Lemma pblock_mem P x : x \in cover P pblock P x \in P.
- -
-Lemma def_pblock P B x : trivIset P B \in P x \in B pblock P x = B.
- -
-Lemma same_pblock P x y :
-  trivIset P x \in pblock P y pblock P x = pblock P y.
- -
-Lemma eq_pblock P x y :
-    trivIset P x \in cover P
-  (pblock P x == pblock P y) = (y \in pblock P x).
- -
-Lemma trivIsetU1 A P :
-    {in P, B, [disjoint A & B]} trivIset P set0 \notin P
-  trivIset (A |: P) A \notin P.
- -
-Lemma cover_imset J F : cover (F @: J) = \bigcup_(i in J) F i.
- -
-Lemma trivIimset J F (P := F @: J) :
-    {in J &, i j, j != i [disjoint F i & F j]} set0 \notin P
-  trivIset P {in J &, injective F}.
- -
-Lemma cover_partition P D : partition P D cover P = D.
- -
-Lemma card_partition P D : partition P D #|D| = \sum_(A in P) #|A|.
- -
-Lemma card_uniform_partition n P D :
-  {in P, A, #|A| = n} partition P D #|D| = #|P| × n.
- -
-Section BigOps.
- -
-Variables (R : Type) (idx : R) (op : Monoid.com_law idx).
-Let rhs_cond P K E := \big[op/idx]_(A in P) \big[op/idx]_(x in A | K x) E x.
-Let rhs P E := \big[op/idx]_(A in P) \big[op/idx]_(x in A) E x.
- -
-Lemma big_trivIset_cond P (K : pred T) (E : T R) :
-  trivIset P \big[op/idx]_(x in cover P | K x) E x = rhs_cond P K E.
- -
-Lemma big_trivIset P (E : T R) :
-  trivIset P \big[op/idx]_(x in cover P) E x = rhs P E.
- -
-Lemma set_partition_big_cond P D (K : pred T) (E : T R) :
-  partition P D \big[op/idx]_(x in D | K x) E x = rhs_cond P K E.
- -
-Lemma set_partition_big P D (E : T R) :
-  partition P D \big[op/idx]_(x in D) E x = rhs P E.
- -
-Lemma partition_disjoint_bigcup (F : I {set T}) E :
-    ( i j, i != j [disjoint F i & F j])
-  \big[op/idx]_(x in \bigcup_i F i) E x =
-    \big[op/idx]_i \big[op/idx]_(x in F i) E x.
- -
-End BigOps.
- -
-Section Equivalence.
- -
-Variables (R : rel T) (D : {set T}).
- -
-Let Px x := [set y in D | R x y].
-Definition equivalence_partition := [set Px x | x in D].
-Hypothesis eqiR : {in D & &, equivalence_rel R}.
- -
-Let Pxx x : x \in D x \in Px x.
- Let PPx x : x \in D Px x \in P := fun Dxmem_imset _ Dx.
- -
-Lemma equivalence_partitionP : partition P D.
- -
-Lemma pblock_equivalence_partition :
-  {in D &, x y, (y \in pblock P x) = R x y}.
- -
-End Equivalence.
- -
-Lemma pblock_equivalence P D :
-  partition P D {in D & &, equivalence_rel (fun x yy \in pblock P x)}.
- -
-Lemma equivalence_partition_pblock P D :
-  partition P D equivalence_partition (fun x yy \in pblock P x) D = P.
- -
-Section Preim.
- -
-Variables (rT : eqType) (f : T rT).
- -
-Definition preim_partition := equivalence_partition (fun x yf x == f y).
- -
-Lemma preim_partitionP D : partition (preim_partition D) D.
- -
-End Preim.
- -
-Lemma preim_partition_pblock P D :
-  partition P D preim_partition (pblock P) D = P.
- -
-Lemma transversalP P D : partition P D is_transversal (transversal P D) P D.
- -
-Section Transversals.
- -
-Variables (X : {set T}) (P : {set {set T}}) (D : {set T}).
-Hypothesis trPX : is_transversal X P D.
- -
-Lemma transversal_sub : X \subset D.
- -
-Let tiP : trivIset P.
- -
-Let sXP : {subset X cover P}.
- -
-Let trX : {in P, B, #|X :&: B| == 1}.
- -
-Lemma setI_transversal_pblock x0 B :
-  B \in P X :&: B = [set transversal_repr x0 X B].
- -
-Lemma repr_mem_pblock x0 B : B \in P transversal_repr x0 X B \in B.
- -
-Lemma repr_mem_transversal x0 B : B \in P transversal_repr x0 X B \in X.
- -
-Lemma transversal_reprK x0 : {in P, cancel (transversal_repr x0 X) (pblock P)}.
- -
-Lemma pblockK x0 : {in X, cancel (pblock P) (transversal_repr x0 X)}.
- -
-Lemma pblock_inj : {in X &, injective (pblock P)}.
- -
-Lemma pblock_transversal : pblock P @: X = P.
- -
-Lemma card_transversal : #|X| = #|P|.
- -
-Lemma im_transversal_repr x0 : transversal_repr x0 X @: P = X.
- -
-End Transversals.
- -
-End Partitions.
- -
- -
- -
-Lemma partition_partition (T : finType) (D : {set T}) P Q :
-    partition P D partition Q P
-  partition (cover @: Q) D {in Q &, injective cover}.
- -
-
- -
- -
- - Maximum and minimun (sub)set with respect to a given pred - -
-
- -
-Section MaxSetMinSet.
- -
-Variable T : finType.
-Notation sT := {set T}.
-Implicit Types A B C : sT.
-Implicit Type P : pred sT.
- -
-Definition minset P A := [ (B : sT | B \subset A), (B == A) == P B].
- -
-Lemma minset_eq P1 P2 A : P1 =1 P2 minset P1 A = minset P2 A.
- -
-Lemma minsetP P A :
-  reflect ((P A) ( B, P B B \subset A B = A)) (minset P A).
- -
-Lemma minsetp P A : minset P A P A.
- -
-Lemma minsetinf P A B : minset P A P B B \subset A B = A.
- -
-Lemma ex_minset P : ( A, P A) {A | minset P A}.
- -
-Lemma minset_exists P C : P C {A | minset P A & A \subset C}.
- -
-
- -
- The 'locked_with' allows Coq to find the value of P by unification. -
-
-Fact maxset_key : unit.
-Definition maxset P A :=
-  minset (fun Blocked_with maxset_key P (~: B)) (~: A).
- -
-Lemma maxset_eq P1 P2 A : P1 =1 P2 maxset P1 A = maxset P2 A.
- -
-Lemma maxminset P A : maxset P A = minset [pred B | P (~: B)] (~: A).
- -
-Lemma minmaxset P A : minset P A = maxset [pred B | P (~: B)] (~: A).
- -
-Lemma maxsetP P A :
-  reflect ((P A) ( B, P B A \subset B B = A)) (maxset P A).
- -
-Lemma maxsetp P A : maxset P A P A.
- -
-Lemma maxsetsup P A B : maxset P A P B A \subset B B = A.
- -
-Lemma ex_maxset P : ( A, P A) {A | maxset P A}.
- -
-Lemma maxset_exists P C : P C {A : sT | maxset P A & C \subset A}.
- -
-End MaxSetMinSet.
- -
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3