From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.ssreflect.fingraph.html | 296 +++++++++++++-------------
1 file changed, 148 insertions(+), 148 deletions(-)
(limited to 'docs/htmldoc/mathcomp.ssreflect.fingraph.html')
diff --git a/docs/htmldoc/mathcomp.ssreflect.fingraph.html b/docs/htmldoc/mathcomp.ssreflect.fingraph.html
index 80bfb6e..6b8a8a5 100644
--- a/docs/htmldoc/mathcomp.ssreflect.fingraph.html
+++ b/docs/htmldoc/mathcomp.ssreflect.fingraph.html
@@ -21,7 +21,6 @@
@@ -36,7 +35,7 @@
dfs g n v x == the list of points traversed by a depth-first search of
the g, at depth n, starting from x, and avoiding v.
dfs_path g v x y <-> there is a path from x to y in g \ v.
- connect e == the transitive closure of e (computed by dfs).
+ connect e == the reflexive transitive closure of e (computed by dfs).
connect_sym e <-> connect e is symmetric, hence an equivalence relation.
root e x == a representative of connect e x, which is the component
of x in the transitive closure of e.
@@ -69,7 +68,7 @@
Set Implicit Arguments.
-Definition grel (T : eqType) (g : T → seq T) := [rel x y | y \in g x].
+Definition grel (T : eqType) (g : T → seq T) := [rel x y | y \in g x].
@@ -87,124 +86,124 @@
Section Dfs.
-Variable g : T → seq T.
+Variable g : T → seq T.
Implicit Type v w a : seq T.
Fixpoint dfs n v x :=
- if x \in v then v else
- if n is n'.+1 then foldl (dfs n') (x :: v) (g x) else v.
+ if x \in v then v else
+ if n is n'.+1 then foldl (dfs n') (x :: v) (g x) else v.
-Lemma subset_dfs n v a : v \subset foldl (dfs n) v a.
+Lemma subset_dfs n v a : v \subset foldl (dfs n) v a.
Inductive dfs_path v x y : Prop :=
- DfsPath p of path (grel g) x p & y = last x p & [disjoint x :: p & v].
+ DfsPath p of path (grel g) x p & y = last x p & [disjoint x :: p & v].
Lemma dfs_pathP n x y v :
- #|T| ≤ #|v| + n → y \notin v → reflect (dfs_path v x y) (y \in dfs n v x).
+ #|T| ≤ #|v| + n → y \notin v → reflect (dfs_path v x y) (y \in dfs n v x).
Lemma dfsP x y :
- reflect (exists2 p, path (grel g) x p & y = last x p) (y \in dfs #|T| [::] x).
+ reflect (exists2 p, path (grel g) x p & y = last x p) (y \in dfs #|T| [::] x).
End Dfs.
-Variable e : rel T.
+Variable e : rel T.
Definition rgraph x := enum (e x).
-Lemma rgraphK : grel rgraph =2 e.
+Lemma rgraphK : grel rgraph =2 e.
-Definition connect : rel T := fun x y ⇒ y \in dfs rgraph #|T| [::] x.
-Canonical connect_app_pred x := ApplicativePred (connect x).
+Definition connect : rel T := fun x y ⇒ y \in dfs rgraph #|T| [::] x.
+Canonical connect_app_pred x := ApplicativePred (connect x).
Lemma connectP x y :
- reflect (exists2 p, path e x p & y = last x p) (connect x y).
+ reflect (exists2 p, path e x p & y = last x p) (connect x y).
-Lemma connect_trans : transitive connect.
+Lemma connect_trans : transitive connect.
Lemma connect0 x : connect x x.
-Lemma eq_connect0 x y : x = y → connect x y.
+Lemma eq_connect0 x y : x = y → connect x y.
-Lemma connect1 x y : e x y → connect x y.
+Lemma connect1 x y : e x y → connect x y.
-Lemma path_connect x p : path e x p → subpred (mem (x :: p)) (connect x).
+Lemma path_connect x p : path e x p → subpred (mem (x :: p)) (connect x).
-Definition root x := odflt x (pick (connect x)).
+Definition root x := odflt x (pick (connect x)).
-Definition roots : pred T := fun x ⇒ root x == x.
-Canonical roots_pred := ApplicativePred roots.
+Definition roots : pred T := fun x ⇒ root x == x.
+Canonical roots_pred := ApplicativePred roots.
-Definition n_comp_mem (m_a : mem_pred T) := #|predI roots m_a|.
+Definition n_comp_mem (m_a : mem_pred T) := #|predI roots m_a|.
Lemma connect_root x : connect x (root x).
-Definition connect_sym := symmetric connect.
+Definition connect_sym := symmetric connect.
Hypothesis sym_e : connect_sym.
-Lemma same_connect : left_transitive connect.
+Lemma same_connect : left_transitive connect.
-Lemma same_connect_r : right_transitive connect.
+Lemma same_connect_r : right_transitive connect.
-Lemma same_connect1 x y : e x y → connect x =1 connect y.
+Lemma same_connect1 x y : e x y → connect x =1 connect y.
-Lemma same_connect1r x y : e x y → connect^~ x =1 connect^~ y.
+Lemma same_connect1r x y : e x y → connect^~ x =1 connect^~ y.
-Lemma rootP x y : reflect (root x = root y) (connect x y).
+Lemma rootP x y : reflect (root x = root y) (connect x y).
-Lemma root_root x : root (root x) = root x.
+Lemma root_root x : root (root x) = root x.
Lemma roots_root x : roots (root x).
-Lemma root_connect x y : (root x == root y) = connect x y.
+Lemma root_connect x y : (root x == root y) = connect x y.
-Definition closed_mem m_a := ∀ x y, e x y → in_mem x m_a = in_mem y m_a.
+Definition closed_mem m_a := ∀ x y, e x y → in_mem x m_a = in_mem y m_a.
-Definition closure_mem m_a : pred T :=
- fun x ⇒ ~~ disjoint (mem (connect x)) m_a.
+Definition closure_mem m_a : pred T :=
+ fun x ⇒ ~~ disjoint (mem (connect x)) m_a.
End Connect.
-Hint Resolve connect0.
+Hint Resolve connect0 : core.
-Notation n_comp e a := (n_comp_mem e (mem a)).
-Notation closed e a := (closed_mem e (mem a)).
-Notation closure e a := (closure_mem e (mem a)).
+Notation n_comp e a := (n_comp_mem e (mem a)).
+Notation closed e a := (closed_mem e (mem a)).
+Notation closure e a := (closure_mem e (mem a)).
@@ -215,7 +214,7 @@
Notation froot f := (root (coerced_frel f)).
Notation froots f := (roots (coerced_frel f)).
Notation fcard_mem f := (n_comp_mem (coerced_frel f)).
-Notation fcard f a := (fcard_mem f (mem a)).
+Notation fcard f a := (fcard_mem f (mem a)).
Notation fclosed f a := (closed (coerced_frel f) a).
Notation fclosure f a := (closure (coerced_frel f) a).
@@ -224,33 +223,33 @@
Variable T : finType.
-Implicit Types (e : rel T) (a : pred T).
+Implicit Types (e : rel T) (a : {pred T}).
Lemma connect_sub e e' :
- subrel e (connect e') → subrel (connect e) (connect e').
+ subrel e (connect e') → subrel (connect e) (connect e').
Lemma relU_sym e e' :
- connect_sym e → connect_sym e' → connect_sym (relU e e').
+ connect_sym e → connect_sym e' → connect_sym (relU e e').
-Lemma eq_connect e e' : e =2 e' → connect e =2 connect e'.
+Lemma eq_connect e e' : e =2 e' → connect e =2 connect e'.
-Lemma eq_n_comp e e' : connect e =2 connect e' → n_comp_mem e =1 n_comp_mem e'.
+Lemma eq_n_comp e e' : connect e =2 connect e' → n_comp_mem e =1 n_comp_mem e'.
-Lemma eq_n_comp_r {e} a a' : a =i a' → n_comp e a = n_comp e a'.
+Lemma eq_n_comp_r {e} a a' : a =i a' → n_comp e a = n_comp e a'.
-Lemma n_compC a e : n_comp e T = n_comp e a + n_comp e [predC a].
+Lemma n_compC a e : n_comp e T = n_comp e a + n_comp e [predC a].
-Lemma eq_root e e' : e =2 e' → root e =1 root e'.
+Lemma eq_root e e' : e =2 e' → root e =1 root e'.
-Lemma eq_roots e e' : e =2 e' → roots e =1 roots e'.
+Lemma eq_roots e e' : e =2 e' → roots e =1 roots e'.
End EqConnect.
@@ -259,41 +258,41 @@
Section Closure.
-Variables (T : finType) (e : rel T).
+Variables (T : finType) (e : rel T).
Hypothesis sym_e : connect_sym e.
-Implicit Type a : pred T.
+Implicit Type a : {pred T}.
-Lemma same_connect_rev : connect e =2 connect (fun x y ⇒ e y x).
+Lemma same_connect_rev : connect e =2 connect (fun x y ⇒ e y x).
-Lemma intro_closed a : (∀ x y, e x y → x \in a → y \in a) → closed e a.
+Lemma intro_closed a : (∀ x y, e x y → x \in a → y \in a) → closed e a.
Lemma closed_connect a :
- closed e a → ∀ x y, connect e x y → (x \in a) = (y \in a).
+ closed e a → ∀ x y, connect e x y → (x \in a) = (y \in a).
Lemma connect_closed x : closed e (connect e x).
-Lemma predC_closed a : closed e a → closed e [predC a].
+Lemma predC_closed a : closed e a → closed e [predC a].
Lemma closure_closed a : closed e (closure e a).
-Lemma mem_closure a : {subset a ≤ closure e a}.
+Lemma mem_closure a : {subset a ≤ closure e a}.
-Lemma subset_closure a : a \subset closure e a.
+Lemma subset_closure a : a \subset closure e a.
Lemma n_comp_closure2 x y :
- n_comp e (closure e (pred2 x y)) = (~~ connect e x y).+1.
+ n_comp e (closure e (pred2 x y)) = (~~ connect e x y).+1.
-Lemma n_comp_connect x : n_comp e (connect e x) = 1.
+Lemma n_comp_connect x : n_comp e (connect e x) = 1.
End Closure.
@@ -302,10 +301,10 @@
Section Orbit.
-Variables (T : finType) (f : T → T).
+Variables (T : finType) (f : T → T).
-Definition order x := #|fconnect f x|.
+Definition order x := #|fconnect f x|.
Definition orbit x := traject f x (order x).
@@ -314,7 +313,7 @@
Definition findex x y := index y (orbit x).
-Definition finv x := iter (order x).-1 f x.
+Definition finv x := iter (order x).-1 f x.
Lemma fconnect_iter n x : fconnect f x (iter n f x).
@@ -326,35 +325,35 @@
Lemma fconnect_finv x : fconnect f x (finv x).
-Lemma orderSpred x : (order x).-1.+1 = order x.
+Lemma orderSpred x : (order x).-1.+1 = order x.
-Lemma size_orbit x : size (orbit x) = order x.
+Lemma size_orbit x : size (orbit x) = order x.
Lemma looping_order x : looping f x (order x).
-Lemma fconnect_orbit x y : fconnect f x y = (y \in orbit x).
+Lemma fconnect_orbit x y : fconnect f x y = (y \in orbit x).
Lemma orbit_uniq x : uniq (orbit x).
-Lemma findex_max x y : fconnect f x y → findex x y < order x.
+Lemma findex_max x y : fconnect f x y → findex x y < order x.
-Lemma findex_iter x i : i < order x → findex x (iter i f x) = i.
+Lemma findex_iter x i : i < order x → findex x (iter i f x) = i.
-Lemma iter_findex x y : fconnect f x y → iter (findex x y) f x = y.
+Lemma iter_findex x y : fconnect f x y → iter (findex x y) f x = y.
-Lemma findex0 x : findex x x = 0.
+Lemma findex0 x : findex x x = 0.
-Lemma fconnect_invariant (T' : eqType) (k : T → T') :
- invariant f k =1 xpredT → ∀ x y, fconnect f x y → k x = k y.
+Lemma fconnect_invariant (T' : eqType) (k : T → T') :
+ invariant f k =1 xpredT → ∀ x y, fconnect f x y → k x = k y.
Section Loop.
@@ -363,7 +362,7 @@
Variable p : seq T.
Hypotheses (f_p : fcycle f p) (Up : uniq p).
Variable x : T.
-Hypothesis p_x : x \in p.
+Hypothesis p_x : x \in p.
@@ -372,13 +371,13 @@
This lemma does not depend on Up : (uniq p)
-
Lemma fconnect_cycle y :
fconnect f x y = (y \in p).
+
Lemma fconnect_cycle y :
fconnect f x y = (y \in p).
-
Lemma order_cycle :
order x = size p.
+
Lemma order_cycle :
order x = size p.
-
Lemma orbit_rot_cycle :
{i : nat | orbit x = rot i p}.
+
Lemma orbit_rot_cycle :
{i : nat | orbit x = rot i p}.
End Loop.
@@ -387,112 +386,113 @@
Section orbit_in.
-
Variable S :
pred_sort (
predPredType T).
+
Variable S :
{pred T}.
-
Hypothesis f_in :
{in S, ∀ x,
f x \in S}.
-
Hypothesis injf :
{in S &, injective f}.
+
Hypothesis f_in :
{in S, ∀ x,
f x \in S}.
+
Hypothesis injf :
{in S &, injective f}.
-
Lemma iter_in :
{in S, ∀ x i,
iter i f x \in S}.
+
Lemma iter_in :
{in S, ∀ x i,
iter i f x \in S}.
-
Lemma finv_in :
{in S, ∀ x,
finv x \in S}.
+
Lemma finv_in :
{in S, ∀ x,
finv x \in S}.
-
Lemma f_finv_in :
{in S, cancel finv f}.
+
Lemma f_finv_in :
{in S, cancel finv f}.
-
Lemma finv_f_in :
{in S, cancel f finv}.
+
Lemma finv_f_in :
{in S, cancel f finv}.
-
Lemma finv_inj_in :
{in S &, injective finv}.
+
Lemma finv_inj_in :
{in S &, injective finv}.
-
Lemma fconnect_sym_in :
{in S &, ∀ x y,
fconnect f x y = fconnect f y x}.
+
Lemma fconnect_sym_in :
{in S &, ∀ x y,
fconnect f x y = fconnect f y x}.
-
Lemma iter_order_in :
{in S, ∀ x,
iter (
order x)
f x = x}.
+
Lemma iter_order_in :
{in S, ∀ x,
iter (
order x)
f x = x}.
Lemma iter_finv_in n :
-
{in S, ∀ x,
n ≤ order x → iter n finv x = iter (
order x - n)
f x}.
+
{in S, ∀ x,
n ≤ order x → iter n finv x = iter (
order x - n)
f x}.
-
Lemma cycle_orbit_in :
{in S, ∀ x, (
fcycle f) (
orbit x)
}.
+
Lemma cycle_orbit_in :
{in S, ∀ x, (
fcycle f) (
orbit x)
}.
-
Lemma fpath_finv_in p x :
(x \in S) && (fpath finv x p) =
-
(last x p \in S) && (fpath f (
last x p) (
rev (
belast x p))
).
+
Lemma fpath_finv_in p x :
(x \in S) && (fpath finv x p) =
+
(last x p \in S) && (fpath f (
last x p) (
rev (
belast x p))
).
-
Lemma fpath_finv_f_in p :
{in S, ∀ x,
-
fpath finv x p → fpath f (
last x p) (
rev (
belast x p))
}.
+
Lemma fpath_finv_f_in p :
{in S, ∀ x,
+
fpath finv x p → fpath f (
last x p) (
rev (
belast x p))
}.
-
Lemma fpath_f_finv_in p x :
last x p \in S →
-
fpath f (
last x p) (
rev (
belast x p))
→ fpath finv x p.
+
Lemma fpath_f_finv_in p x :
last x p \in S →
+
fpath f (
last x p) (
rev (
belast x p))
→ fpath finv x p.
End orbit_in.
-
Hypothesis injf :
injective f.
+
Hypothesis injf :
injective f.
-
Lemma f_finv :
cancel finv f.
+
Lemma f_finv :
cancel finv f.
-
Lemma finv_f :
cancel f finv.
+
Lemma finv_f :
cancel f finv.
-
Lemma fin_inj_bij :
bijective f.
+
Lemma fin_inj_bij :
bijective f.
-
Lemma finv_bij :
bijective finv.
+
Lemma finv_bij :
bijective finv.
-
Lemma finv_inj :
injective finv.
+
Lemma finv_inj :
injective finv.
-
Lemma fconnect_sym x y :
fconnect f x y = fconnect f y x.
+
Lemma fconnect_sym x y :
fconnect f x y = fconnect f y x.
Let symf :=
fconnect_sym.
-
Lemma iter_order x :
iter (
order x)
f x = x.
+
Lemma iter_order x :
iter (
order x)
f x = x.
-
Lemma iter_finv n x :
n ≤ order x → iter n finv x = iter (
order x - n)
f x.
+
Lemma iter_finv n x :
n ≤ order x → iter n finv x = iter (
order x - n)
f x.
Lemma cycle_orbit x :
fcycle f (
orbit x).
-
Lemma fpath_finv x p :
fpath finv x p = fpath f (
last x p) (
rev (
belast x p)).
+
Lemma fpath_finv x p :
fpath finv x p = fpath f (
last x p) (
rev (
belast x p)).
-
Lemma same_fconnect_finv :
fconnect finv =2 fconnect f.
+
Lemma same_fconnect_finv :
fconnect finv =2 fconnect f.
-
Lemma fcard_finv :
fcard_mem finv =1 fcard_mem f.
+
Lemma fcard_finv :
fcard_mem finv =1 fcard_mem f.
-
Definition order_set n :
pred T :=
[pred x | order x == n].
+
Definition order_set n :
pred T :=
[pred x | order x == n].
-
Lemma fcard_order_set n (
a :
pred T) :
-
a \subset order_set n → fclosed f a → fcard f a × n = #|a|.
+
Lemma fcard_order_set n (
a :
{pred T}) :
+
a \subset order_set n → fclosed f a → fcard f a × n = #|a|.
-
Lemma fclosed1 (
a :
pred T) :
fclosed f a → ∀ x,
(x \in a) = (f x \in a).
+
Lemma fclosed1 (
a :
{pred T}) :
+
fclosed f a → ∀ x,
(x \in a) = (f x \in a).
-
Lemma same_fconnect1 x :
fconnect f x =1 fconnect f (
f x).
+
Lemma same_fconnect1 x :
fconnect f x =1 fconnect f (
f x).
-
Lemma same_fconnect1_r x y :
fconnect f x y = fconnect f x (
f y).
+
Lemma same_fconnect1_r x y :
fconnect f x y = fconnect f x (
f y).
End Orbit.
@@ -506,22 +506,22 @@
Variable T :
finType.
-
Lemma fconnect_id (
x :
T) :
fconnect id x =1 xpred1 x.
+
Lemma fconnect_id (
x :
T) :
fconnect id x =1 xpred1 x.
-
Lemma order_id (
x :
T) :
order id x = 1.
+
Lemma order_id (
x :
T) :
order id x = 1.
-
Lemma orbit_id (
x :
T) :
orbit id x = [:: x].
+
Lemma orbit_id (
x :
T) :
orbit id x = [:: x].
-
Lemma froots_id (
x :
T) :
froots id x.
+
Lemma froots_id (
x :
T) :
froots id x.
-
Lemma froot_id (
x :
T) :
froot id x = x.
+
Lemma froot_id (
x :
T) :
froot id x = x.
-
Lemma fcard_id (
a :
pred T) :
fcard id a = #|a|.
+
Lemma fcard_id (
a :
{pred T}) :
fcard id a = #|a|.
End FconnectId.
@@ -530,29 +530,29 @@
Section FconnectEq.
-
Variables (
T :
finType) (
f f' :
T → T).
+
Variables (
T :
finType) (
f f' :
T → T).
-
Lemma finv_eq_can :
cancel f f' → finv f =1 f'.
+
Lemma finv_eq_can :
cancel f f' → finv f =1 f'.
-
Hypothesis eq_f :
f =1 f'.
+
Hypothesis eq_f :
f =1 f'.
Let eq_rf :=
eq_frel eq_f.
-
Lemma eq_fconnect :
fconnect f =2 fconnect f'.
+
Lemma eq_fconnect :
fconnect f =2 fconnect f'.
-
Lemma eq_fcard :
fcard_mem f =1 fcard_mem f'.
+
Lemma eq_fcard :
fcard_mem f =1 fcard_mem f'.
-
Lemma eq_finv :
finv f =1 finv f'.
+
Lemma eq_finv :
finv f =1 finv f'.
-
Lemma eq_froot :
froot f =1 froot f'.
+
Lemma eq_froot :
froot f =1 froot f'.
-
Lemma eq_froots :
froots f =1 froots f'.
+
Lemma eq_froots :
froots f =1 froots f'.
End FconnectEq.
@@ -561,17 +561,17 @@
Section FinvEq.
-
Variables (
T :
finType) (
f :
T → T).
-
Hypothesis injf :
injective f.
+
Variables (
T :
finType) (
f :
T → T).
+
Hypothesis injf :
injective f.
-
Lemma finv_inv :
finv (
finv f)
=1 f.
+
Lemma finv_inv :
finv (
finv f)
=1 f.
-
Lemma order_finv :
order (
finv f)
=1 order f.
+
Lemma order_finv :
order (
finv f)
=1 order f.
-
Lemma order_set_finv n :
order_set (
finv f)
n =i order_set f n.
+
Lemma order_set_finv n :
order_set (
finv f)
n =i order_set f n.
End FinvEq.
@@ -580,58 +580,58 @@
Section RelAdjunction.
-
Variables (
T T' :
finType) (
h :
T' → T) (
e :
rel T) (
e' :
rel T').
+
Variables (
T T' :
finType) (
h :
T' → T) (
e :
rel T) (
e' :
rel T').
Hypotheses (
sym_e :
connect_sym e) (
sym_e' :
connect_sym e').
Record rel_adjunction_mem m_a :=
RelAdjunction {
-
rel_unit x :
in_mem x m_a → {x' : T' | connect e x (
h x')
};
+
rel_unit x :
in_mem x m_a → {x' : T' | connect e x (
h x')
};
rel_functor x' y' :
-
in_mem (
h x')
m_a → connect e' x' y' = connect e (
h x') (
h y')
+
in_mem (
h x')
m_a → connect e' x' y' = connect e (
h x') (
h y')
}.
-
Variable a :
pred T.
+
Variable a :
{pred T}.
Hypothesis cl_a :
closed e a.
-
Lemma intro_adjunction (
h' :
∀ x,
x \in a → T') :
-
(∀ x a_x,
-
[/\ connect e x (
h (
h' x a_x))
-
& ∀ y a_y,
e x y → connect e' (
h' x a_x) (
h' y a_y)
]) →
-
(∀ x' a_x,
-
[/\ connect e' x' (
h' (
h x')
a_x)
-
& ∀ y',
e' x' y' → connect e (
h x') (
h y')
]) →
+
Lemma intro_adjunction (
h' :
∀ x,
x \in a → T') :
+
(∀ x a_x,
+
[/\ connect e x (
h (
h' x a_x))
+
& ∀ y a_y,
e x y → connect e' (
h' x a_x) (
h' y a_y)
]) →
+
(∀ x' a_x,
+
[/\ connect e' x' (
h' (
h x')
a_x)
+
& ∀ y',
e' x' y' → connect e (
h x') (
h y')
]) →
rel_adjunction.
Lemma strict_adjunction :
-
injective h → a \subset codom h → rel_base h e e' [predC a] →
+
injective h → a \subset codom h → rel_base h e e' [predC a] →
rel_adjunction.
Let ccl_a :=
closed_connect cl_a.
-
Lemma adjunction_closed :
rel_adjunction → closed e' [preim h of a].
+
Lemma adjunction_closed :
rel_adjunction → closed e' [preim h of a].
Lemma adjunction_n_comp :
-
rel_adjunction → n_comp e a = n_comp e' [preim h of a].
+
rel_adjunction → n_comp e a = n_comp e' [preim h of a].
End RelAdjunction.
-
Notation rel_adjunction h e e' a := (
rel_adjunction_mem h e e' (
mem a)).
-
Notation "@ 'rel_adjunction' T T' h e e' a" :=
- (@
rel_adjunction_mem T T' h e e' (
mem a))
+
Notation rel_adjunction h e e' a := (
rel_adjunction_mem h e e' (
mem a)).
+
Notation "@ 'rel_adjunction' T T' h e e' a" :=
+ (@
rel_adjunction_mem T T' h e e' (
mem a))
(
at level 10,
T,
T',
h,
e,
e',
a at level 8,
only parsing) :
type_scope.
Notation fun_adjunction h f f' a := (
rel_adjunction h (
frel f) (
frel f')
a).
-
Notation "@ 'fun_adjunction' T T' h f f' a" :=
- (
@rel_adjunction T T' h (frel f) (frel f') a)
+
Notation "@ 'fun_adjunction' T T' h f f' a" :=
+ (
@rel_adjunction T T' h (frel f) (frel f') a)
(
at level 10,
T,
T',
h,
f,
f',
a at level 8,
only parsing) :
type_scope.
--
cgit v1.2.3