From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.ssreflect.div.html | 451 +++++++++++++++----------------
1 file changed, 225 insertions(+), 226 deletions(-)
(limited to 'docs/htmldoc/mathcomp.ssreflect.div.html')
diff --git a/docs/htmldoc/mathcomp.ssreflect.div.html b/docs/htmldoc/mathcomp.ssreflect.div.html
index 1379bbb..0d39448 100644
--- a/docs/htmldoc/mathcomp.ssreflect.div.html
+++ b/docs/htmldoc/mathcomp.ssreflect.div.html
@@ -21,7 +21,6 @@
@@ -62,26 +61,26 @@
Definition edivn_rec d :=
- fix loop m q := if m - d is m'.+1 then loop m' q.+1 else (q, m).
+ fix loop m q := if m - d is m'.+1 then loop m' q.+1 else (q, m).
-Definition edivn m d := if d > 0 then edivn_rec d.-1 m 0 else (0, m).
+Definition edivn m d := if d > 0 then edivn_rec d.-1 m 0 else (0, m).
-CoInductive edivn_spec m d : nat × nat → Type :=
- EdivnSpec q r of m = q × d + r & (d > 0) ==> (r < d) : edivn_spec m d (q, r).
+Variant edivn_spec m d : nat × nat → Type :=
+ EdivnSpec q r of m = q × d + r & (d > 0) ==> (r < d) : edivn_spec m d (q, r).
Lemma edivnP m d : edivn_spec m d (edivn m d).
-Lemma edivn_eq d q r : r < d → edivn (q × d + r) d = (q, r).
+Lemma edivn_eq d q r : r < d → edivn (q × d + r) d = (q, r).
-Definition divn m d := (edivn m d).1.
+Definition divn m d := (edivn m d).1.
-Notation "m %/ d" := (divn m d) : nat_scope.
+Notation "m %/ d" := (divn m d) : nat_scope.
@@ -92,176 +91,176 @@
@@ -272,155 +271,155 @@
@@ -432,69 +431,69 @@
Fixpoint gcdn_rec m n :=
- let n' := n %% m in if n' is 0 then m else
- if m - n'.-1 is m'.+1 then gcdn_rec (m' %% n') n' else n'.
+ let n' := n %% m in if n' is 0 then m else
+ if m - n'.-1 is m'.+1 then gcdn_rec (m' %% n') n' else n'.
-Definition gcdn := nosimpl gcdn_rec.
+Definition gcdn := nosimpl gcdn_rec.
-Lemma gcdnE m n : gcdn m n = if m == 0 then n else gcdn (n %% m) m.
+Lemma gcdnE m n : gcdn m n = if m == 0 then n else gcdn (n %% m) m.
-Lemma gcdnn : idempotent gcdn.
+Lemma gcdnn : idempotent gcdn.
-Lemma gcdnC : commutative gcdn.
+Lemma gcdnC : commutative gcdn.
-Lemma gcd0n : left_id 0 gcdn.
-Lemma gcdn0 : right_id 0 gcdn.
+Lemma gcd0n : left_id 0 gcdn.
+Lemma gcdn0 : right_id 0 gcdn.
-Lemma gcd1n : left_zero 1 gcdn.
+Lemma gcd1n : left_zero 1 gcdn.
-Lemma gcdn1 : right_zero 1 gcdn.
+Lemma gcdn1 : right_zero 1 gcdn.
-Lemma dvdn_gcdr m n : gcdn m n %| n.
+Lemma dvdn_gcdr m n : gcdn m n %| n.
-Lemma dvdn_gcdl m n : gcdn m n %| m.
+Lemma dvdn_gcdl m n : gcdn m n %| m.
-Lemma gcdn_gt0 m n : (0 < gcdn m n) = (0 < m) || (0 < n).
+Lemma gcdn_gt0 m n : (0 < gcdn m n) = (0 < m) || (0 < n).
-Lemma gcdnMDl k m n : gcdn m (k × m + n) = gcdn m n.
+Lemma gcdnMDl k m n : gcdn m (k × m + n) = gcdn m n.
-Lemma gcdnDl m n : gcdn m (m + n) = gcdn m n.
+Lemma gcdnDl m n : gcdn m (m + n) = gcdn m n.
-Lemma gcdnDr m n : gcdn m (n + m) = gcdn m n.
+Lemma gcdnDr m n : gcdn m (n + m) = gcdn m n.
-Lemma gcdnMl n m : gcdn n (m × n) = n.
+Lemma gcdnMl n m : gcdn n (m × n) = n.
-Lemma gcdnMr n m : gcdn n (n × m) = n.
+Lemma gcdnMr n m : gcdn n (n × m) = n.
-Lemma gcdn_idPl {m n} : reflect (gcdn m n = m) (m %| n).
+Lemma gcdn_idPl {m n} : reflect (gcdn m n = m) (m %| n).
-Lemma gcdn_idPr {m n} : reflect (gcdn m n = n) (n %| m).
+Lemma gcdn_idPr {m n} : reflect (gcdn m n = n) (n %| m).
-Lemma expn_min e m n : e ^ minn m n = gcdn (e ^ m) (e ^ n).
+Lemma expn_min e m n : e ^ minn m n = gcdn (e ^ m) (e ^ n).
-Lemma gcdn_modr m n : gcdn m (n %% m) = gcdn m n.
+Lemma gcdn_modr m n : gcdn m (n %% m) = gcdn m n.
-Lemma gcdn_modl m n : gcdn (m %% n) n = gcdn m n.
+Lemma gcdn_modl m n : gcdn (m %% n) n = gcdn m n.
@@ -506,36 +505,36 @@
Fixpoint Bezout_rec km kn qs :=
- if qs is q :: qs' then Bezout_rec kn (NatTrec.add_mul q kn km) qs'
- else (km, kn).
+ if qs is q :: qs' then Bezout_rec kn (NatTrec.add_mul q kn km) qs'
+ else (km, kn).
Fixpoint egcdn_rec m n s qs :=
- if s is s'.+1 then
- let: (q, r) := edivn m n in
- if r > 0 then egcdn_rec n r s' (q :: qs) else
- if odd (size qs) then qs else q.-1 :: qs
- else [::0].
+ if s is s'.+1 then
+ let: (q, r) := edivn m n in
+ if r > 0 then egcdn_rec n r s' (q :: qs) else
+ if odd (size qs) then qs else q.-1 :: qs
+ else [::0].
-Definition egcdn m n := Bezout_rec 0 1 (egcdn_rec m n n [::]).
+Definition egcdn m n := Bezout_rec 0 1 (egcdn_rec m n n [::]).
-CoInductive egcdn_spec m n : nat × nat → Type :=
- EgcdnSpec km kn of km × m = kn × n + gcdn m n & kn × gcdn m n < m :
- egcdn_spec m n (km, kn).
+Variant egcdn_spec m n : nat × nat → Type :=
+ EgcdnSpec km kn of km × m = kn × n + gcdn m n & kn × gcdn m n < m :
+ egcdn_spec m n (km, kn).
-Lemma egcd0n n : egcdn 0 n = (1, 0).
+Lemma egcd0n n : egcdn 0 n = (1, 0).
-Lemma egcdnP m n : m > 0 → egcdn_spec m n (egcdn m n).
+Lemma egcdnP m n : m > 0 → egcdn_spec m n (egcdn m n).
-Lemma Bezoutl m n : m > 0 → {a | a < m & m %| gcdn m n + a × n}.
+Lemma Bezoutl m n : m > 0 → {a | a < m & m %| gcdn m n + a × n}.
-Lemma Bezoutr m n : n > 0 → {a | a < n & n %| gcdn m n + a × m}.
+Lemma Bezoutr m n : n > 0 → {a | a < n & n %| gcdn m n + a × m}.
@@ -546,33 +545,33 @@
@@ -583,68 +582,68 @@
@@ -655,7 +654,7 @@
-
Definition coprime m n :=
gcdn m n == 1.
+
Definition coprime m n :=
gcdn m n == 1.
Lemma coprime1n n :
coprime 1
n.
@@ -664,89 +663,89 @@
Lemma coprimen1 n :
coprime n 1.
-
Lemma coprime_sym m n :
coprime m n = coprime n m.
+
Lemma coprime_sym m n :
coprime m n = coprime n m.
-
Lemma coprime_modl m n :
coprime (
m %% n)
n = coprime m n.
+
Lemma coprime_modl m n :
coprime (
m %% n)
n = coprime m n.
-
Lemma coprime_modr m n :
coprime m (
n %% m)
= coprime m n.
+
Lemma coprime_modr m n :
coprime m (
n %% m)
= coprime m n.
-
Lemma coprime2n n :
coprime 2
n = odd n.
+
Lemma coprime2n n :
coprime 2
n = odd n.
-
Lemma coprimen2 n :
coprime n 2
= odd n.
+
Lemma coprimen2 n :
coprime n 2
= odd n.
-
Lemma coprimeSn n :
coprime n.+1 n.
+
Lemma coprimeSn n :
coprime n.+1 n.
-
Lemma coprimenS n :
coprime n n.+1.
+
Lemma coprimenS n :
coprime n n.+1.
-
Lemma coprimePn n :
n > 0
→ coprime n.-1 n.
+
Lemma coprimePn n :
n > 0
→ coprime n.-1 n.
-
Lemma coprimenP n :
n > 0
→ coprime n n.-1.
+
Lemma coprimenP n :
n > 0
→ coprime n n.-1.
Lemma coprimeP n m :
-
n > 0
→ reflect (
∃ u, u.1 × n - u.2 × m = 1) (
coprime n m).
+
n > 0
→ reflect (
∃ u, u.1 × n - u.2 × m = 1) (
coprime n m).
-
Lemma modn_coprime k n : 0
< k → (∃ u, (k × u) %% n = 1
) → coprime k n.
+
Lemma modn_coprime k n : 0
< k → (∃ u, (k × u) %% n = 1
) → coprime k n.
-
Lemma Gauss_dvd m n p :
coprime m n → (m × n %| p) = (m %| p) && (n %| p).
+
Lemma Gauss_dvd m n p :
coprime m n → (m × n %| p) = (m %| p) && (n %| p).
-
Lemma Gauss_dvdr m n p :
coprime m n → (m %| n × p) = (m %| p).
+
Lemma Gauss_dvdr m n p :
coprime m n → (m %| n × p) = (m %| p).
-
Lemma Gauss_dvdl m n p :
coprime m p → (m %| n × p) = (m %| n).
+
Lemma Gauss_dvdl m n p :
coprime m p → (m %| n × p) = (m %| n).
-
Lemma dvdn_double_leq m n :
m %| n → odd m → ~~ odd n → 0
< n → m.*2 ≤ n.
+
Lemma dvdn_double_leq m n :
m %| n → odd m → ~~ odd n → 0
< n → m.*2 ≤ n.
-
Lemma dvdn_double_ltn m n :
m %| n.-1 → odd m → odd n → 1
< n → m.*2 < n.
+
Lemma dvdn_double_ltn m n :
m %| n.-1 → odd m → odd n → 1
< n → m.*2 < n.
-
Lemma Gauss_gcdr p m n :
coprime p m → gcdn p (
m × n)
= gcdn p n.
+
Lemma Gauss_gcdr p m n :
coprime p m → gcdn p (
m × n)
= gcdn p n.
-
Lemma Gauss_gcdl p m n :
coprime p n → gcdn p (
m × n)
= gcdn p m.
+
Lemma Gauss_gcdl p m n :
coprime p n → gcdn p (
m × n)
= gcdn p m.
-
Lemma coprime_mulr p m n :
coprime p (
m × n)
= coprime p m && coprime p n.
+
Lemma coprime_mulr p m n :
coprime p (
m × n)
= coprime p m && coprime p n.
-
Lemma coprime_mull p m n :
coprime (
m × n)
p = coprime m p && coprime n p.
+
Lemma coprime_mull p m n :
coprime (
m × n)
p = coprime m p && coprime n p.
-
Lemma coprime_pexpl k m n : 0
< k → coprime (
m ^ k)
n = coprime m n.
+
Lemma coprime_pexpl k m n : 0
< k → coprime (
m ^ k)
n = coprime m n.
-
Lemma coprime_pexpr k m n : 0
< k → coprime m (
n ^ k)
= coprime m n.
+
Lemma coprime_pexpr k m n : 0
< k → coprime m (
n ^ k)
= coprime m n.
-
Lemma coprime_expl k m n :
coprime m n → coprime (
m ^ k)
n.
+
Lemma coprime_expl k m n :
coprime m n → coprime (
m ^ k)
n.
-
Lemma coprime_expr k m n :
coprime m n → coprime m (
n ^ k).
+
Lemma coprime_expr k m n :
coprime m n → coprime m (
n ^ k).
-
Lemma coprime_dvdl m n p :
m %| n → coprime n p → coprime m p.
+
Lemma coprime_dvdl m n p :
m %| n → coprime n p → coprime m p.
-
Lemma coprime_dvdr m n p :
m %| n → coprime p n → coprime p m.
+
Lemma coprime_dvdr m n p :
m %| n → coprime p n → coprime p m.
-
Lemma coprime_egcdn n m :
n > 0
→ coprime (egcdn n m).1 (egcdn n m).2.
+
Lemma coprime_egcdn n m :
n > 0
→ coprime (egcdn n m).1 (egcdn n m).2.
-
Lemma dvdn_pexp2r m n k :
k > 0
→ (m ^ k %| n ^ k) = (m %| n).
+
Lemma dvdn_pexp2r m n k :
k > 0
→ (m ^ k %| n ^ k) = (m %| n).
Section Chinese.
@@ -760,12 +759,12 @@
@@ -777,16 +776,16 @@
Definition chinese r1 r2 :=
-
r1 × m2 × (egcdn m2 m1).1 + r2 × m1 × (egcdn m1 m2).1.
+
r1 × m2 × (egcdn m2 m1).1 + r2 × m1 × (egcdn m1 m2).1.
-
Lemma chinese_modl r1 r2 :
chinese r1 r2 = r1 %[mod m1].
+
Lemma chinese_modl r1 r2 :
chinese r1 r2 = r1 %[mod m1].
-
Lemma chinese_modr r1 r2 :
chinese r1 r2 = r2 %[mod m2].
+
Lemma chinese_modr r1 r2 :
chinese r1 r2 = r2 %[mod m2].
-
Lemma chinese_mod x :
x = chinese (
x %% m1) (
x %% m2)
%[mod m1 × m2].
+
Lemma chinese_mod x :
x = chinese (
x %% m1) (
x %% m2)
%[mod m1 × m2].
End Chinese.
--
cgit v1.2.3