From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.ssreflect.choice.html | 771 ++++++++++++++++++++++++++++ 1 file changed, 771 insertions(+) create mode 100644 docs/htmldoc/mathcomp.ssreflect.choice.html (limited to 'docs/htmldoc/mathcomp.ssreflect.choice.html') diff --git a/docs/htmldoc/mathcomp.ssreflect.choice.html b/docs/htmldoc/mathcomp.ssreflect.choice.html new file mode 100644 index 0000000..d38d215 --- /dev/null +++ b/docs/htmldoc/mathcomp.ssreflect.choice.html @@ -0,0 +1,771 @@ + + + + + +mathcomp.ssreflect.choice + + + + +
+ + + +
+ +

Library mathcomp.ssreflect.choice

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ This file contains the definitions of: + choiceType == interface for types with a choice operator. + countType == interface for countable types (implies choiceType). + subCountType == interface for types that are both subType and countType. + xchoose exP == a standard x such that P x, given exP : exists x : T, P x + when T is a choiceType. The choice depends only on the + extent of P (in particular, it is independent of exP). + choose P x0 == if P x0, a standard x such that P x. + pickle x == a nat encoding the value x : T, where T is a countType. + unpickle n == a partial inverse to pickle: unpickle (pickle x) = Some x + pickle_inv n == a sharp partial inverse to pickle pickle_inv n = Some x + if and only if pickle x = n. + [choiceType of T for cT] == clone for T of the choiceType cT. + [choiceType of T] == clone for T of the choiceType inferred for T. + [countType of T for cT] == clone for T of the countType cT. + [count Type of T] == clone for T of the countType inferred for T. + [choiceMixin of T by <: ] == Choice mixin for T when T has a subType p + structure with p : pred cT and cT has a Choice + structure; the corresponding structure is Canonical. + [countMixin of T by <: ] == Count mixin for a subType T of a countType. + PcanChoiceMixin fK == Choice mixin for T, given f : T -> cT where cT has + a Choice structure, a left inverse partial function + g and fK : pcancel f g. + CanChoiceMixin fK == Choice mixin for T, given f : T -> cT, g and + fK : cancel f g. + PcanCountMixin fK == Count mixin for T, given f : T -> cT where cT has + a Countable structure, a left inverse partial + function g and fK : pcancel f g. + CanCountMixin fK == Count mixin for T, given f : T -> cT, g and + fK : cancel f g. + GenTree.tree T == generic n-ary tree type with nat-labeled nodes and + T-labeled leaves, for example GenTree.Leaf (x : T), + GenTree.Node 5 [:: t; t' ]. GenTree.tree is equipped + with canonical eqType, choiceType, and countType + instances, and so simple datatypes can be similarly + equipped by encoding into GenTree.tree and using + the mixins above. + CodeSeq.code == bijection from seq nat to nat. + CodeSeq.decode == bijection inverse to CodeSeq.code. + In addition to the lemmas relevant to these definitions, this file also + contains definitions of a Canonical choiceType and countType instances for + all basic datatypes (e.g., nat, bool, subTypes, pairs, sums, etc.). +
+
+ +
+Set Implicit Arguments.
+ +
+
+ +
+ Technical definitions about coding and decoding of nat sequences, which + are used below to define various Canonical instances of the choice and + countable interfaces. +
+
+ +
+Module CodeSeq.
+ +
+
+ +
+ Goedel-style one-to-one encoding of seq nat into nat. + The code for [:: n1; ...; nk] has binary representation + 1 0 ... 0 1 ... 1 0 ... 0 1 0 ... 0 + <-----> <-----> <-----> + nk 0s n2 0s n1 0s +
+
+ +
+Definition code := foldr (fun n m ⇒ 2 ^ n × m.*2.+1) 0.
+ +
+Fixpoint decode_rec (v q r : nat) {struct q} :=
+  match q, r with
+  | 0, _[:: v]
+  | q'.+1, 0 ⇒ v :: [rec 0, q', q']
+  | q'.+1, 1 ⇒ [rec v.+1, q', q']
+  | q'.+1, r'.+2[rec v, q', r']
+  end where "[ 'rec' v , q , r ]" := (decode_rec v q r).
+ +
+Definition decode n := if n is 0 then [::] else [rec 0, n.-1, n.-1].
+ +
+Lemma decodeK : cancel decode code.
+ +
+Lemma codeK : cancel code decode.
+ +
+Lemma ltn_code s : all (fun jj < code s) s.
+ +
+Lemma gtn_decode n : all (ltn^~ n) (decode n).
+ +
+End CodeSeq.
+ +
+Section OtherEncodings.
+
+ +
+ Miscellaneous encodings: option T -c-> seq T, T1 * T2 -c-> {i : T1 & T2} + T1 + T2 -c-> option T1 * option T2, unit -c-> bool; bool -c-> nat is + already covered in ssrnat by the nat_of_bool coercion, the odd predicate, + and their "cancellation" lemma oddb. We use these encodings to propagate + canonical structures through these type constructors so that ultimately + all Choice and Countable instanced derive from nat and the seq and sigT + constructors. +
+
+ +
+Variables T T1 T2 : Type.
+ +
+Definition seq_of_opt := @oapp T _ (nseq 1) [::].
+Lemma seq_of_optK : cancel seq_of_opt ohead.
+ +
+Definition tag_of_pair (p : T1 × T2) := @Tagged T1 p.1 (fun _T2) p.2.
+Definition pair_of_tag (u : {i : T1 & T2}) := (tag u, tagged u).
+Lemma tag_of_pairK : cancel tag_of_pair pair_of_tag.
+Lemma pair_of_tagK : cancel pair_of_tag tag_of_pair.
+ +
+Definition opair_of_sum (s : T1 + T2) :=
+  match s with inl x(Some x, None) | inr y(None, Some y) end.
+Definition sum_of_opair p :=
+  oapp (some \o @inr T1 T2) (omap (@inl _ T2) p.1) p.2.
+Lemma opair_of_sumK : pcancel opair_of_sum sum_of_opair.
+ +
+Lemma bool_of_unitK : cancel (fun _true) (fun _tt).
+ +
+End OtherEncodings.
+ +
+
+ +
+ Generic variable-arity tree type, providing an encoding target for + miscellaneous user datatypes. The GenTree.tree type can be combined with + a sigT type to model multi-sorted concrete datatypes. +
+
+Module GenTree.
+ +
+Section Def.
+ +
+Variable T : Type.
+ +
+Inductive tree := Leaf of T | Node of nat & seq tree.
+ +
+Definition tree_rect K IH_leaf IH_node :=
+  fix loop t : K t := match t with
+  | Leaf xIH_leaf x
+  | Node n f0
+    let fix iter_pair f : foldr (fun tprod (K t)) unit f :=
+      if f is t :: f' then (loop t, iter_pair f') else tt in
+    IH_node n f0 (iter_pair f0)
+  end.
+Definition tree_rec (K : tree Set) := @tree_rect K.
+Definition tree_ind K IH_leaf IH_node :=
+  fix loop t : K t : Prop := match t with
+  | Leaf xIH_leaf x
+  | Node n f0
+    let fix iter_conj f : foldr (fun tand (K t)) True f :=
+        if f is t :: f' then conj (loop t) (iter_conj f') else Logic.I
+      in IH_node n f0 (iter_conj f0)
+    end.
+ +
+Fixpoint encode t : seq (nat + T) :=
+  match t with
+  | Leaf x[:: inr _ x]
+  | Node n finl _ n.+1 :: rcons (flatten (map encode f)) (inl _ 0)
+  end.
+ +
+Definition decode_step c fs :=
+  match c with
+  | inr x(Leaf x :: fs.1, fs.2)
+  | inl 0 ⇒ ([::], fs.1 :: fs.2)
+  | inl n.+1(Node n fs.1 :: head [::] fs.2, behead fs.2)
+  end.
+ +
+Definition decode c := ohead (foldr decode_step ([::], [::]) c).1.
+ +
+Lemma codeK : pcancel encode decode.
+ +
+End Def.
+ +
+End GenTree.
+ +
+Definition tree_eqMixin (T : eqType) := PcanEqMixin (GenTree.codeK T).
+Canonical tree_eqType (T : eqType) := EqType (GenTree.tree T) (tree_eqMixin T).
+ +
+
+ +
+ Structures for Types with a choice function, and for Types with countably + many elements. The two concepts are closely linked: we indeed make + Countable a subclass of Choice, as countable choice is valid in CiC. This + apparent redundancy is needed to ensure the consistency of the Canonical + inference, as the canonical Choice for a given type may differ from the + countable choice for its canonical Countable structure, e.g., for options. + The Choice interface exposes two choice functions; for T : choiceType + and P : pred T, we provide: + xchoose : (exists x, P x) -> T + choose : pred T -> T -> T + While P (xchoose exP) will always hold, P (choose P x0) will be true if + and only if P x0 holds. Both xchoose and choose are extensional in P and + do not depend on the witness exP or x0 (provided P x0 holds). Note that + xchoose is slightly more powerful, but less convenient to use. + However, neither choose nor xchoose are composable: it would not be + be possible to extend the Choice structure to arbitrary pairs using only + these functions, for instance. Internally, the interfaces provides a + subtly stronger operation, Choice.InternalTheory.find, which performs a + limited search using an integer parameter only rather than a full value as + [x]choose does. This is not a restriction in a constructive theory, where + all types are concrete and hence countable. In the case of an axiomatic + theory, such as that of the Coq reals library, postulating a suitable + axiom of choice suppresses the need for guidance. Nevertheless this + operation is just what is needed to make the Choice interface compose. + The Countable interface provides three functions; for T : countType we + get pickle : T -> nat, and unpickle, pickle_inv : nat -> option T. + The functions provide an effective embedding of T in nat: unpickle is a + left inverse to pickle, which satisfies pcancel pickle unpickle, i.e., + unpickle \o pickle =1 some; pickle_inv is a more precise inverse for which + we also have ocancel pickle_inv pickle. Both unpickle and pickle need to + be partial functions to allow for possibly empty types such as {x | P x}. + The names of these functions underline the correspondence with the + notion of "Serializable" types in programming languages. + Finally, we need to provide a join class to let type inference unify + subType and countType class constraints, e.g., for a countable subType of + an uncountable choiceType (the issue does not arise earlier with eqType or + choiceType because in practice the base type of an Equality/Choice subType + is always an Equality/Choice Type). +
+
+ +
+Module Choice.
+ +
+Section ClassDef.
+ +
+Record mixin_of T := Mixin {
+  find : pred T nat option T;
+  _ : P n x, find P n = Some x P x;
+  _ : P : pred T, ( x, P x) n, find P n;
+  _ : P Q : pred T, P =1 Q find P =1 find Q
+}.
+ +
+Record class_of T := Class {base : Equality.class_of T; mixin : mixin_of T}.
+ +
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Variables (T : Type) (cT : type).
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Definition clone c of phant_id class c := @Pack T c T.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition pack m :=
+  fun b bT & phant_id (Equality.class bT) bPack (@Class T b m) T.
+ +
+
+ +
+ Inheritance +
+
+Definition eqType := @Equality.Pack cT xclass xT.
+ +
+End ClassDef.
+ +
+Module Import Exports.
+Coercion base : class_of >-> Equality.class_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Notation choiceType := type.
+Notation choiceMixin := mixin_of.
+Notation ChoiceType T m := (@pack T m _ _ id).
+Notation "[ 'choiceType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
+  (at level 0, format "[ 'choiceType' 'of' T 'for' cT ]") : form_scope.
+Notation "[ 'choiceType' 'of' T ]" := (@clone T _ _ id)
+  (at level 0, format "[ 'choiceType' 'of' T ]") : form_scope.
+ +
+End Exports.
+ +
+Module InternalTheory.
+Section InternalTheory.
+
+ +
+ Inner choice function. +
+
+Definition find T := find (mixin (class T)).
+ +
+Variable T : choiceType.
+Implicit Types P Q : pred T.
+ +
+Lemma correct P n x : find P n = Some x P x.
+ +
+Lemma complete P : ( x, P x) ( n, find P n).
+ +
+Lemma extensional P Q : P =1 Q find P =1 find Q.
+ +
+Fact xchoose_subproof P exP : {x | find P (ex_minn (@complete P exP)) = Some x}.
+ +
+End InternalTheory.
+End InternalTheory.
+ +
+End Choice.
+Export Choice.Exports.
+ +
+Section ChoiceTheory.
+ +
+Implicit Type T : choiceType.
+Import Choice.InternalTheory CodeSeq.
+ +
+Section OneType.
+ +
+Variable T : choiceType.
+Implicit Types P Q : pred T.
+ +
+Definition xchoose P exP := sval (@xchoose_subproof T P exP).
+ +
+Lemma xchooseP P exP : P (@xchoose P exP).
+ +
+Lemma eq_xchoose P Q exP exQ : P =1 Q @xchoose P exP = @xchoose Q exQ.
+ +
+Lemma sigW P : ( x, P x) {x | P x}.
+ +
+Lemma sig2W P Q : (exists2 x, P x & Q x) {x | P x & Q x}.
+ +
+Lemma sig_eqW (vT : eqType) (lhs rhs : T vT) :
+  ( x, lhs x = rhs x) {x | lhs x = rhs x}.
+ +
+Lemma sig2_eqW (vT : eqType) (P : pred T) (lhs rhs : T vT) :
+  (exists2 x, P x & lhs x = rhs x) {x | P x & lhs x = rhs x}.
+ +
+Definition choose P x0 :=
+  if insub x0 : {? x | P x} is Some (exist x Px) then
+    xchoose (ex_intro [eta P] x Px)
+  else x0.
+ +
+Lemma chooseP P x0 : P x0 P (choose P x0).
+ +
+Lemma choose_id P x0 y0 : P x0 P y0 choose P x0 = choose P y0.
+ +
+Lemma eq_choose P Q : P =1 Q choose P =1 choose Q.
+ +
+Section CanChoice.
+ +
+Variables (sT : Type) (f : sT T).
+ +
+Lemma PcanChoiceMixin f' : pcancel f f' choiceMixin sT.
+ +
+Definition CanChoiceMixin f' (fK : cancel f f') :=
+  PcanChoiceMixin (can_pcan fK).
+ +
+End CanChoice.
+ +
+Section SubChoice.
+ +
+Variables (P : pred T) (sT : subType P).
+ +
+Definition sub_choiceMixin := PcanChoiceMixin (@valK T P sT).
+Definition sub_choiceClass := @Choice.Class sT (sub_eqMixin sT) sub_choiceMixin.
+Canonical sub_choiceType := Choice.Pack sub_choiceClass sT.
+ +
+End SubChoice.
+ +
+Fact seq_choiceMixin : choiceMixin (seq T).
+Canonical seq_choiceType := Eval hnf in ChoiceType (seq T) seq_choiceMixin.
+ +
+End OneType.
+ +
+Section TagChoice.
+ +
+Variables (I : choiceType) (T_ : I choiceType).
+ +
+Fact tagged_choiceMixin : choiceMixin {i : I & T_ i}.
+Canonical tagged_choiceType :=
+  Eval hnf in ChoiceType {i : I & T_ i} tagged_choiceMixin.
+ +
+End TagChoice.
+ +
+Fact nat_choiceMixin : choiceMixin nat.
+Canonical nat_choiceType := Eval hnf in ChoiceType nat nat_choiceMixin.
+ +
+Definition bool_choiceMixin := CanChoiceMixin oddb.
+Canonical bool_choiceType := Eval hnf in ChoiceType bool bool_choiceMixin.
+Canonical bitseq_choiceType := Eval hnf in [choiceType of bitseq].
+ +
+Definition unit_choiceMixin := CanChoiceMixin bool_of_unitK.
+Canonical unit_choiceType := Eval hnf in ChoiceType unit unit_choiceMixin.
+ +
+Definition option_choiceMixin T := CanChoiceMixin (@seq_of_optK T).
+Canonical option_choiceType T :=
+  Eval hnf in ChoiceType (option T) (option_choiceMixin T).
+ +
+Definition sig_choiceMixin T (P : pred T) : choiceMixin {x | P x} :=
+   sub_choiceMixin _.
+Canonical sig_choiceType T (P : pred T) :=
Eval hnf in ChoiceType {x | P x} (sig_choiceMixin P).
+ +
+Definition prod_choiceMixin T1 T2 := CanChoiceMixin (@tag_of_pairK T1 T2).
+Canonical prod_choiceType T1 T2 :=
+  Eval hnf in ChoiceType (T1 × T2) (prod_choiceMixin T1 T2).
+ +
+Definition sum_choiceMixin T1 T2 := PcanChoiceMixin (@opair_of_sumK T1 T2).
+Canonical sum_choiceType T1 T2 :=
+  Eval hnf in ChoiceType (T1 + T2) (sum_choiceMixin T1 T2).
+ +
+Definition tree_choiceMixin T := PcanChoiceMixin (GenTree.codeK T).
+Canonical tree_choiceType T := ChoiceType (GenTree.tree T) (tree_choiceMixin T).
+ +
+End ChoiceTheory.
+ +
+Notation "[ 'choiceMixin' 'of' T 'by' <: ]" :=
+  (sub_choiceMixin _ : choiceMixin T)
+  (at level 0, format "[ 'choiceMixin' 'of' T 'by' <: ]") : form_scope.
+ +
+Module Countable.
+ +
+Record mixin_of (T : Type) : Type := Mixin {
+  pickle : T nat;
+  unpickle : nat option T;
+  pickleK : pcancel pickle unpickle
+}.
+ +
+Definition EqMixin T m := PcanEqMixin (@pickleK T m).
+Definition ChoiceMixin T m := PcanChoiceMixin (@pickleK T m).
+ +
+Section ClassDef.
+ +
+Record class_of T := Class { base : Choice.class_of T; mixin : mixin_of T }.
+ +
+Structure type : Type := Pack {sort : Type; _ : class_of sort; _ : Type}.
+Variables (T : Type) (cT : type).
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Definition clone c of phant_id class c := @Pack T c T.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+ +
+Definition pack m :=
+  fun bT b & phant_id (Choice.class bT) bPack (@Class T b m) T.
+ +
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+ +
+End ClassDef.
+ +
+Module Exports.
+Coercion base : class_of >-> Choice.class_of.
+Coercion mixin : class_of >-> mixin_of.
+Coercion sort : type >-> Sortclass.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Notation countType := type.
+Notation CountType T m := (@pack T m _ _ id).
+Notation CountMixin := Mixin.
+Notation CountChoiceMixin := ChoiceMixin.
+Notation "[ 'countType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
+ (at level 0, format "[ 'countType' 'of' T 'for' cT ]") : form_scope.
+Notation "[ 'countType' 'of' T ]" := (@clone T _ _ id)
+  (at level 0, format "[ 'countType' 'of' T ]") : form_scope.
+ +
+End Exports.
+ +
+End Countable.
+Export Countable.Exports.
+ +
+Definition unpickle T := Countable.unpickle (Countable.class T).
+Definition pickle T := Countable.pickle (Countable.class T).
+ +
+Section CountableTheory.
+ +
+Variable T : countType.
+ +
+Lemma pickleK : @pcancel nat T pickle unpickle.
+ +
+Definition pickle_inv n :=
+  obind (fun x : Tif pickle x == n then Some x else None) (unpickle n).
+ +
+Lemma pickle_invK : ocancel pickle_inv pickle.
+ +
+Lemma pickleK_inv : pcancel pickle pickle_inv.
+ +
+Lemma pcan_pickleK sT f f' :
+  @pcancel T sT f f' pcancel (pickle \o f) (pcomp f' unpickle).
+ +
+Definition PcanCountMixin sT f f' (fK : pcancel f f') :=
+  @CountMixin sT _ _ (pcan_pickleK fK).
+ +
+Definition CanCountMixin sT f f' (fK : cancel f f') :=
+  @PcanCountMixin sT _ _ (can_pcan fK).
+ +
+Definition sub_countMixin P sT := PcanCountMixin (@valK T P sT).
+ +
+Definition pickle_seq s := CodeSeq.code (map (@pickle T) s).
+Definition unpickle_seq n := Some (pmap (@unpickle T) (CodeSeq.decode n)).
+Lemma pickle_seqK : pcancel pickle_seq unpickle_seq.
+ +
+Definition seq_countMixin := CountMixin pickle_seqK.
+Canonical seq_countType := Eval hnf in CountType (seq T) seq_countMixin.
+ +
+End CountableTheory.
+ +
+Notation "[ 'countMixin' 'of' T 'by' <: ]" :=
+    (sub_countMixin _ : Countable.mixin_of T)
+  (at level 0, format "[ 'countMixin' 'of' T 'by' <: ]") : form_scope.
+ +
+Section SubCountType.
+ +
+Variables (T : choiceType) (P : pred T).
+Import Countable.
+ +
+Structure subCountType : Type :=
+  SubCountType {subCount_sort :> subType P; _ : mixin_of subCount_sort}.
+ +
+Coercion sub_countType (sT : subCountType) :=
+  Eval hnf in pack (let: SubCountType _ m := sT return mixin_of sT in m) id.
+Canonical sub_countType.
+ +
+Definition pack_subCountType U :=
+  fun sT cT & sub_sort sT × sort cT U × U
+  fun b m & phant_id (Class b m) (class cT) ⇒ @SubCountType sT m.
+ +
+End SubCountType.
+ +
+
+ +
+ This assumes that T has both countType and subType structures. +
+
+Notation "[ 'subCountType' 'of' T ]" :=
+    (@pack_subCountType _ _ T _ _ id _ _ id)
+  (at level 0, format "[ 'subCountType' 'of' T ]") : form_scope.
+ +
+Section TagCountType.
+ +
+Variables (I : countType) (T_ : I countType).
+ +
+Definition pickle_tagged (u : {i : I & T_ i}) :=
+  CodeSeq.code [:: pickle (tag u); pickle (tagged u)].
+Definition unpickle_tagged s :=
+  if CodeSeq.decode s is [:: ni; nx] then
+    obind (fun iomap (@Tagged I i T_) (unpickle nx)) (unpickle ni)
+  else None.
+Lemma pickle_taggedK : pcancel pickle_tagged unpickle_tagged.
+ +
+Definition tag_countMixin := CountMixin pickle_taggedK.
+Canonical tag_countType := Eval hnf in CountType {i : I & T_ i} tag_countMixin.
+ +
+End TagCountType.
+ +
+
+ +
+ The remaining Canonicals for standard datatypes. +
+
+Section CountableDataTypes.
+ +
+Implicit Type T : countType.
+ +
+Lemma nat_pickleK : pcancel id (@Some nat).
+Definition nat_countMixin := CountMixin nat_pickleK.
+Canonical nat_countType := Eval hnf in CountType nat nat_countMixin.
+ +
+Definition bool_countMixin := CanCountMixin oddb.
+Canonical bool_countType := Eval hnf in CountType bool bool_countMixin.
+Canonical bitseq_countType := Eval hnf in [countType of bitseq].
+ +
+Definition unit_countMixin := CanCountMixin bool_of_unitK.
+Canonical unit_countType := Eval hnf in CountType unit unit_countMixin.
+ +
+Definition option_countMixin T := CanCountMixin (@seq_of_optK T).
+Canonical option_countType T :=
+  Eval hnf in CountType (option T) (option_countMixin T).
+ +
+Definition sig_countMixin T (P : pred T) := [countMixin of {x | P x} by <:].
+Canonical sig_countType T (P : pred T) :=
+  Eval hnf in CountType {x | P x} (sig_countMixin P).
+Canonical sig_subCountType T (P : pred T) :=
+  Eval hnf in [subCountType of {x | P x}].
+ +
+Definition prod_countMixin T1 T2 := CanCountMixin (@tag_of_pairK T1 T2).
+Canonical prod_countType T1 T2 :=
+  Eval hnf in CountType (T1 × T2) (prod_countMixin T1 T2).
+ +
+Definition sum_countMixin T1 T2 := PcanCountMixin (@opair_of_sumK T1 T2).
+Canonical sum_countType T1 T2 :=
+  Eval hnf in CountType (T1 + T2) (sum_countMixin T1 T2).
+ +
+Definition tree_countMixin T := PcanCountMixin (GenTree.codeK T).
+Canonical tree_countType T := CountType (GenTree.tree T) (tree_countMixin T).
+ +
+End CountableDataTypes.
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3