From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.ssreflect.binomial.html | 320 -------------------------- 1 file changed, 320 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.ssreflect.binomial.html (limited to 'docs/htmldoc/mathcomp.ssreflect.binomial.html') diff --git a/docs/htmldoc/mathcomp.ssreflect.binomial.html b/docs/htmldoc/mathcomp.ssreflect.binomial.html deleted file mode 100644 index b6be0dc..0000000 --- a/docs/htmldoc/mathcomp.ssreflect.binomial.html +++ /dev/null @@ -1,320 +0,0 @@ - - - - - -mathcomp.ssreflect.binomial - - - - -
- - - -
- -

Library mathcomp.ssreflect.binomial

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- This files contains the definition of: - 'C(n, m) == the binomial coeficient n choose m. - n ^_ m == the falling (or lower) factorial of n with m terms, i.e., - the product n * (n - 1) * ... * (n - m + 1). - Note that n ^_ m = 0 if m > n, and 'C(n, m) = n ^_ m %/ m/!. - -
- - In additions to the properties of these functions, we prove a few seminal - results such as triangular_sum, Wilson and Pascal; their proofs are good - examples of how to manipulate expressions with bigops. -
-
- -
-Set Implicit Arguments.
- -
-
- -
- More properties of the factorial * -
-
- -
-Lemma fact_smonotone m n : 0 < m m < n m`! < n`!.
- -
-Lemma fact_prod n : n`! = \prod_(1 i < n.+1) i.
- -
-Lemma logn_fact p n : prime p logn p n`! = \sum_(1 k < n.+1) n %/ p ^ k.
- -
-Theorem Wilson p : p > 1 prime p = (p %| ((p.-1)`!).+1).
- -
-
- -
- The falling factorial -
-
- -
-Fixpoint ffact_rec n m := if m is m'.+1 then n × ffact_rec n.-1 m' else 1.
- -
-Definition falling_factorial := nosimpl ffact_rec.
- -
-Notation "n ^_ m" := (falling_factorial n m)
-  (at level 30, right associativity) : nat_scope.
- -
-Lemma ffactE : falling_factorial = ffact_rec.
- -
-Lemma ffactn0 n : n ^_ 0 = 1.
- -
-Lemma ffact0n m : 0 ^_ m = (m == 0).
- -
-Lemma ffactnS n m : n ^_ m.+1 = n × n.-1 ^_ m.
- -
-Lemma ffactSS n m : n.+1 ^_ m.+1 = n.+1 × n ^_ m.
- -
-Lemma ffactn1 n : n ^_ 1 = n.
- -
-Lemma ffactnSr n m : n ^_ m.+1 = n ^_ m × (n - m).
- -
-Lemma ffact_gt0 n m : (0 < n ^_ m) = (m n).
- -
-Lemma ffact_small n m : n < m n ^_ m = 0.
- -
-Lemma ffactnn n : n ^_ n = n`!.
- -
-Lemma ffact_fact n m : m n n ^_ m × (n - m)`! = n`!.
- -
-Lemma ffact_factd n m : m n n ^_ m = n`! %/ (n - m)`!.
- -
-
- -
- Binomial coefficients -
-
- -
-Fixpoint binomial_rec n m :=
-  match n, m with
-  | n'.+1, m'.+1binomial_rec n' m + binomial_rec n' m'
-  | _, 0 ⇒ 1
-  | 0, _.+1 ⇒ 0
-  end.
- -
-Definition binomial := nosimpl binomial_rec.
- -
-Notation "''C' ( n , m )" := (binomial n m)
-  (at level 8, format "''C' ( n , m )") : nat_scope.
- -
-Lemma binE : binomial = binomial_rec.
- -
-Lemma bin0 n : 'C(n, 0) = 1.
- -
-Lemma bin0n m : 'C(0, m) = (m == 0).
- -
-Lemma binS n m : 'C(n.+1, m.+1) = 'C(n, m.+1) + 'C(n, m).
- -
-Lemma bin1 n : 'C(n, 1) = n.
- -
-Lemma bin_gt0 n m : (0 < 'C(n, m)) = (m n).
- -
-Lemma leq_bin2l n1 n2 m : n1 n2 'C(n1, m) 'C(n2, m).
- -
-Lemma bin_small n m : n < m 'C(n, m) = 0.
- -
-Lemma binn n : 'C(n, n) = 1.
- -
-
- -
- Multiply to move diagonally down and right in the Pascal triangle. -
-
-Lemma mul_bin_diag n m : n × 'C(n.-1, m) = m.+1 × 'C(n, m.+1).
- -
-Lemma bin_fact n m : m n 'C(n, m) × (m`! × (n - m)`!) = n`!.
- -
-
- -
- In fact the only exception for bin_factd is n = 0 and m = 1 -
-
-Lemma bin_factd n m : 0 < n 'C(n, m) = n`! %/ (m`! × (n - m)`!).
- -
-Lemma bin_ffact n m : 'C(n, m) × m`! = n ^_ m.
- -
-Lemma bin_ffactd n m : 'C(n, m) = n ^_ m %/ m`!.
- -
-Lemma bin_sub n m : m n 'C(n, n - m) = 'C(n, m).
- -
-
- -
- Multiply to move down in the Pascal triangle. -
-
-Lemma mul_bin_down n m : n × 'C(n.-1, m) = (n - m) × 'C(n, m).
- -
-
- -
- Multiply to move left in the Pascal triangle. -
-
-Lemma mul_bin_left n m : m.+1 × 'C(n, m.+1) = (n - m) × 'C(n, m).
- -
-Lemma binSn n : 'C(n.+1, n) = n.+1.
- -
-Lemma bin2 n : 'C(n, 2) = (n × n.-1)./2.
- -
-Lemma bin2odd n : odd n 'C(n, 2) = n × n.-1./2.
- -
-Lemma prime_dvd_bin k p : prime p 0 < k < p p %| 'C(p, k).
- -
-Lemma triangular_sum n : \sum_(0 i < n) i = 'C(n, 2).
- -
-Lemma textbook_triangular_sum n : \sum_(0 i < n) i = 'C(n, 2).
- -
-Theorem Pascal a b n :
-  (a + b) ^ n = \sum_(i < n.+1) 'C(n, i) × (a ^ (n - i) × b ^ i).
-Definition expnDn := Pascal.
- -
-Lemma Vandermonde k l i :
-  \sum_(j < i.+1) 'C(k, j) × 'C(l, i - j) = 'C(k + l , i).
- -
-Lemma subn_exp m n k :
-  m ^ k - n ^ k = (m - n) × (\sum_(i < k) m ^ (k.-1 -i) × n ^ i).
- -
-Lemma predn_exp m k : (m ^ k).-1 = m.-1 × (\sum_(i < k) m ^ i).
- -
-Lemma dvdn_pred_predX n e : (n.-1 %| (n ^ e).-1)%N.
- -
-Lemma modn_summ I r (P : pred I) F d :
-  \sum_(i <- r | P i) F i %% d = \sum_(i <- r | P i) F i %[mod d].
- -
-
- -
- Combinatorial characterizations. -
-
- -
-Section Combinations.
- -
-Implicit Types T D : finType.
- -
-Lemma card_uniq_tuples T n (A : pred T) :
-  #|[set t : n.-tuple T | all A t & uniq t]| = #|A| ^_ n.
- -
-Lemma card_inj_ffuns_on D T (R : pred T) :
-  #|[set f : {ffun D T} in ffun_on R | injectiveb f]| = #|R| ^_ #|D|.
- -
-Lemma card_inj_ffuns D T :
-  #|[set f : {ffun D T} | injectiveb f]| = #|T| ^_ #|D|.
- -
-Lemma cards_draws T (B : {set T}) k :
-  #|[set A : {set T} | A \subset B & #|A| == k]| = 'C(#|B|, k).
- -
-Lemma card_draws T k : #|[set A : {set T} | #|A| == k]| = 'C(#|T|, k).
- -
-Lemma card_ltn_sorted_tuples m n :
-  #|[set t : m.-tuple 'I_n | sorted ltn (map val t)]| = 'C(n, m).
- -
-Lemma card_sorted_tuples m n :
-  #|[set t : m.-tuple 'I_n.+1 | sorted leq (map val t)]| = 'C(m + n, m).
- -
-Lemma card_partial_ord_partitions m n :
-  #|[set t : m.-tuple 'I_n.+1 | \sum_(i <- t) i n]| = 'C(m + n, m).
- -
-Lemma card_ord_partitions m n :
-  #|[set t : m.+1.-tuple 'I_n.+1 | \sum_(i <- t) i == n]| = 'C(m + n, m).
- -
-End Combinations.
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3