From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.solvable.sylow.html | 326 ++++++++++++++++++++++++++++++ 1 file changed, 326 insertions(+) create mode 100644 docs/htmldoc/mathcomp.solvable.sylow.html (limited to 'docs/htmldoc/mathcomp.solvable.sylow.html') diff --git a/docs/htmldoc/mathcomp.solvable.sylow.html b/docs/htmldoc/mathcomp.solvable.sylow.html new file mode 100644 index 0000000..151cabb --- /dev/null +++ b/docs/htmldoc/mathcomp.solvable.sylow.html @@ -0,0 +1,326 @@ + + + + + +mathcomp.solvable.sylow + + + + +
+ + + +
+ +

Library mathcomp.solvable.sylow

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ The Sylow theorem and its consequences, including the Frattini argument, + the nilpotence of p-groups, and the Baer-Suzuki theorem. + This file also defines: + Zgroup G == G is a Z-group, i.e., has only cyclic Sylow p-subgroups. +
+
+ +
+Set Implicit Arguments.
+ +
+Import GroupScope.
+ +
+
+ +
+ The mod p lemma for the action of p-groups. +
+
+Section ModP.
+ +
+Variable (aT : finGroupType) (sT : finType) (D : {group aT}).
+Variable to : action D sT.
+ +
+Lemma pgroup_fix_mod (p : nat) (G : {group aT}) (S : {set sT}) :
+  p.-group G [acts G, on S | to] #|S| = #|'Fix_(S | to)(G)| %[mod p].
+ +
+End ModP.
+ +
+Section ModularGroupAction.
+ +
+Variables (aT rT : finGroupType) (D : {group aT}) (R : {group rT}).
+Variables (to : groupAction D R) (p : nat).
+Implicit Types (G H : {group aT}) (M : {group rT}).
+ +
+Lemma nontrivial_gacent_pgroup G M :
+    p.-group G p.-group M {acts G, on group M | to}
+  M :!=: 1 'C_(M | to)(G) :!=: 1.
+ +
+Lemma pcore_sub_astab_irr G M :
+    p.-group M M \subset R acts_irreducibly G M to
+  'O_p(G) \subset 'C_G(M | to).
+ +
+Lemma pcore_faithful_irr_act G M :
+    p.-group M M \subset R acts_irreducibly G M to
+    [faithful G, on M | to]
+  'O_p(G) = 1.
+ +
+End ModularGroupAction.
+ +
+Section Sylow.
+ +
+Variables (p : nat) (gT : finGroupType) (G : {group gT}).
+Implicit Types P Q H K : {group gT}.
+ +
+Theorem Sylow's_theorem :
+  [/\ P, [max P | p.-subgroup(G) P] = p.-Sylow(G) P,
+      [transitive G, on 'Syl_p(G) | 'JG],
+       P, p.-Sylow(G) P #|'Syl_p(G)| = #|G : 'N_G(P)|
+   & prime p #|'Syl_p(G)| %% p = 1%N].
+ +
+Lemma max_pgroup_Sylow P : [max P | p.-subgroup(G) P] = p.-Sylow(G) P.
+ +
+Lemma Sylow_superset Q :
+  Q \subset G p.-group Q {P : {group gT} | p.-Sylow(G) P & Q \subset P}.
+ +
+Lemma Sylow_exists : {P : {group gT} | p.-Sylow(G) P}.
+ +
+Lemma Syl_trans : [transitive G, on 'Syl_p(G) | 'JG].
+ +
+Lemma Sylow_trans P Q :
+  p.-Sylow(G) P p.-Sylow(G) Q exists2 x, x \in G & Q :=: P :^ x.
+ +
+Lemma Sylow_subJ P Q :
+    p.-Sylow(G) P Q \subset G p.-group Q
+  exists2 x, x \in G & Q \subset P :^ x.
+ +
+Lemma Sylow_Jsub P Q :
+    p.-Sylow(G) P Q \subset G p.-group Q
+  exists2 x, x \in G & Q :^ x \subset P.
+ +
+Lemma card_Syl P : p.-Sylow(G) P #|'Syl_p(G)| = #|G : 'N_G(P)|.
+ +
+Lemma card_Syl_dvd : #|'Syl_p(G)| %| #|G|.
+ +
+Lemma card_Syl_mod : prime p #|'Syl_p(G)| %% p = 1%N.
+ +
+Lemma Frattini_arg H P : G <| H p.-Sylow(G) P G × 'N_H(P) = H.
+ +
+End Sylow.
+ +
+Section MoreSylow.
+ +
+Variables (gT : finGroupType) (p : nat).
+Implicit Types G H P : {group gT}.
+ +
+Lemma Sylow_setI_normal G H P :
+  G <| H p.-Sylow(H) P p.-Sylow(G) (G :&: P).
+ +
+Lemma normal_sylowP G :
+  reflect (exists2 P : {group gT}, p.-Sylow(G) P & P <| G)
+          (#|'Syl_p(G)| == 1%N).
+ +
+Lemma trivg_center_pgroup P : p.-group P 'Z(P) = 1 P :=: 1.
+ +
+Lemma p2group_abelian P : p.-group P logn p #|P| 2 abelian P.
+ +
+Lemma card_p2group_abelian P : prime p #|P| = (p ^ 2)%N abelian P.
+ +
+Lemma Sylow_transversal_gen (T : {set {group gT}}) G :
+    ( P, P \in T P \subset G)
+    ( p, p \in \pi(G) exists2 P, P \in T & p.-Sylow(G) P)
+  << \bigcup_(P in T) P >> = G.
+ +
+Lemma Sylow_gen G : <<\bigcup_(P : {group gT} | Sylow G P) P>> = G.
+ +
+End MoreSylow.
+ +
+Section SomeHall.
+ +
+Variable gT : finGroupType.
+Implicit Types (p : nat) (pi : nat_pred) (G H K P R : {group gT}).
+ +
+Lemma Hall_pJsub p pi G H P :
+    pi.-Hall(G) H p \in pi P \subset G p.-group P
+  exists2 x, x \in G & P :^ x \subset H.
+ +
+Lemma Hall_psubJ p pi G H P :
+    pi.-Hall(G) H p \in pi P \subset G p.-group P
+  exists2 x, x \in G & P \subset H :^ x.
+ +
+Lemma Hall_setI_normal pi G K H :
+  K <| G pi.-Hall(G) H pi.-Hall(K) (H :&: K).
+ +
+Lemma coprime_mulG_setI_norm H G K R :
+    K × R = G G \subset 'N(H) coprime #|K| #|R|
+  (K :&: H) × (R :&: H) = G :&: H.
+ +
+End SomeHall.
+ +
+Section Nilpotent.
+ +
+Variable gT : finGroupType.
+Implicit Types (G H K P L : {group gT}) (p q : nat).
+ +
+Lemma pgroup_nil p P : p.-group P nilpotent P.
+ +
+Lemma pgroup_sol p P : p.-group P solvable P.
+ +
+Lemma small_nil_class G : nil_class G 5 nilpotent G.
+ +
+Lemma nil_class2 G : (nil_class G 2) = (G^`(1) \subset 'Z(G)).
+ +
+Lemma nil_class3 G : (nil_class G 3) = ('L_3(G) \subset 'Z(G)).
+ +
+Lemma nilpotent_maxp_normal pi G H :
+  nilpotent G [max H | pi.-subgroup(G) H] H <| G.
+ +
+Lemma nilpotent_Hall_pcore pi G H :
+  nilpotent G pi.-Hall(G) H H :=: 'O_pi(G).
+ +
+Lemma nilpotent_pcore_Hall pi G : nilpotent G pi.-Hall(G) 'O_pi(G).
+ +
+Lemma nilpotent_pcoreC pi G : nilpotent G 'O_pi(G) \x 'O_pi^'(G) = G.
+ +
+Lemma sub_nilpotent_cent2 H K G :
+    nilpotent G K \subset G H \subset G coprime #|K| #|H|
+  H \subset 'C(K).
+ +
+Lemma pi_center_nilpotent G : nilpotent G \pi('Z(G)) = \pi(G).
+ +
+Lemma Sylow_subnorm p G P : p.-Sylow('N_G(P)) P = p.-Sylow(G) P.
+ +
+End Nilpotent.
+ +
+Lemma nil_class_pgroup (gT : finGroupType) (p : nat) (P : {group gT}) :
+  p.-group P nil_class P maxn 1 (logn p #|P|).-1.
+ +
+Definition Zgroup (gT : finGroupType) (A : {set gT}) :=
+  [ (V : {group gT} | Sylow A V), cyclic V].
+ +
+Section Zgroups.
+ +
+Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
+Implicit Types G H K : {group gT}.
+ +
+Lemma ZgroupS G H : H \subset G Zgroup G Zgroup H.
+ +
+Lemma morphim_Zgroup G : Zgroup G Zgroup (f @* G).
+ +
+Lemma nil_Zgroup_cyclic G : Zgroup G nilpotent G cyclic G.
+ +
+End Zgroups.
+ +
+ +
+Section NilPGroups.
+ +
+Variables (p : nat) (gT : finGroupType).
+Implicit Type G P N : {group gT}.
+ +
+
+ +
+ B & G 1.22 p.9 +
+
+Lemma normal_pgroup r P N :
+    p.-group P N <| P r logn p #|N|
+   Q : {group gT}, [/\ Q \subset N, Q <| P & #|Q| = (p ^ r)%N].
+ +
+Theorem Baer_Suzuki x G :
+    x \in G ( y, y \in G p.-group <<[set x; x ^ y]>>)
+  x \in 'O_p(G).
+ +
+End NilPGroups.
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3