From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.solvable.sylow.html | 325 ------------------------------ 1 file changed, 325 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.solvable.sylow.html (limited to 'docs/htmldoc/mathcomp.solvable.sylow.html') diff --git a/docs/htmldoc/mathcomp.solvable.sylow.html b/docs/htmldoc/mathcomp.solvable.sylow.html deleted file mode 100644 index 0ec7af3..0000000 --- a/docs/htmldoc/mathcomp.solvable.sylow.html +++ /dev/null @@ -1,325 +0,0 @@ - - - - - -mathcomp.solvable.sylow - - - - -
- - - -
- -

Library mathcomp.solvable.sylow

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- The Sylow theorem and its consequences, including the Frattini argument, - the nilpotence of p-groups, and the Baer-Suzuki theorem. - This file also defines: - Zgroup G == G is a Z-group, i.e., has only cyclic Sylow p-subgroups. -
-
- -
-Set Implicit Arguments.
- -
-Import GroupScope.
- -
-
- -
- The mod p lemma for the action of p-groups. -
-
-Section ModP.
- -
-Variable (aT : finGroupType) (sT : finType) (D : {group aT}).
-Variable to : action D sT.
- -
-Lemma pgroup_fix_mod (p : nat) (G : {group aT}) (S : {set sT}) :
-  p.-group G [acts G, on S | to] #|S| = #|'Fix_(S | to)(G)| %[mod p].
- -
-End ModP.
- -
-Section ModularGroupAction.
- -
-Variables (aT rT : finGroupType) (D : {group aT}) (R : {group rT}).
-Variables (to : groupAction D R) (p : nat).
-Implicit Types (G H : {group aT}) (M : {group rT}).
- -
-Lemma nontrivial_gacent_pgroup G M :
-    p.-group G p.-group M {acts G, on group M | to}
-  M :!=: 1 'C_(M | to)(G) :!=: 1.
- -
-Lemma pcore_sub_astab_irr G M :
-    p.-group M M \subset R acts_irreducibly G M to
-  'O_p(G) \subset 'C_G(M | to).
- -
-Lemma pcore_faithful_irr_act G M :
-    p.-group M M \subset R acts_irreducibly G M to
-    [faithful G, on M | to]
-  'O_p(G) = 1.
- -
-End ModularGroupAction.
- -
-Section Sylow.
- -
-Variables (p : nat) (gT : finGroupType) (G : {group gT}).
-Implicit Types P Q H K : {group gT}.
- -
-Theorem Sylow's_theorem :
-  [/\ P, [max P | p.-subgroup(G) P] = p.-Sylow(G) P,
-      [transitive G, on 'Syl_p(G) | 'JG],
-       P, p.-Sylow(G) P #|'Syl_p(G)| = #|G : 'N_G(P)|
-   & prime p #|'Syl_p(G)| %% p = 1%N].
- -
-Lemma max_pgroup_Sylow P : [max P | p.-subgroup(G) P] = p.-Sylow(G) P.
- -
-Lemma Sylow_superset Q :
-  Q \subset G p.-group Q {P : {group gT} | p.-Sylow(G) P & Q \subset P}.
- -
-Lemma Sylow_exists : {P : {group gT} | p.-Sylow(G) P}.
- -
-Lemma Syl_trans : [transitive G, on 'Syl_p(G) | 'JG].
- -
-Lemma Sylow_trans P Q :
-  p.-Sylow(G) P p.-Sylow(G) Q exists2 x, x \in G & Q :=: P :^ x.
- -
-Lemma Sylow_subJ P Q :
-    p.-Sylow(G) P Q \subset G p.-group Q
-  exists2 x, x \in G & Q \subset P :^ x.
- -
-Lemma Sylow_Jsub P Q :
-    p.-Sylow(G) P Q \subset G p.-group Q
-  exists2 x, x \in G & Q :^ x \subset P.
- -
-Lemma card_Syl P : p.-Sylow(G) P #|'Syl_p(G)| = #|G : 'N_G(P)|.
- -
-Lemma card_Syl_dvd : #|'Syl_p(G)| %| #|G|.
- -
-Lemma card_Syl_mod : prime p #|'Syl_p(G)| %% p = 1%N.
- -
-Lemma Frattini_arg H P : G <| H p.-Sylow(G) P G × 'N_H(P) = H.
- -
-End Sylow.
- -
-Section MoreSylow.
- -
-Variables (gT : finGroupType) (p : nat).
-Implicit Types G H P : {group gT}.
- -
-Lemma Sylow_setI_normal G H P :
-  G <| H p.-Sylow(H) P p.-Sylow(G) (G :&: P).
- -
-Lemma normal_sylowP G :
-  reflect (exists2 P : {group gT}, p.-Sylow(G) P & P <| G)
-          (#|'Syl_p(G)| == 1%N).
- -
-Lemma trivg_center_pgroup P : p.-group P 'Z(P) = 1 P :=: 1.
- -
-Lemma p2group_abelian P : p.-group P logn p #|P| 2 abelian P.
- -
-Lemma card_p2group_abelian P : prime p #|P| = (p ^ 2)%N abelian P.
- -
-Lemma Sylow_transversal_gen (T : {set {group gT}}) G :
-    ( P, P \in T P \subset G)
-    ( p, p \in \pi(G) exists2 P, P \in T & p.-Sylow(G) P)
-  << \bigcup_(P in T) P >> = G.
- -
-Lemma Sylow_gen G : <<\bigcup_(P : {group gT} | Sylow G P) P>> = G.
- -
-End MoreSylow.
- -
-Section SomeHall.
- -
-Variable gT : finGroupType.
-Implicit Types (p : nat) (pi : nat_pred) (G H K P R : {group gT}).
- -
-Lemma Hall_pJsub p pi G H P :
-    pi.-Hall(G) H p \in pi P \subset G p.-group P
-  exists2 x, x \in G & P :^ x \subset H.
- -
-Lemma Hall_psubJ p pi G H P :
-    pi.-Hall(G) H p \in pi P \subset G p.-group P
-  exists2 x, x \in G & P \subset H :^ x.
- -
-Lemma Hall_setI_normal pi G K H :
-  K <| G pi.-Hall(G) H pi.-Hall(K) (H :&: K).
- -
-Lemma coprime_mulG_setI_norm H G K R :
-    K × R = G G \subset 'N(H) coprime #|K| #|R|
-  (K :&: H) × (R :&: H) = G :&: H.
- -
-End SomeHall.
- -
-Section Nilpotent.
- -
-Variable gT : finGroupType.
-Implicit Types (G H K P L : {group gT}) (p q : nat).
- -
-Lemma pgroup_nil p P : p.-group P nilpotent P.
- -
-Lemma pgroup_sol p P : p.-group P solvable P.
- -
-Lemma small_nil_class G : nil_class G 5 nilpotent G.
- -
-Lemma nil_class2 G : (nil_class G 2) = (G^`(1) \subset 'Z(G)).
- -
-Lemma nil_class3 G : (nil_class G 3) = ('L_3(G) \subset 'Z(G)).
- -
-Lemma nilpotent_maxp_normal pi G H :
-  nilpotent G [max H | pi.-subgroup(G) H] H <| G.
- -
-Lemma nilpotent_Hall_pcore pi G H :
-  nilpotent G pi.-Hall(G) H H :=: 'O_pi(G).
- -
-Lemma nilpotent_pcore_Hall pi G : nilpotent G pi.-Hall(G) 'O_pi(G).
- -
-Lemma nilpotent_pcoreC pi G : nilpotent G 'O_pi(G) \x 'O_pi^'(G) = G.
- -
-Lemma sub_nilpotent_cent2 H K G :
-    nilpotent G K \subset G H \subset G coprime #|K| #|H|
-  H \subset 'C(K).
- -
-Lemma pi_center_nilpotent G : nilpotent G \pi('Z(G)) = \pi(G).
- -
-Lemma Sylow_subnorm p G P : p.-Sylow('N_G(P)) P = p.-Sylow(G) P.
- -
-End Nilpotent.
- -
-Lemma nil_class_pgroup (gT : finGroupType) (p : nat) (P : {group gT}) :
-  p.-group P nil_class P maxn 1 (logn p #|P|).-1.
- -
-Definition Zgroup (gT : finGroupType) (A : {set gT}) :=
-  [ (V : {group gT} | Sylow A V), cyclic V].
- -
-Section Zgroups.
- -
-Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
-Implicit Types G H K : {group gT}.
- -
-Lemma ZgroupS G H : H \subset G Zgroup G Zgroup H.
- -
-Lemma morphim_Zgroup G : Zgroup G Zgroup (f @* G).
- -
-Lemma nil_Zgroup_cyclic G : Zgroup G nilpotent G cyclic G.
- -
-End Zgroups.
- -
- -
-Section NilPGroups.
- -
-Variables (p : nat) (gT : finGroupType).
-Implicit Type G P N : {group gT}.
- -
-
- -
- B & G 1.22 p.9 -
-
-Lemma normal_pgroup r P N :
-    p.-group P N <| P r logn p #|N|
-   Q : {group gT}, [/\ Q \subset N, Q <| P & #|Q| = (p ^ r)%N].
- -
-Theorem Baer_Suzuki x G :
-    x \in G ( y, y \in G p.-group <<[set x; x ^ y]>>)
-  x \in 'O_p(G).
- -
-End NilPGroups.
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3