From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- .../mathcomp.solvable.primitive_action.html | 244 +++++++++++++++++++++ 1 file changed, 244 insertions(+) create mode 100644 docs/htmldoc/mathcomp.solvable.primitive_action.html (limited to 'docs/htmldoc/mathcomp.solvable.primitive_action.html') diff --git a/docs/htmldoc/mathcomp.solvable.primitive_action.html b/docs/htmldoc/mathcomp.solvable.primitive_action.html new file mode 100644 index 0000000..ee8d1dc --- /dev/null +++ b/docs/htmldoc/mathcomp.solvable.primitive_action.html @@ -0,0 +1,244 @@ + + + + + +mathcomp.solvable.primitive_action + + + + +
+ + + +
+ +

Library mathcomp.solvable.primitive_action

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ n-transitive and primitive actions: + [primitive A, on S | to] <=> + A acts on S in a primitive manner, i.e., A is transitive on S and + A does not act on any nontrivial partition of S. + imprimitivity_system A to S Q <=> + Q is a non-trivial primitivity system for the action of A on S via + to, i.e., Q is a non-trivial partiiton of S on which A acts. + to * n == in the %act scope, the total action induced by the total + action to on n.-tuples. via n_act to n. + n.-dtuple S == the set of n-tuples with distinct values in S. + [transitive^n A, on S | to] <=> + A is n-transitive on S, i.e., A is transitive on n.-dtuple S + == the set of n-tuples with distinct values in S. +
+
+ +
+Set Implicit Arguments.
+ +
+Import GroupScope.
+ +
+Section PrimitiveDef.
+ +
+Variables (aT : finGroupType) (sT : finType).
+Variables (A : {set aT}) (S : {set sT}) (to : {action aT &-> sT}).
+ +
+Definition imprimitivity_system Q :=
+  [&& partition Q S, [acts A, on Q | to^*] & 1 < #|Q| < #|S|].
+ +
+Definition primitive :=
+  [transitive A, on S | to] && ~~ [ Q, imprimitivity_system Q].
+ +
+End PrimitiveDef.
+ +
+ +
+Notation "[ 'primitive' A , 'on' S | to ]" := (primitive A S to)
+  (at level 0, format "[ 'primitive' A , 'on' S | to ]") : form_scope.
+ +
+ +
+Section Primitive.
+ +
+Variables (aT : finGroupType) (sT : finType).
+Variables (G : {group aT}) (to : {action aT &-> sT}) (S : {set sT}).
+ +
+Lemma trans_prim_astab x :
+    x \in S [transitive G, on S | to]
+  [primitive G, on S | to] = maximal_eq 'C_G[x | to] G.
+ +
+Lemma prim_trans_norm (H : {group aT}) :
+    [primitive G, on S | to] H <| G
+  H \subset 'C_G(S | to) [transitive H, on S | to].
+ +
+End Primitive.
+ +
+Section NactionDef.
+ +
+Variables (gT : finGroupType) (sT : finType).
+Variables (to : {action gT &-> sT}) (n : nat).
+ +
+Definition n_act (t : n.-tuple sT) a := [tuple of map (to^~ a) t].
+ +
+Fact n_act_is_action : is_action setT n_act.
+ +
+Canonical n_act_action := Action n_act_is_action.
+ +
+End NactionDef.
+ +
+Notation "to * n" := (n_act_action to n) : action_scope.
+ +
+Section NTransitive.
+ +
+Variables (gT : finGroupType) (sT : finType).
+Variables (n : nat) (A : {set gT}) (S : {set sT}) (to : {action gT &-> sT}).
+ +
+Definition dtuple_on := [set t : n.-tuple sT | uniq t & t \subset S].
+Definition ntransitive := [transitive A, on dtuple_on | to × n].
+ +
+Lemma dtuple_onP t :
+  reflect (injective (tnth t) i, tnth t i \in S) (t \in dtuple_on).
+ +
+Lemma n_act_dtuple t a :
+  a \in 'N(S | to) t \in dtuple_on n_act to t a \in dtuple_on.
+ +
+End NTransitive.
+ +
+ +
+Notation "n .-dtuple ( S )" := (dtuple_on n S)
+  (at level 8, format "n .-dtuple ( S )") : set_scope.
+ +
+Notation "[ 'transitive' ^ n A , 'on' S | to ]" := (ntransitive n A S to)
+  (at level 0, n at level 8,
+   format "[ 'transitive' ^ n A , 'on' S | to ]") : form_scope.
+ +
+Section NTransitveProp.
+ +
+Variables (gT : finGroupType) (sT : finType).
+Variables (to : {action gT &-> sT}) (G : {group gT}) (S : {set sT}).
+ +
+Lemma card_uniq_tuple n (t : n.-tuple sT) : uniq t #|t| = n.
+ +
+Lemma n_act0 (t : 0.-tuple sT) a : n_act to t a = [tuple].
+ +
+Lemma dtuple_on_add n x (t : n.-tuple sT) :
+  ([tuple of x :: t] \in n.+1.-dtuple(S)) =
+     [&& x \in S, x \notin t & t \in n.-dtuple(S)].
+ +
+Lemma dtuple_on_add_D1 n x (t : n.-tuple sT) :
+  ([tuple of x :: t] \in n.+1.-dtuple(S))
+     = (x \in S) && (t \in n.-dtuple(S :\ x)).
+ +
+Lemma dtuple_on_subset n (S1 S2 : {set sT}) t :
+  S1 \subset S2 t \in n.-dtuple(S1) t \in n.-dtuple(S2).
+ +
+Lemma n_act_add n x (t : n.-tuple sT) a :
+  n_act to [tuple of x :: t] a = [tuple of to x a :: n_act to t a].
+ +
+Lemma ntransitive0 : [transitive^0 G, on S | to].
+ +
+Lemma ntransitive_weak k m :
+  k m [transitive^m G, on S | to] [transitive^k G, on S | to].
+ +
+Lemma ntransitive1 m :
+  0 < m [transitive^m G, on S | to] [transitive G, on S | to].
+ +
+Lemma ntransitive_primitive m :
+  1 < m [transitive^m G, on S | to] [primitive G, on S | to].
+ +
+End NTransitveProp.
+ +
+Section NTransitveProp1.
+ +
+Variables (gT : finGroupType) (sT : finType).
+Variables (to : {action gT &-> sT}) (G : {group gT}) (S : {set sT}).
+ +
+
+ +
+ This is the forward implication of Aschbacher (15.12).1 +
+
+Theorem stab_ntransitive m x :
+    0 < m x \in S [transitive^m.+1 G, on S | to]
+  [transitive^m 'C_G[x | to], on S :\ x | to].
+ +
+
+ +
+ This is the converse implication of Aschbacher (15.12).1 +
+
+Theorem stab_ntransitiveI m x :
+     x \in S [transitive G, on S | to]
+     [transitive^m 'C_G[x | to], on S :\ x | to]
+  [transitive^m.+1 G, on S | to].
+ +
+End NTransitveProp1.
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3