From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Wed, 22 May 2019 13:43:08 +0200 Subject: htmldoc regenerated --- .../mathcomp.solvable.primitive_action.html | 89 +++++++++++----------- 1 file changed, 43 insertions(+), 46 deletions(-) (limited to 'docs/htmldoc/mathcomp.solvable.primitive_action.html') diff --git a/docs/htmldoc/mathcomp.solvable.primitive_action.html b/docs/htmldoc/mathcomp.solvable.primitive_action.html index ee8d1dc..fcf9d4a 100644 --- a/docs/htmldoc/mathcomp.solvable.primitive_action.html +++ b/docs/htmldoc/mathcomp.solvable.primitive_action.html @@ -21,7 +21,6 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
 Distributed under the terms of CeCILL-B.                                  *)

-Require Import mathcomp.ssreflect.ssreflect.

@@ -54,15 +53,15 @@
Variables (aT : finGroupType) (sT : finType).
-Variables (A : {set aT}) (S : {set sT}) (to : {action aT &-> sT}).
+Variables (A : {set aT}) (S : {set sT}) (to : {action aT &-> sT}).

Definition imprimitivity_system Q :=
-  [&& partition Q S, [acts A, on Q | to^*] & 1 < #|Q| < #|S|].
+  [&& partition Q S, [acts A, on Q | to^*] & 1 < #|Q| < #|S|].

Definition primitive :=
-  [transitive A, on S | to] && ~~ [ Q, imprimitivity_system Q].
+  [transitive A, on S | to] && ~~ [ Q, imprimitivity_system Q].

End PrimitiveDef.
@@ -70,27 +69,25 @@

-Notation "[ 'primitive' A , 'on' S | to ]" := (primitive A S to)
+Notation "[ 'primitive' A , 'on' S | to ]" := (primitive A S to)
  (at level 0, format "[ 'primitive' A , 'on' S | to ]") : form_scope.
-
-
Section Primitive.

Variables (aT : finGroupType) (sT : finType).
-Variables (G : {group aT}) (to : {action aT &-> sT}) (S : {set sT}).
+Variables (G : {group aT}) (to : {action aT &-> sT}) (S : {set sT}).

Lemma trans_prim_astab x :
-    x \in S [transitive G, on S | to]
-  [primitive G, on S | to] = maximal_eq 'C_G[x | to] G.
+    x \in S [transitive G, on S | to]
+  [primitive G, on S | to] = maximal_eq 'C_G[x | to] G.

-Lemma prim_trans_norm (H : {group aT}) :
-    [primitive G, on S | to] H <| G
-  H \subset 'C_G(S | to) [transitive H, on S | to].
+Lemma prim_trans_norm (H : {group aT}) :
+    [primitive G, on S | to] H <| G
+  H \subset 'C_G(S | to) [transitive H, on S | to].

End Primitive.
@@ -100,10 +97,10 @@
Variables (gT : finGroupType) (sT : finType).
-Variables (to : {action gT &-> sT}) (n : nat).
+Variables (to : {action gT &-> sT}) (n : nat).

-Definition n_act (t : n.-tuple sT) a := [tuple of map (to^~ a) t].
+Definition n_act (t : n.-tuple sT) a := [tuple of map (to^~ a) t].

Fact n_act_is_action : is_action setT n_act.
@@ -115,26 +112,26 @@ End NactionDef.

-Notation "to * n" := (n_act_action to n) : action_scope.
+Notation "to * n" := (n_act_action to n) : action_scope.

Section NTransitive.

Variables (gT : finGroupType) (sT : finType).
-Variables (n : nat) (A : {set gT}) (S : {set sT}) (to : {action gT &-> sT}).
+Variables (n : nat) (A : {set gT}) (S : {set sT}) (to : {action gT &-> sT}).

-Definition dtuple_on := [set t : n.-tuple sT | uniq t & t \subset S].
-Definition ntransitive := [transitive A, on dtuple_on | to × n].
+Definition dtuple_on := [set t : n.-tuple sT | uniq t & t \subset S].
+Definition ntransitive := [transitive A, on dtuple_on | to × n].

Lemma dtuple_onP t :
-  reflect (injective (tnth t) i, tnth t i \in S) (t \in dtuple_on).
+  reflect (injective (tnth t) i, tnth t i \in S) (t \in dtuple_on).

Lemma n_act_dtuple t a :
-  a \in 'N(S | to) t \in dtuple_on n_act to t a \in dtuple_on.
+  a \in 'N(S | to) t \in dtuple_on n_act to t a \in dtuple_on.

End NTransitive.
@@ -142,11 +139,11 @@

-Notation "n .-dtuple ( S )" := (dtuple_on n S)
+Notation "n .-dtuple ( S )" := (dtuple_on n S)
  (at level 8, format "n .-dtuple ( S )") : set_scope.

-Notation "[ 'transitive' ^ n A , 'on' S | to ]" := (ntransitive n A S to)
+Notation "[ 'transitive' ^ n A , 'on' S | to ]" := (ntransitive n A S to)
  (at level 0, n at level 8,
   format "[ 'transitive' ^ n A , 'on' S | to ]") : form_scope.
@@ -155,46 +152,46 @@
Variables (gT : finGroupType) (sT : finType).
-Variables (to : {action gT &-> sT}) (G : {group gT}) (S : {set sT}).
+Variables (to : {action gT &-> sT}) (G : {group gT}) (S : {set sT}).

-Lemma card_uniq_tuple n (t : n.-tuple sT) : uniq t #|t| = n.
+Lemma card_uniq_tuple n (t : n.-tuple sT) : uniq t #|t| = n.

-Lemma n_act0 (t : 0.-tuple sT) a : n_act to t a = [tuple].
+Lemma n_act0 (t : 0.-tuple sT) a : n_act to t a = [tuple].

-Lemma dtuple_on_add n x (t : n.-tuple sT) :
-  ([tuple of x :: t] \in n.+1.-dtuple(S)) =
-     [&& x \in S, x \notin t & t \in n.-dtuple(S)].
+Lemma dtuple_on_add n x (t : n.-tuple sT) :
+  ([tuple of x :: t] \in n.+1.-dtuple(S)) =
+     [&& x \in S, x \notin t & t \in n.-dtuple(S)].

-Lemma dtuple_on_add_D1 n x (t : n.-tuple sT) :
-  ([tuple of x :: t] \in n.+1.-dtuple(S))
-     = (x \in S) && (t \in n.-dtuple(S :\ x)).
+Lemma dtuple_on_add_D1 n x (t : n.-tuple sT) :
+  ([tuple of x :: t] \in n.+1.-dtuple(S))
+     = (x \in S) && (t \in n.-dtuple(S :\ x)).

-Lemma dtuple_on_subset n (S1 S2 : {set sT}) t :
-  S1 \subset S2 t \in n.-dtuple(S1) t \in n.-dtuple(S2).
+Lemma dtuple_on_subset n (S1 S2 : {set sT}) t :
+  S1 \subset S2 t \in n.-dtuple(S1) t \in n.-dtuple(S2).

-Lemma n_act_add n x (t : n.-tuple sT) a :
-  n_act to [tuple of x :: t] a = [tuple of to x a :: n_act to t a].
+Lemma n_act_add n x (t : n.-tuple sT) a :
+  n_act to [tuple of x :: t] a = [tuple of to x a :: n_act to t a].

-Lemma ntransitive0 : [transitive^0 G, on S | to].
+Lemma ntransitive0 : [transitive^0 G, on S | to].

Lemma ntransitive_weak k m :
-  k m [transitive^m G, on S | to] [transitive^k G, on S | to].
+  k m [transitive^m G, on S | to] [transitive^k G, on S | to].

Lemma ntransitive1 m :
-  0 < m [transitive^m G, on S | to] [transitive G, on S | to].
+  0 < m [transitive^m G, on S | to] [transitive G, on S | to].

Lemma ntransitive_primitive m :
-  1 < m [transitive^m G, on S | to] [primitive G, on S | to].
+  1 < m [transitive^m G, on S | to] [primitive G, on S | to].

End NTransitveProp.
@@ -204,7 +201,7 @@
Variables (gT : finGroupType) (sT : finType).
-Variables (to : {action gT &-> sT}) (G : {group gT}) (S : {set sT}).
+Variables (to : {action gT &-> sT}) (G : {group gT}) (S : {set sT}).

@@ -214,8 +211,8 @@
Theorem stab_ntransitive m x :
-    0 < m x \in S [transitive^m.+1 G, on S | to]
-  [transitive^m 'C_G[x | to], on S :\ x | to].
+    0 < m x \in S [transitive^m.+1 G, on S | to]
+  [transitive^m 'C_G[x | to], on S :\ x | to].

@@ -225,9 +222,9 @@
Theorem stab_ntransitiveI m x :
-     x \in S [transitive G, on S | to]
-     [transitive^m 'C_G[x | to], on S :\ x | to]
-  [transitive^m.+1 G, on S | to].
+     x \in S [transitive G, on S | to]
+     [transitive^m 'C_G[x | to], on S :\ x | to]
+  [transitive^m.+1 G, on S | to].

End NTransitveProp1.
-- cgit v1.2.3