From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.solvable.pgroup.html | 1027 ++++++++++++++++++++++++++++ 1 file changed, 1027 insertions(+) create mode 100644 docs/htmldoc/mathcomp.solvable.pgroup.html (limited to 'docs/htmldoc/mathcomp.solvable.pgroup.html') diff --git a/docs/htmldoc/mathcomp.solvable.pgroup.html b/docs/htmldoc/mathcomp.solvable.pgroup.html new file mode 100644 index 0000000..e62c843 --- /dev/null +++ b/docs/htmldoc/mathcomp.solvable.pgroup.html @@ -0,0 +1,1027 @@ + + + + + +mathcomp.solvable.pgroup + + + + +
+ + + +
+ +

Library mathcomp.solvable.pgroup

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ Standard group notions and constructions based on the prime decomposition + of the order of the group or its elements: + pi.-group G <=> G is a pi-group, i.e., pi.-nat #|G|. +
    +
  • > Recall that here and in the sequel pi can be a single prime p. + +
  • +
+ pi.-subgroup(H) G <=> H is a pi-subgroup of G. + := (H \subset G) && pi.-group H. +
    +
  • > This is provided mostly as a shorhand, with few associated lemmas. + However, we do establish some results on maximal pi-subgroups. + pi.-elt x <=> x is a pi-element. + := pi.-nat # [x] or pi.-group < [x]>. + x.`pi == the pi-constituent of x: the (unique) pi-element + y \in < [x]> such that x * y^-1 is a pi'-element. + pi.-Hall(G) H <=> H is a Hall pi-subgroup of G. + := [&& H \subset G, pi.-group H & pi^'.-nat #|G : H| ]. + +
  • +
  • > This is also eqivalent to H \subset G /\ #|H| = #|G|`pi. + p.-Sylow(G) P <=> P is a Sylow p-subgroup of G. + +
  • +
  • > This is the display and preferred input notation for p.-Hall(G) P. + 'Syl_p(G) == the set of the p-Sylow subgroups of G. + := [set P : {group _} | p.-Sylow(G) P]. + p_group P <=> P is a p-group for some prime p. + Hall G H <=> H is a Hall pi-subgroup of G for some pi. + := coprime #|H| #|G : H| && (H \subset G). + Sylow G P <=> P is a Sylow p-subgroup of G for some p. + := p_group P && Hall G P. + 'O_pi(G) == the pi-core (largest normal pi-subgroup) of G. + +
  • +
+ pcore_mod pi G H == the pi-core of G mod H. + := G :&: (coset H @*^-1 'O_pi(G / H)). + 'O{pi2, pi1}(G) == the pi1,pi2-core of G. + := the pi1-core of G mod 'O_pi2(G). +
    +
  • > We have 'O{pi2, pi1}(G) / 'O_pi2(G) = 'O_pi1(G / 'O_pi2(G)) + with 'O_pi2(G) <| 'O{pi2, pi1}(G) <| G. + +
  • +
+ 'O{pn, ..., p1}(G) == the p1, ..., pn-core of G. + := the p1-core of G mod 'O{pn, ..., p2}(G). + Note that notions are always defined on sets even though their name + indicates "group" properties; the actual definition of the notion never + tests for the group property, since this property will always be provided + by a (canonical) group structure. Similarly, p-group properties assume + without test that p is a prime. +
+
+ +
+Set Implicit Arguments.
+ +
+Import GroupScope.
+ +
+Section PgroupDefs.
+ +
+
+ +
+ We defer the definition of the functors ('0_p(G), etc) because they need + to quantify over the finGroupType explicitly. +
+
+ +
+Variable gT : finGroupType.
+Implicit Type (x : gT) (A B : {set gT}) (pi : nat_pred) (p n : nat).
+ +
+Definition pgroup pi A := pi.-nat #|A|.
+ +
+Definition psubgroup pi A B := (B \subset A) && pgroup pi B.
+ +
+Definition p_group A := pgroup (pdiv #|A|) A.
+ +
+Definition p_elt pi x := pi.-nat #[x].
+ +
+Definition constt x pi := x ^+ (chinese #[x]`_pi #[x]`_pi^' 1 0).
+ +
+Definition Hall A B := (B \subset A) && coprime #|B| #|A : B|.
+ +
+Definition pHall pi A B := [&& B \subset A, pgroup pi B & pi^'.-nat #|A : B|].
+ +
+Definition Syl p A := [set P : {group gT} | pHall p A P].
+ +
+Definition Sylow A B := p_group B && Hall A B.
+ +
+End PgroupDefs.
+ +
+ +
+Notation "pi .-group" := (pgroup pi)
+  (at level 2, format "pi .-group") : group_scope.
+ +
+Notation "pi .-subgroup ( A )" := (psubgroup pi A)
+  (at level 8, format "pi .-subgroup ( A )") : group_scope.
+ +
+Notation "pi .-elt" := (p_elt pi)
+  (at level 2, format "pi .-elt") : group_scope.
+ +
+Notation "x .`_ pi" := (constt x pi)
+  (at level 3, format "x .`_ pi") : group_scope.
+ +
+Notation "pi .-Hall ( G )" := (pHall pi G)
+  (at level 8, format "pi .-Hall ( G )") : group_scope.
+ +
+Notation "p .-Sylow ( G )" := (nat_pred_of_nat p).-Hall(G)
+  (at level 8, format "p .-Sylow ( G )") : group_scope.
+ +
+Notation "''Syl_' p ( G )" := (Syl p G)
+  (at level 8, p at level 2, format "''Syl_' p ( G )") : group_scope.
+ +
+Section PgroupProps.
+ +
+Variable gT : finGroupType.
+Implicit Types (pi rho : nat_pred) (p : nat).
+Implicit Types (x y z : gT) (A B C D : {set gT}) (G H K P Q R : {group gT}).
+ +
+Lemma trivgVpdiv G : G :=: 1 (exists2 p, prime p & p %| #|G|).
+ +
+Lemma prime_subgroupVti G H : prime #|G| G \subset H H :&: G = 1.
+ +
+Lemma pgroupE pi A : pi.-group A = pi.-nat #|A|.
+ +
+Lemma sub_pgroup pi rho A : {subset pi rho} pi.-group A rho.-group A.
+ +
+Lemma eq_pgroup pi rho A : pi =i rho pi.-group A = rho.-group A.
+ +
+Lemma eq_p'group pi rho A : pi =i rho pi^'.-group A = rho^'.-group A.
+ +
+Lemma pgroupNK pi A : pi^'^'.-group A = pi.-group A.
+ +
+Lemma pi_pgroup p pi A : p.-group A p \in pi pi.-group A.
+ +
+Lemma pi_p'group p pi A : pi.-group A p \in pi^' p^'.-group A.
+ +
+Lemma pi'_p'group p pi A : pi^'.-group A p \in pi p^'.-group A.
+ +
+Lemma p'groupEpi p G : p^'.-group G = (p \notin \pi(G)).
+ +
+Lemma pgroup_pi G : \pi(G).-group G.
+ +
+Lemma partG_eq1 pi G : (#|G|`_pi == 1%N) = pi^'.-group G.
+ +
+Lemma pgroupP pi G :
+  reflect ( p, prime p p %| #|G| p \in pi) (pi.-group G).
+ +
+Lemma pgroup1 pi : pi.-group [1 gT].
+ +
+Lemma pgroupS pi G H : H \subset G pi.-group G pi.-group H.
+ +
+Lemma oddSg G H : H \subset G odd #|G| odd #|H|.
+ +
+Lemma odd_pgroup_odd p G : odd p p.-group G odd #|G|.
+ +
+Lemma card_pgroup p G : p.-group G #|G| = (p ^ logn p #|G|)%N.
+ +
+Lemma properG_ltn_log p G H :
+  p.-group G H \proper G logn p #|H| < logn p #|G|.
+ +
+Lemma pgroupM pi G H : pi.-group (G × H) = pi.-group G && pi.-group H.
+ +
+Lemma pgroupJ pi G x : pi.-group (G :^ x) = pi.-group G.
+ +
+Lemma pgroup_p p P : p.-group P p_group P.
+ +
+Lemma p_groupP P : p_group P exists2 p, prime p & p.-group P.
+ +
+Lemma pgroup_pdiv p G :
+    p.-group G G :!=: 1
+  [/\ prime p, p %| #|G| & m, #|G| = p ^ m.+1]%N.
+ +
+Lemma coprime_p'group p K R :
+  coprime #|K| #|R| p.-group R R :!=: 1 p^'.-group K.
+ +
+Lemma card_Hall pi G H : pi.-Hall(G) H #|H| = #|G|`_pi.
+ +
+Lemma pHall_sub pi A B : pi.-Hall(A) B B \subset A.
+ +
+Lemma pHall_pgroup pi A B : pi.-Hall(A) B pi.-group B.
+ +
+Lemma pHallP pi G H : reflect (H \subset G #|H| = #|G|`_pi) (pi.-Hall(G) H).
+ +
+Lemma pHallE pi G H : pi.-Hall(G) H = (H \subset G) && (#|H| == #|G|`_pi).
+ +
+Lemma coprime_mulpG_Hall pi G K R :
+    K × R = G pi.-group K pi^'.-group R
+  pi.-Hall(G) K pi^'.-Hall(G) R.
+ +
+Lemma coprime_mulGp_Hall pi G K R :
+    K × R = G pi^'.-group K pi.-group R
+  pi^'.-Hall(G) K pi.-Hall(G) R.
+ +
+Lemma eq_in_pHall pi rho G H :
+  {in \pi(G), pi =i rho} pi.-Hall(G) H = rho.-Hall(G) H.
+ +
+Lemma eq_pHall pi rho G H : pi =i rho pi.-Hall(G) H = rho.-Hall(G) H.
+ +
+Lemma eq_p'Hall pi rho G H : pi =i rho pi^'.-Hall(G) H = rho^'.-Hall(G) H.
+ +
+Lemma pHallNK pi G H : pi^'^'.-Hall(G) H = pi.-Hall(G) H.
+ +
+Lemma subHall_Hall pi rho G H K :
+  rho.-Hall(G) H {subset pi rho} pi.-Hall(H) K pi.-Hall(G) K.
+ +
+Lemma subHall_Sylow pi p G H P :
+  pi.-Hall(G) H p \in pi p.-Sylow(H) P p.-Sylow(G) P.
+ +
+Lemma pHall_Hall pi A B : pi.-Hall(A) B Hall A B.
+ +
+Lemma Hall_pi G H : Hall G H \pi(H).-Hall(G) H.
+ +
+Lemma HallP G H : Hall G H pi, pi.-Hall(G) H.
+ +
+Lemma sdprod_Hall G K H : K ><| H = G Hall G K = Hall G H.
+ +
+Lemma coprime_sdprod_Hall_l G K H : K ><| H = G coprime #|K| #|H| = Hall G K.
+ +
+Lemma coprime_sdprod_Hall_r G K H : K ><| H = G coprime #|K| #|H| = Hall G H.
+ +
+Lemma compl_pHall pi K H G :
+  pi.-Hall(G) K (H \in [complements to K in G]) = pi^'.-Hall(G) H.
+ +
+Lemma compl_p'Hall pi K H G :
+  pi^'.-Hall(G) K (H \in [complements to K in G]) = pi.-Hall(G) H.
+ +
+Lemma sdprod_normal_p'HallP pi K H G :
+  K <| G pi^'.-Hall(G) H reflect (K ><| H = G) (pi.-Hall(G) K).
+ +
+Lemma sdprod_normal_pHallP pi K H G :
+  K <| G pi.-Hall(G) H reflect (K ><| H = G) (pi^'.-Hall(G) K).
+ +
+Lemma pHallJ2 pi G H x : pi.-Hall(G :^ x) (H :^ x) = pi.-Hall(G) H.
+ +
+Lemma pHallJnorm pi G H x : x \in 'N(G) pi.-Hall(G) (H :^ x) = pi.-Hall(G) H.
+ +
+Lemma pHallJ pi G H x : x \in G pi.-Hall(G) (H :^ x) = pi.-Hall(G) H.
+ +
+Lemma HallJ G H x : x \in G Hall G (H :^ x) = Hall G H.
+ +
+Lemma psubgroupJ pi G H x :
+  x \in G pi.-subgroup(G) (H :^ x) = pi.-subgroup(G) H.
+ +
+Lemma p_groupJ P x : p_group (P :^ x) = p_group P.
+ +
+Lemma SylowJ G P x : x \in G Sylow G (P :^ x) = Sylow G P.
+ +
+Lemma p_Sylow p G P : p.-Sylow(G) P Sylow G P.
+ +
+Lemma pHall_subl pi G K H :
+  H \subset K K \subset G pi.-Hall(G) H pi.-Hall(K) H.
+ +
+Lemma Hall1 G : Hall G 1.
+ +
+Lemma p_group1 : @p_group gT 1.
+ +
+Lemma Sylow1 G : Sylow G 1.
+ +
+Lemma SylowP G P : reflect (exists2 p, prime p & p.-Sylow(G) P) (Sylow G P).
+ +
+Lemma p_elt_exp pi x m : pi.-elt (x ^+ m) = (#[x]`_pi^' %| m).
+ +
+Lemma mem_p_elt pi x G : pi.-group G x \in G pi.-elt x.
+ +
+Lemma p_eltM_norm pi x y :
+  x \in 'N(<[y]>) pi.-elt x pi.-elt y pi.-elt (x × y).
+ +
+Lemma p_eltM pi x y : commute x y pi.-elt x pi.-elt y pi.-elt (x × y).
+ +
+Lemma p_elt1 pi : pi.-elt (1 : gT).
+ +
+Lemma p_eltV pi x : pi.-elt x^-1 = pi.-elt x.
+ +
+Lemma p_eltX pi x n : pi.-elt x pi.-elt (x ^+ n).
+ +
+Lemma p_eltJ pi x y : pi.-elt (x ^ y) = pi.-elt x.
+ +
+Lemma sub_p_elt pi1 pi2 x : {subset pi1 pi2} pi1.-elt x pi2.-elt x.
+ +
+Lemma eq_p_elt pi1 pi2 x : pi1 =i pi2 pi1.-elt x = pi2.-elt x.
+ +
+Lemma p_eltNK pi x : pi^'^'.-elt x = pi.-elt x.
+ +
+Lemma eq_constt pi1 pi2 x : pi1 =i pi2 x.`_pi1 = x.`_pi2.
+ +
+Lemma consttNK pi x : x.`_pi^'^' = x.`_pi.
+ +
+Lemma cycle_constt pi x : x.`_pi \in <[x]>.
+ +
+Lemma consttV pi x : (x^-1).`_pi = (x.`_pi)^-1.
+ +
+Lemma constt1 pi : 1.`_pi = 1 :> gT.
+ +
+Lemma consttJ pi x y : (x ^ y).`_pi = x.`_pi ^ y.
+ +
+Lemma p_elt_constt pi x : pi.-elt x.`_pi.
+ +
+Lemma consttC pi x : x.`_pi × x.`_pi^' = x.
+ +
+Lemma p'_elt_constt pi x : pi^'.-elt (x × (x.`_pi)^-1).
+ +
+Lemma order_constt pi (x : gT) : #[x.`_pi] = #[x]`_pi.
+ +
+Lemma consttM pi x y : commute x y (x × y).`_pi = x.`_pi × y.`_pi.
+ +
+Lemma consttX pi x n : (x ^+ n).`_pi = x.`_pi ^+ n.
+ +
+Lemma constt1P pi x : reflect (x.`_pi = 1) (pi^'.-elt x).
+ +
+Lemma constt_p_elt pi x : pi.-elt x x.`_pi = x.
+ +
+Lemma sub_in_constt pi1 pi2 x :
+  {in \pi(#[x]), {subset pi1 pi2}} x.`_pi2.`_pi1 = x.`_pi1.
+ +
+Lemma prod_constt x : \prod_(0 p < #[x].+1) x.`_p = x.
+ +
+Lemma max_pgroupJ pi M G x :
+    x \in G [max M | pi.-subgroup(G) M]
+  [max M :^ x of M | pi.-subgroup(G) M].
+ +
+Lemma comm_sub_max_pgroup pi H M G :
+    [max M | pi.-subgroup(G) M] pi.-group H H \subset G
+  commute H M H \subset M.
+ +
+Lemma normal_sub_max_pgroup pi H M G :
+  [max M | pi.-subgroup(G) M] pi.-group H H <| G H \subset M.
+ +
+Lemma norm_sub_max_pgroup pi H M G :
+    [max M | pi.-subgroup(G) M] pi.-group H H \subset G
+  H \subset 'N(M) H \subset M.
+ +
+Lemma sub_pHall pi H G K :
+  pi.-Hall(G) H pi.-group K H \subset K K \subset G K :=: H.
+ +
+Lemma Hall_max pi H G : pi.-Hall(G) H [max H | pi.-subgroup(G) H].
+ +
+Lemma pHall_id pi H G : pi.-Hall(G) H pi.-group G H :=: G.
+ +
+Lemma psubgroup1 pi G : pi.-subgroup(G) 1.
+ +
+Lemma Cauchy p G : prime p p %| #|G| {x | x \in G & #[x] = p}.
+ +
+
+ +
+ These lemmas actually hold for maximal pi-groups, but below we'll + derive from the Cauchy lemma that a normal max pi-group is Hall. +
+
+ +
+Lemma sub_normal_Hall pi G H K :
+  pi.-Hall(G) H H <| G K \subset G (K \subset H) = pi.-group K.
+ +
+Lemma mem_normal_Hall pi H G x :
+  pi.-Hall(G) H H <| G x \in G (x \in H) = pi.-elt x.
+ +
+Lemma uniq_normal_Hall pi H G K :
+  pi.-Hall(G) H H <| G [max K | pi.-subgroup(G) K] K :=: H.
+ +
+End PgroupProps.
+ +
+ +
+Section NormalHall.
+ +
+Variables (gT : finGroupType) (pi : nat_pred).
+Implicit Types G H K : {group gT}.
+ +
+Lemma normal_max_pgroup_Hall G H :
+  [max H | pi.-subgroup(G) H] H <| G pi.-Hall(G) H.
+ +
+Lemma setI_normal_Hall G H K :
+  H <| G pi.-Hall(G) H K \subset G pi.-Hall(K) (H :&: K).
+ +
+End NormalHall.
+ +
+Section Morphim.
+ +
+Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).
+Implicit Types (pi : nat_pred) (G H P : {group aT}).
+ +
+Lemma morphim_pgroup pi G : pi.-group G pi.-group (f @* G).
+ +
+Lemma morphim_odd G : odd #|G| odd #|f @* G|.
+ +
+Lemma pmorphim_pgroup pi G :
+   pi.-group ('ker f) G \subset D pi.-group (f @* G) = pi.-group G.
+ +
+Lemma morphim_p_index pi G H :
+  H \subset D pi.-nat #|G : H| pi.-nat #|f @* G : f @* H|.
+ +
+Lemma morphim_pHall pi G H :
+  H \subset D pi.-Hall(G) H pi.-Hall(f @* G) (f @* H).
+ +
+Lemma pmorphim_pHall pi G H :
+    G \subset D H \subset D pi.-subgroup(H :&: G) ('ker f)
+  pi.-Hall(f @* G) (f @* H) = pi.-Hall(G) H.
+ +
+Lemma morphim_Hall G H : H \subset D Hall G H Hall (f @* G) (f @* H).
+ +
+Lemma morphim_pSylow p G P :
+  P \subset D p.-Sylow(G) P p.-Sylow(f @* G) (f @* P).
+ +
+Lemma morphim_p_group P : p_group P p_group (f @* P).
+ +
+Lemma morphim_Sylow G P : P \subset D Sylow G P Sylow (f @* G) (f @* P).
+ +
+Lemma morph_p_elt pi x : x \in D pi.-elt x pi.-elt (f x).
+ +
+Lemma morph_constt pi x : x \in D f x.`_pi = (f x).`_pi.
+ +
+End Morphim.
+ +
+Section Pquotient.
+ +
+Variables (pi : nat_pred) (gT : finGroupType) (p : nat) (G H K : {group gT}).
+Hypothesis piK : pi.-group K.
+ +
+Lemma quotient_pgroup : pi.-group (K / H).
+ +
+Lemma quotient_pHall :
+  K \subset 'N(H) pi.-Hall(G) K pi.-Hall(G / H) (K / H).
+ +
+Lemma quotient_odd : odd #|K| odd #|K / H|.
+ +
+Lemma pquotient_pgroup : G \subset 'N(K) pi.-group (G / K) = pi.-group G.
+ +
+Lemma pquotient_pHall :
+  K <| G K <| H pi.-Hall(G / K) (H / K) = pi.-Hall(G) H.
+ +
+Lemma ltn_log_quotient :
+  p.-group G H :!=: 1 H \subset G logn p #|G / H| < logn p #|G|.
+ +
+End Pquotient.
+ +
+
+ +
+ Application of card_Aut_cyclic to internal faithful action on cyclic + p-subgroups. +
+
+Section InnerAutCyclicPgroup.
+ +
+Variables (gT : finGroupType) (p : nat) (G C : {group gT}).
+Hypothesis nCG : G \subset 'N(C).
+ +
+Lemma logn_quotient_cent_cyclic_pgroup :
+  p.-group C cyclic C logn p #|G / 'C_G(C)| (logn p #|C|).-1.
+ +
+Lemma p'group_quotient_cent_prime :
+  prime p #|C| %| p p^'.-group (G / 'C_G(C)).
+ +
+End InnerAutCyclicPgroup.
+ +
+Section PcoreDef.
+ +
+
+ +
+ A functor needs to quantify over the finGroupType just beore the set. +
+
+ +
+Variables (pi : nat_pred) (gT : finGroupType) (A : {set gT}).
+ +
+Definition pcore := \bigcap_(G | [max G | pi.-subgroup(A) G]) G.
+ +
+Canonical pcore_group : {group gT} := Eval hnf in [group of pcore].
+ +
+End PcoreDef.
+ +
+Notation "''O_' pi ( G )" := (pcore pi G)
+  (at level 8, pi at level 2, format "''O_' pi ( G )") : group_scope.
+Notation "''O_' pi ( G )" := (pcore_group pi G) : Group_scope.
+ +
+Section PseriesDefs.
+ +
+Variables (pis : seq nat_pred) (gT : finGroupType) (A : {set gT}).
+ +
+Definition pcore_mod pi B := coset B @*^-1 'O_pi(A / B).
+Canonical pcore_mod_group pi B : {group gT} :=
+  Eval hnf in [group of pcore_mod pi B].
+ +
+Definition pseries := foldr pcore_mod 1 (rev pis).
+ +
+Lemma pseries_group_set : group_set pseries.
+ +
+Canonical pseries_group : {group gT} := group pseries_group_set.
+ +
+End PseriesDefs.
+ +
+Notation "''O_{' p1 , .. , pn } ( A )" :=
+  (pseries (ConsPred p1 .. (ConsPred pn [::]) ..) A)
+  (at level 8, format "''O_{' p1 , .. , pn } ( A )") : group_scope.
+Notation "''O_{' p1 , .. , pn } ( A )" :=
+  (pseries_group (ConsPred p1 .. (ConsPred pn [::]) ..) A) : Group_scope.
+ +
+Section PCoreProps.
+ +
+Variables (pi : nat_pred) (gT : finGroupType).
+Implicit Types (A : {set gT}) (G H M K : {group gT}).
+ +
+Lemma pcore_psubgroup G : pi.-subgroup(G) 'O_pi(G).
+ +
+Lemma pcore_pgroup G : pi.-group 'O_pi(G).
+ +
+Lemma pcore_sub G : 'O_pi(G) \subset G.
+ +
+Lemma pcore_sub_Hall G H : pi.-Hall(G) H 'O_pi(G) \subset H.
+ +
+Lemma pcore_max G H : pi.-group H H <| G H \subset 'O_pi(G).
+ +
+Lemma pcore_pgroup_id G : pi.-group G 'O_pi(G) = G.
+ +
+Lemma pcore_normal G : 'O_pi(G) <| G.
+ +
+Lemma normal_Hall_pcore H G : pi.-Hall(G) H H <| G 'O_pi(G) = H.
+ +
+Lemma eq_Hall_pcore G H :
+   pi.-Hall(G) 'O_pi(G) pi.-Hall(G) H H :=: 'O_pi(G).
+ +
+Lemma sub_Hall_pcore G K :
+  pi.-Hall(G) 'O_pi(G) K \subset G (K \subset 'O_pi(G)) = pi.-group K.
+ +
+Lemma mem_Hall_pcore G x :
+  pi.-Hall(G) 'O_pi(G) x \in G (x \in 'O_pi(G)) = pi.-elt x.
+ +
+Lemma sdprod_Hall_pcoreP H G :
+  pi.-Hall(G) 'O_pi(G) reflect ('O_pi(G) ><| H = G) (pi^'.-Hall(G) H).
+ +
+Lemma sdprod_pcore_HallP H G :
+  pi^'.-Hall(G) H reflect ('O_pi(G) ><| H = G) (pi.-Hall(G) 'O_pi(G)).
+ +
+Lemma pcoreJ G x : 'O_pi(G :^ x) = 'O_pi(G) :^ x.
+ +
+End PCoreProps.
+ +
+Section MorphPcore.
+ +
+Implicit Types (pi : nat_pred) (gT rT : finGroupType).
+ +
+Lemma morphim_pcore pi : GFunctor.pcontinuous (pcore pi).
+ +
+Lemma pcoreS pi gT (G H : {group gT}) :
+  H \subset G H :&: 'O_pi(G) \subset 'O_pi(H).
+ +
+Canonical pcore_igFun pi := [igFun by pcore_sub pi & morphim_pcore pi].
+Canonical pcore_gFun pi := [gFun by morphim_pcore pi].
+Canonical pcore_pgFun pi := [pgFun by morphim_pcore pi].
+ +
+Lemma pcore_char pi gT (G : {group gT}) : 'O_pi(G) \char G.
+ +
+Section PcoreMod.
+ +
+Variable F : GFunctor.pmap.
+ +
+Lemma pcore_mod_sub pi gT (G : {group gT}) : pcore_mod G pi (F _ G) \subset G.
+ +
+Lemma quotient_pcore_mod pi gT (G : {group gT}) (B : {set gT}) :
+  pcore_mod G pi B / B = 'O_pi(G / B).
+ +
+Lemma morphim_pcore_mod pi gT rT (D G : {group gT}) (f : {morphism D >-> rT}) :
+  f @* pcore_mod G pi (F _ G) \subset pcore_mod (f @* G) pi (F _ (f @* G)).
+ +
+Lemma pcore_mod_res pi gT rT (D : {group gT}) (f : {morphism D >-> rT}) :
+  f @* pcore_mod D pi (F _ D) \subset pcore_mod (f @* D) pi (F _ (f @* D)).
+ +
+Lemma pcore_mod1 pi gT (G : {group gT}) : pcore_mod G pi 1 = 'O_pi(G).
+ +
+End PcoreMod.
+ +
+Lemma pseries_rcons pi pis gT (A : {set gT}) :
+  pseries (rcons pis pi) A = pcore_mod A pi (pseries pis A).
+ +
+Lemma pseries_subfun pis :
+   GFunctor.closed (pseries pis) GFunctor.pcontinuous (pseries pis).
+ +
+Lemma pseries_sub pis : GFunctor.closed (pseries pis).
+ +
+Lemma morphim_pseries pis : GFunctor.pcontinuous (pseries pis).
+ +
+Lemma pseriesS pis : GFunctor.hereditary (pseries pis).
+ +
+Canonical pseries_igFun pis := [igFun by pseries_sub pis & morphim_pseries pis].
+Canonical pseries_gFun pis := [gFun by morphim_pseries pis].
+Canonical pseries_pgFun pis := [pgFun by morphim_pseries pis].
+ +
+Lemma pseries_char pis gT (G : {group gT}) : pseries pis G \char G.
+ +
+Lemma pseries_normal pis gT (G : {group gT}) : pseries pis G <| G.
+ +
+Lemma pseriesJ pis gT (G : {group gT}) x :
+  pseries pis (G :^ x) = pseries pis G :^ x.
+ +
+Lemma pseries1 pi gT (G : {group gT}) : 'O_{pi}(G) = 'O_pi(G).
+ +
+Lemma pseries_pop pi pis gT (G : {group gT}) :
+  'O_pi(G) = 1 pseries (pi :: pis) G = pseries pis G.
+ +
+Lemma pseries_pop2 pi1 pi2 gT (G : {group gT}) :
+  'O_pi1(G) = 1 'O_{pi1, pi2}(G) = 'O_pi2(G).
+ +
+Lemma pseries_sub_catl pi1s pi2s gT (G : {group gT}) :
+  pseries pi1s G \subset pseries (pi1s ++ pi2s) G.
+ +
+Lemma quotient_pseries pis pi gT (G : {group gT}) :
+  pseries (rcons pis pi) G / pseries pis G = 'O_pi(G / pseries pis G).
+ +
+Lemma pseries_norm2 pi1s pi2s gT (G : {group gT}) :
+  pseries pi2s G \subset 'N(pseries pi1s G).
+ +
+Lemma pseries_sub_catr pi1s pi2s gT (G : {group gT}) :
+  pseries pi2s G \subset pseries (pi1s ++ pi2s) G.
+ +
+Lemma quotient_pseries2 pi1 pi2 gT (G : {group gT}) :
+  'O_{pi1, pi2}(G) / 'O_pi1(G) = 'O_pi2(G / 'O_pi1(G)).
+ +
+Lemma quotient_pseries_cat pi1s pi2s gT (G : {group gT}) :
+  pseries (pi1s ++ pi2s) G / pseries pi1s G
+    = pseries pi2s (G / pseries pi1s G).
+ +
+Lemma pseries_catl_id pi1s pi2s gT (G : {group gT}) :
+  pseries pi1s (pseries (pi1s ++ pi2s) G) = pseries pi1s G.
+ +
+Lemma pseries_char_catl pi1s pi2s gT (G : {group gT}) :
+  pseries pi1s G \char pseries (pi1s ++ pi2s) G.
+ +
+Lemma pseries_catr_id pi1s pi2s gT (G : {group gT}) :
+  pseries pi2s (pseries (pi1s ++ pi2s) G) = pseries pi2s G.
+ +
+Lemma pseries_char_catr pi1s pi2s gT (G : {group gT}) :
+  pseries pi2s G \char pseries (pi1s ++ pi2s) G.
+ +
+Lemma pcore_modp pi gT (G H : {group gT}) :
+  H <| G pi.-group H pcore_mod G pi H = 'O_pi(G).
+ +
+Lemma pquotient_pcore pi gT (G H : {group gT}) :
+  H <| G pi.-group H 'O_pi(G / H) = 'O_pi(G) / H.
+ +
+Lemma trivg_pcore_quotient pi gT (G : {group gT}) : 'O_pi(G / 'O_pi(G)) = 1.
+ +
+Lemma pseries_rcons_id pis pi gT (G : {group gT}) :
+  pseries (rcons (rcons pis pi) pi) G = pseries (rcons pis pi) G.
+ +
+End MorphPcore.
+ +
+Section EqPcore.
+ +
+Variables gT : finGroupType.
+Implicit Types (pi rho : nat_pred) (G H : {group gT}).
+ +
+Lemma sub_in_pcore pi rho G :
+  {in \pi(G), {subset pi rho}} 'O_pi(G) \subset 'O_rho(G).
+ +
+Lemma sub_pcore pi rho G : {subset pi rho} 'O_pi(G) \subset 'O_rho(G).
+ +
+Lemma eq_in_pcore pi rho G : {in \pi(G), pi =i rho} 'O_pi(G) = 'O_rho(G).
+ +
+Lemma eq_pcore pi rho G : pi =i rho 'O_pi(G) = 'O_rho(G).
+ +
+Lemma pcoreNK pi G : 'O_pi^'^'(G) = 'O_pi(G).
+ +
+Lemma eq_p'core pi rho G : pi =i rho 'O_pi^'(G) = 'O_rho^'(G).
+ +
+Lemma sdprod_Hall_p'coreP pi H G :
+  pi^'.-Hall(G) 'O_pi^'(G) reflect ('O_pi^'(G) ><| H = G) (pi.-Hall(G) H).
+ +
+Lemma sdprod_p'core_HallP pi H G :
+  pi.-Hall(G) H reflect ('O_pi^'(G) ><| H = G) (pi^'.-Hall(G) 'O_pi^'(G)).
+ +
+Lemma pcoreI pi rho G : 'O_[predI pi & rho](G) = 'O_pi('O_rho(G)).
+ +
+Lemma bigcap_p'core pi G :
+  G :&: \bigcap_(p < #|G|.+1 | (p : nat) \in pi) 'O_p^'(G) = 'O_pi^'(G).
+ +
+Lemma coprime_pcoreC (rT : finGroupType) pi G (R : {group rT}) :
+  coprime #|'O_pi(G)| #|'O_pi^'(R)|.
+ +
+Lemma TI_pcoreC pi G H : 'O_pi(G) :&: 'O_pi^'(H) = 1.
+ +
+Lemma pcore_setI_normal pi G H : H <| G 'O_pi(G) :&: H = 'O_pi(H).
+ +
+End EqPcore.
+ +
+ +
+Section Injm.
+ +
+Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).
+Hypothesis injf : 'injm f.
+Implicit Types (A : {set aT}) (G H : {group aT}).
+ +
+Lemma injm_pgroup pi A : A \subset D pi.-group (f @* A) = pi.-group A.
+ +
+Lemma injm_pelt pi x : x \in D pi.-elt (f x) = pi.-elt x.
+ +
+Lemma injm_pHall pi G H :
+  G \subset D H \subset D pi.-Hall(f @* G) (f @* H) = pi.-Hall(G) H.
+ +
+Lemma injm_pcore pi G : G \subset D f @* 'O_pi(G) = 'O_pi(f @* G).
+ +
+Lemma injm_pseries pis G :
+  G \subset D f @* pseries pis G = pseries pis (f @* G).
+ +
+End Injm.
+ +
+Section Isog.
+ +
+Variables (aT rT : finGroupType) (G : {group aT}) (H : {group rT}).
+ +
+Lemma isog_pgroup pi : G \isog H pi.-group G = pi.-group H.
+ +
+Lemma isog_pcore pi : G \isog H 'O_pi(G) \isog 'O_pi(H).
+ +
+Lemma isog_pseries pis : G \isog H pseries pis G \isog pseries pis H.
+ +
+End Isog.
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3