From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Wed, 22 May 2019 13:43:08 +0200 Subject: htmldoc regenerated --- docs/htmldoc/mathcomp.solvable.nilpotent.html | 295 +++++++++++++------------- 1 file changed, 147 insertions(+), 148 deletions(-) (limited to 'docs/htmldoc/mathcomp.solvable.nilpotent.html') diff --git a/docs/htmldoc/mathcomp.solvable.nilpotent.html b/docs/htmldoc/mathcomp.solvable.nilpotent.html index 7aeb0e8..dbee59d 100644 --- a/docs/htmldoc/mathcomp.solvable.nilpotent.html +++ b/docs/htmldoc/mathcomp.solvable.nilpotent.html @@ -21,7 +21,6 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
 Distributed under the terms of CeCILL-B.                                  *)

-Require Import mathcomp.ssreflect.ssreflect.

@@ -57,13 +56,13 @@ Section SeriesDefs.

-Variables (n : nat) (gT : finGroupType) (A : {set gT}).
+Variables (n : nat) (gT : finGroupType) (A : {set gT}).

-Definition lower_central_at_rec := iter n (fun B[~: B, A]) A.
+Definition lower_central_at_rec := iter n (fun B[~: B, A]) A.

-Definition upper_central_at_rec := iter n (fun Bcoset B @*^-1 'Z(A / B)) 1.
+Definition upper_central_at_rec := iter n (fun Bcoset B @*^-1 'Z(A / B)) 1.

End SeriesDefs.
@@ -76,7 +75,7 @@ starts at 0 (sic).
-Definition lower_central_at n := lower_central_at_rec n.-1.
+Definition lower_central_at n := lower_central_at_rec n.-1.

@@ -86,34 +85,34 @@ "cooking" destroys it.
-Definition upper_central_at := nosimpl upper_central_at_rec.
+Definition upper_central_at := nosimpl upper_central_at_rec.


-Notation "''L_' n ( G )" := (lower_central_at n G)
+Notation "''L_' n ( G )" := (lower_central_at n G)
  (at level 8, n at level 2, format "''L_' n ( G )") : group_scope.

-Notation "''Z_' n ( G )" := (upper_central_at n G)
+Notation "''Z_' n ( G )" := (upper_central_at n G)
  (at level 8, n at level 2, format "''Z_' n ( G )") : group_scope.

Section PropertiesDefs.

-Variables (gT : finGroupType) (A : {set gT}).
+Variables (gT : finGroupType) (A : {set gT}).

Definition nilpotent :=
-  [ (G : {group gT} | G \subset A :&: [~: G, A]), G :==: 1].
+  [ (G : {group gT} | G \subset A :&: [~: G, A]), G :==: 1].

-Definition nil_class := index 1 (mkseq (fun n'L_n.+1(A)) #|A|).
+Definition nil_class := index 1 (mkseq (fun n'L_n.+1(A)) #|A|).

Definition solvable :=
-  [ (G : {group gT} | G \subset A :&: [~: G, G]), G :==: 1].
+  [ (G : {group gT} | G \subset A :&: [~: G, G]), G :==: 1].

End PropertiesDefs.
@@ -125,27 +124,27 @@
Variable gT: finGroupType.
-Implicit Types (A B : {set gT}) (G H : {group gT}).
+Implicit Types (A B : {set gT}) (G H : {group gT}).

-Lemma nilpotent1 : nilpotent [1 gT].
+Lemma nilpotent1 : nilpotent [1 gT].

-Lemma nilpotentS A B : B \subset A nilpotent A nilpotent B.
+Lemma nilpotentS A B : B \subset A nilpotent A nilpotent B.

Lemma nil_comm_properl G H A :
-    nilpotent G H \subset G H :!=: 1 A \subset 'N_G(H)
-  [~: H, A] \proper H.
+    nilpotent G H \subset G H :!=: 1 A \subset 'N_G(H)
+  [~: H, A] \proper H.

Lemma nil_comm_properr G A H :
-    nilpotent G H \subset G H :!=: 1 A \subset 'N_G(H)
-  [~: A, H] \proper H.
+    nilpotent G H \subset G H :!=: 1 A \subset 'N_G(H)
+  [~: A, H] \proper H.

-Lemma centrals_nil (s : seq {group gT}) G :
-  G.-central.-series 1%G s last 1%G s = G nilpotent G.
+Lemma centrals_nil (s : seq {group gT}) G :
+  G.-central.-series 1%G s last 1%G s = G nilpotent G.

End NilpotentProps.
@@ -155,138 +154,138 @@
Variable gT : finGroupType.
-Implicit Types (A B : {set gT}) (G H : {group gT}).
+Implicit Types (A B : {set gT}) (G H : {group gT}).

-Lemma lcn0 A : 'L_0(A) = A.
-Lemma lcn1 A : 'L_1(A) = A.
-Lemma lcnSn n A : 'L_n.+2(A) = [~: 'L_n.+1(A), A].
-Lemma lcnSnS n G : [~: 'L_n(G), G] \subset 'L_n.+1(G).
- Lemma lcnE n A : 'L_n.+1(A) = lower_central_at_rec n A.
- Lemma lcn2 A : 'L_2(A) = A^`(1).
+Lemma lcn0 A : 'L_0(A) = A.
+Lemma lcn1 A : 'L_1(A) = A.
+Lemma lcnSn n A : 'L_n.+2(A) = [~: 'L_n.+1(A), A].
+Lemma lcnSnS n G : [~: 'L_n(G), G] \subset 'L_n.+1(G).
+ Lemma lcnE n A : 'L_n.+1(A) = lower_central_at_rec n A.
+ Lemma lcn2 A : 'L_2(A) = A^`(1).

-Lemma lcn_group_set n G : group_set 'L_n(G).
+Lemma lcn_group_set n G : group_set 'L_n(G).

Canonical lower_central_at_group n G := Group (lcn_group_set n G).

-Lemma lcn_char n G : 'L_n(G) \char G.
+Lemma lcn_char n G : 'L_n(G) \char G.

-Lemma lcn_normal n G : 'L_n(G) <| G.
+Lemma lcn_normal n G : 'L_n(G) <| G.

-Lemma lcn_sub n G : 'L_n(G) \subset G.
+Lemma lcn_sub n G : 'L_n(G) \subset G.

-Lemma lcn_norm n G : G \subset 'N('L_n(G)).
+Lemma lcn_norm n G : G \subset 'N('L_n(G)).

-Lemma lcn_subS n G : 'L_n.+1(G) \subset 'L_n(G).
+Lemma lcn_subS n G : 'L_n.+1(G) \subset 'L_n(G).

-Lemma lcn_normalS n G : 'L_n.+1(G) <| 'L_n(G).
+Lemma lcn_normalS n G : 'L_n.+1(G) <| 'L_n(G).

-Lemma lcn_central n G : 'L_n(G) / 'L_n.+1(G) \subset 'Z(G / 'L_n.+1(G)).
+Lemma lcn_central n G : 'L_n(G) / 'L_n.+1(G) \subset 'Z(G / 'L_n.+1(G)).

-Lemma lcn_sub_leq m n G : n m 'L_m(G) \subset 'L_n(G).
+Lemma lcn_sub_leq m n G : n m 'L_m(G) \subset 'L_n(G).

-Lemma lcnS n A B : A \subset B 'L_n(A) \subset 'L_n(B).
+Lemma lcnS n A B : A \subset B 'L_n(A) \subset 'L_n(B).

-Lemma lcn_cprod n A B G : A \* B = G 'L_n(A) \* 'L_n(B) = 'L_n(G).
+Lemma lcn_cprod n A B G : A \* B = G 'L_n(A) \* 'L_n(B) = 'L_n(G).

-Lemma lcn_dprod n A B G : A \x B = G 'L_n(A) \x 'L_n(B) = 'L_n(G).
+Lemma lcn_dprod n A B G : A \x B = G 'L_n(A) \x 'L_n(B) = 'L_n(G).

-Lemma der_cprod n A B G : A \* B = G A^`(n) \* B^`(n) = G^`(n).
+Lemma der_cprod n A B G : A \* B = G A^`(n) \* B^`(n) = G^`(n).

-Lemma der_dprod n A B G : A \x B = G A^`(n) \x B^`(n) = G^`(n).
+Lemma der_dprod n A B G : A \x B = G A^`(n) \x B^`(n) = G^`(n).

-Lemma lcn_bigcprod n I r P (F : I {set gT}) G :
-    \big[cprod/1]_(i <- r | P i) F i = G
-  \big[cprod/1]_(i <- r | P i) 'L_n(F i) = 'L_n(G).
+Lemma lcn_bigcprod n I r P (F : I {set gT}) G :
+    \big[cprod/1]_(i <- r | P i) F i = G
+  \big[cprod/1]_(i <- r | P i) 'L_n(F i) = 'L_n(G).

-Lemma lcn_bigdprod n I r P (F : I {set gT}) G :
-    \big[dprod/1]_(i <- r | P i) F i = G
-  \big[dprod/1]_(i <- r | P i) 'L_n(F i) = 'L_n(G).
+Lemma lcn_bigdprod n I r P (F : I {set gT}) G :
+    \big[dprod/1]_(i <- r | P i) F i = G
+  \big[dprod/1]_(i <- r | P i) 'L_n(F i) = 'L_n(G).

-Lemma der_bigcprod n I r P (F : I {set gT}) G :
-    \big[cprod/1]_(i <- r | P i) F i = G
-  \big[cprod/1]_(i <- r | P i) (F i)^`(n) = G^`(n).
+Lemma der_bigcprod n I r P (F : I {set gT}) G :
+    \big[cprod/1]_(i <- r | P i) F i = G
+  \big[cprod/1]_(i <- r | P i) (F i)^`(n) = G^`(n).

-Lemma der_bigdprod n I r P (F : I {set gT}) G :
-    \big[dprod/1]_(i <- r | P i) F i = G
-  \big[dprod/1]_(i <- r | P i) (F i)^`(n) = G^`(n).
+Lemma der_bigdprod n I r P (F : I {set gT}) G :
+    \big[dprod/1]_(i <- r | P i) F i = G
+  \big[dprod/1]_(i <- r | P i) (F i)^`(n) = G^`(n).

-Lemma nilpotent_class G : nilpotent G = (nil_class G < #|G|).
+Lemma nilpotent_class G : nilpotent G = (nil_class G < #|G|).

Lemma lcn_nil_classP n G :
-  nilpotent G reflect ('L_n.+1(G) = 1) (nil_class G n).
+  nilpotent G reflect ('L_n.+1(G) = 1) (nil_class G n).

-Lemma lcnP G : reflect ( n, 'L_n.+1(G) = 1) (nilpotent G).
+Lemma lcnP G : reflect ( n, 'L_n.+1(G) = 1) (nilpotent G).

-Lemma abelian_nil G : abelian G nilpotent G.
+Lemma abelian_nil G : abelian G nilpotent G.

-Lemma nil_class0 G : (nil_class G == 0) = (G :==: 1).
+Lemma nil_class0 G : (nil_class G == 0) = (G :==: 1).

-Lemma nil_class1 G : (nil_class G 1) = abelian G.
+Lemma nil_class1 G : (nil_class G 1) = abelian G.

-Lemma cprod_nil A B G : A \* B = G nilpotent G = nilpotent A && nilpotent B.
+Lemma cprod_nil A B G : A \* B = G nilpotent G = nilpotent A && nilpotent B.

Lemma mulg_nil G H :
-  H \subset 'C(G) nilpotent (G × H) = nilpotent G && nilpotent H.
+  H \subset 'C(G) nilpotent (G × H) = nilpotent G && nilpotent H.

-Lemma dprod_nil A B G : A \x B = G nilpotent G = nilpotent A && nilpotent B.
+Lemma dprod_nil A B G : A \x B = G nilpotent G = nilpotent A && nilpotent B.

-Lemma bigdprod_nil I r (P : pred I) (A_ : I {set gT}) G :
-  \big[dprod/1]_(i <- r | P i) A_ i = G
-   ( i, P i nilpotent (A_ i)) nilpotent G.
+Lemma bigdprod_nil I r (P : pred I) (A_ : I {set gT}) G :
+  \big[dprod/1]_(i <- r | P i) A_ i = G
+   ( i, P i nilpotent (A_ i)) nilpotent G.

End LowerCentral.

-Notation "''L_' n ( G )" := (lower_central_at_group n G) : Group_scope.
+Notation "''L_' n ( G )" := (lower_central_at_group n G) : Group_scope.

-Lemma lcn_cont n : GFunctor.continuous (lower_central_at n).
+Lemma lcn_cont n : GFunctor.continuous (@lower_central_at n).

-Canonical lcn_igFun n := [igFun by lcn_sub^~ n & lcn_cont n].
-Canonical lcn_gFun n := [gFun by lcn_cont n].
-Canonical lcn_mgFun n := [mgFun by fun _ G H ⇒ @lcnS _ n G H].
+Canonical lcn_igFun n := [igFun by lcn_sub^~ n & lcn_cont n].
+Canonical lcn_gFun n := [gFun by lcn_cont n].
+Canonical lcn_mgFun n := [mgFun by fun _ G H ⇒ @lcnS _ n G H].

Section UpperCentralFunctor.

-Variable n : nat.
+Variable n : nat.
Implicit Type gT : finGroupType.

-Lemma ucn_pmap : hZ : GFunctor.pmap, @upper_central_at n = hZ.
+Lemma ucn_pmap : hZ : GFunctor.pmap, @upper_central_at n = hZ.

@@ -297,107 +296,107 @@

-Lemma ucn_group_set gT (G : {group gT}) : group_set 'Z_n(G).
+Lemma ucn_group_set gT (G : {group gT}) : group_set 'Z_n(G).

Canonical upper_central_at_group gT G := Group (@ucn_group_set gT G).

-Lemma ucn_sub gT (G : {group gT}) : 'Z_n(G) \subset G.
+Lemma ucn_sub gT (G : {group gT}) : 'Z_n(G) \subset G.

-Lemma morphim_ucn : GFunctor.pcontinuous (upper_central_at n).
+Lemma morphim_ucn : GFunctor.pcontinuous (@upper_central_at n).

-Canonical ucn_igFun := [igFun by ucn_sub & morphim_ucn].
-Canonical ucn_gFun := [gFun by morphim_ucn].
-Canonical ucn_pgFun := [pgFun by morphim_ucn].
+Canonical ucn_igFun := [igFun by ucn_sub & morphim_ucn].
+Canonical ucn_gFun := [gFun by morphim_ucn].
+Canonical ucn_pgFun := [pgFun by morphim_ucn].

-Variable (gT : finGroupType) (G : {group gT}).
+Variable (gT : finGroupType) (G : {group gT}).

-Lemma ucn_char : 'Z_n(G) \char G.
-Lemma ucn_norm : G \subset 'N('Z_n(G)).
-Lemma ucn_normal : 'Z_n(G) <| G.
+Lemma ucn_char : 'Z_n(G) \char G.
+Lemma ucn_norm : G \subset 'N('Z_n(G)).
+Lemma ucn_normal : 'Z_n(G) <| G.

End UpperCentralFunctor.

-Notation "''Z_' n ( G )" := (upper_central_at_group n G) : Group_scope.
+Notation "''Z_' n ( G )" := (upper_central_at_group n G) : Group_scope.

Section UpperCentral.

Variable gT : finGroupType.
-Implicit Types (A B : {set gT}) (G H : {group gT}).
+Implicit Types (A B : {set gT}) (G H : {group gT}).

-Lemma ucn0 A : 'Z_0(A) = 1.
+Lemma ucn0 A : 'Z_0(A) = 1.

-Lemma ucnSn n A : 'Z_n.+1(A) = coset 'Z_n(A) @*^-1 'Z(A / 'Z_n(A)).
+Lemma ucnSn n A : 'Z_n.+1(A) = coset 'Z_n(A) @*^-1 'Z(A / 'Z_n(A)).

-Lemma ucnE n A : 'Z_n(A) = upper_central_at_rec n A.
+Lemma ucnE n A : 'Z_n(A) = upper_central_at_rec n A.

-Lemma ucn_subS n G : 'Z_n(G) \subset 'Z_n.+1(G).
+Lemma ucn_subS n G : 'Z_n(G) \subset 'Z_n.+1(G).

-Lemma ucn_sub_geq m n G : n m 'Z_m(G) \subset 'Z_n(G).
+Lemma ucn_sub_geq m n G : n m 'Z_m(G) \subset 'Z_n(G).

-Lemma ucn_central n G : 'Z_n.+1(G) / 'Z_n(G) = 'Z(G / 'Z_n(G)).
+Lemma ucn_central n G : 'Z_n.+1(G) / 'Z_n(G) = 'Z(G / 'Z_n(G)).

-Lemma ucn_normalS n G : 'Z_n(G) <| 'Z_n.+1(G).
+Lemma ucn_normalS n G : 'Z_n(G) <| 'Z_n.+1(G).

-Lemma ucn_comm n G : [~: 'Z_n.+1(G), G] \subset 'Z_n(G).
+Lemma ucn_comm n G : [~: 'Z_n.+1(G), G] \subset 'Z_n(G).

-Lemma ucn1 G : 'Z_1(G) = 'Z(G).
+Lemma ucn1 G : 'Z_1(G) = 'Z(G).

-Lemma ucnSnR n G : 'Z_n.+1(G) = [set x in G | [~: [set x], G] \subset 'Z_n(G)].
+Lemma ucnSnR n G : 'Z_n.+1(G) = [set x in G | [~: [set x], G] \subset 'Z_n(G)].

-Lemma ucn_cprod n A B G : A \* B = G 'Z_n(A) \* 'Z_n(B) = 'Z_n(G).
+Lemma ucn_cprod n A B G : A \* B = G 'Z_n(A) \* 'Z_n(B) = 'Z_n(G).

-Lemma ucn_dprod n A B G : A \x B = G 'Z_n(A) \x 'Z_n(B) = 'Z_n(G).
+Lemma ucn_dprod n A B G : A \x B = G 'Z_n(A) \x 'Z_n(B) = 'Z_n(G).

-Lemma ucn_bigcprod n I r P (F : I {set gT}) G :
-    \big[cprod/1]_(i <- r | P i) F i = G
-  \big[cprod/1]_(i <- r | P i) 'Z_n(F i) = 'Z_n(G).
+Lemma ucn_bigcprod n I r P (F : I {set gT}) G :
+    \big[cprod/1]_(i <- r | P i) F i = G
+  \big[cprod/1]_(i <- r | P i) 'Z_n(F i) = 'Z_n(G).

-Lemma ucn_bigdprod n I r P (F : I {set gT}) G :
-    \big[dprod/1]_(i <- r | P i) F i = G
-  \big[dprod/1]_(i <- r | P i) 'Z_n(F i) = 'Z_n(G).
+Lemma ucn_bigdprod n I r P (F : I {set gT}) G :
+    \big[dprod/1]_(i <- r | P i) F i = G
+  \big[dprod/1]_(i <- r | P i) 'Z_n(F i) = 'Z_n(G).

-Lemma ucn_lcnP n G : ('L_n.+1(G) == 1) = ('Z_n(G) == G).
+Lemma ucn_lcnP n G : ('L_n.+1(G) == 1) = ('Z_n(G) == G).

-Lemma ucnP G : reflect ( n, 'Z_n(G) = G) (nilpotent G).
+Lemma ucnP G : reflect ( n, 'Z_n(G) = G) (nilpotent G).

Lemma ucn_nil_classP n G :
-  nilpotent G reflect ('Z_n(G) = G) (nil_class G n).
+  nilpotent G reflect ('Z_n(G) = G) (nil_class G n).

-Lemma ucn_id n G : 'Z_n('Z_n(G)) = 'Z_n(G).
+Lemma ucn_id n G : 'Z_n('Z_n(G)) = 'Z_n(G).

-Lemma ucn_nilpotent n G : nilpotent 'Z_n(G).
+Lemma ucn_nilpotent n G : nilpotent 'Z_n(G).

-Lemma nil_class_ucn n G : nil_class 'Z_n(G) n.
+Lemma nil_class_ucn n G : nil_class 'Z_n(G) n.

End UpperCentral.
@@ -406,27 +405,27 @@ Section MorphNil.

-Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).
-Implicit Type G : {group aT}.
+Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).
+Implicit Type G : {group aT}.

-Lemma morphim_lcn n G : G \subset D f @* 'L_n(G) = 'L_n(f @* G).
+Lemma morphim_lcn n G : G \subset D f @* 'L_n(G) = 'L_n(f @* G).

-Lemma injm_ucn n G : 'injm f G \subset D f @* 'Z_n(G) = 'Z_n(f @* G).
+Lemma injm_ucn n G : 'injm f G \subset D f @* 'Z_n(G) = 'Z_n(f @* G).

-Lemma morphim_nil G : nilpotent G nilpotent (f @* G).
+Lemma morphim_nil G : nilpotent G nilpotent (f @* G).

-Lemma injm_nil G : 'injm f G \subset D nilpotent (f @* G) = nilpotent G.
+Lemma injm_nil G : 'injm f G \subset D nilpotent (f @* G) = nilpotent G.

-Lemma nil_class_morphim G : nilpotent G nil_class (f @* G) nil_class G.
+Lemma nil_class_morphim G : nilpotent G nil_class (f @* G) nil_class G.

Lemma nil_class_injm G :
-  'injm f G \subset D nil_class (f @* G) = nil_class G.
+  'injm f G \subset D nil_class (f @* G) = nil_class G.

End MorphNil.
@@ -436,52 +435,52 @@
Variables gT : finGroupType.
-Implicit Types (rT : finGroupType) (G H : {group gT}).
+Implicit Types (rT : finGroupType) (G H : {group gT}).

-Lemma quotient_ucn_add m n G : 'Z_(m + n)(G) / 'Z_n(G) = 'Z_m(G / 'Z_n(G)).
+Lemma quotient_ucn_add m n G : 'Z_(m + n)(G) / 'Z_n(G) = 'Z_m(G / 'Z_n(G)).

-Lemma isog_nil rT G (L : {group rT}) : G \isog L nilpotent G = nilpotent L.
+Lemma isog_nil rT G (L : {group rT}) : G \isog L nilpotent G = nilpotent L.

-Lemma isog_nil_class rT G (L : {group rT}) :
-  G \isog L nil_class G = nil_class L.
+Lemma isog_nil_class rT G (L : {group rT}) :
+  G \isog L nil_class G = nil_class L.

-Lemma quotient_nil G H : nilpotent G nilpotent (G / H).
+Lemma quotient_nil G H : nilpotent G nilpotent (G / H).

-Lemma quotient_center_nil G : nilpotent (G / 'Z(G)) = nilpotent G.
+Lemma quotient_center_nil G : nilpotent (G / 'Z(G)) = nilpotent G.

Lemma nil_class_quotient_center G :
-  nilpotent (G) nil_class (G / 'Z(G)) = (nil_class G).-1.
+  nilpotent (G) nil_class (G / 'Z(G)) = (nil_class G).-1.

Lemma nilpotent_sub_norm G H :
-  nilpotent G H \subset G 'N_G(H) \subset H G :=: H.
+  nilpotent G H \subset G 'N_G(H) \subset H G :=: H.

Lemma nilpotent_proper_norm G H :
-  nilpotent G H \proper G H \proper 'N_G(H).
+  nilpotent G H \proper G H \proper 'N_G(H).

-Lemma nilpotent_subnormal G H : nilpotent G H \subset G H <|<| G.
+Lemma nilpotent_subnormal G H : nilpotent G H \subset G H <|<| G.

-Lemma TI_center_nil G H : nilpotent G H <| G H :&: 'Z(G) = 1 H :=: 1.
+Lemma TI_center_nil G H : nilpotent G H <| G H :&: 'Z(G) = 1 H :=: 1.

Lemma meet_center_nil G H :
-  nilpotent G H <| G H :!=: 1 H :&: 'Z(G) != 1.
+  nilpotent G H <| G H :!=: 1 H :&: 'Z(G) != 1.

-Lemma center_nil_eq1 G : nilpotent G ('Z(G) == 1) = (G :==: 1).
+Lemma center_nil_eq1 G : nilpotent G ('Z(G) == 1) = (G :==: 1).

Lemma cyclic_nilpotent_quo_der1_cyclic G :
-  nilpotent G cyclic (G / G^`(1)) cyclic G.
+  nilpotent G cyclic (G / G^`(1)) cyclic G.

End QuotientNil.
@@ -491,26 +490,26 @@
Variable gT : finGroupType.
-Implicit Types G H : {group gT}.
+Implicit Types G H : {group gT}.

-Lemma nilpotent_sol G : nilpotent G solvable G.
+Lemma nilpotent_sol G : nilpotent G solvable G.

-Lemma abelian_sol G : abelian G solvable G.
+Lemma abelian_sol G : abelian G solvable G.

-Lemma solvable1 : solvable [1 gT].
+Lemma solvable1 : solvable [1 gT].

-Lemma solvableS G H : H \subset G solvable G solvable H.
+Lemma solvableS G H : H \subset G solvable G solvable H.

Lemma sol_der1_proper G H :
-  solvable G H \subset G H :!=: 1 H^`(1) \proper H.
+  solvable G H \subset G H :!=: 1 H^`(1) \proper H.

-Lemma derivedP G : reflect ( n, G^`(n) = 1) (solvable G).
+Lemma derivedP G : reflect ( n, G^`(n) = 1) (solvable G).

End Solvable.
@@ -519,14 +518,14 @@ Section MorphSol.

-Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
-Variable G : {group gT}.
+Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
+Variable G : {group gT}.

-Lemma morphim_sol : solvable G solvable (f @* G).
+Lemma morphim_sol : solvable G solvable (f @* G).

-Lemma injm_sol : 'injm f G \subset D solvable (f @* G) = solvable G.
+Lemma injm_sol : 'injm f G \subset D solvable (f @* G) = solvable G.

End MorphSol.
@@ -536,19 +535,19 @@
Variables gT rT : finGroupType.
-Implicit Types G H K : {group gT}.
+Implicit Types G H K : {group gT}.

-Lemma isog_sol G (L : {group rT}) : G \isog L solvable G = solvable L.
+Lemma isog_sol G (L : {group rT}) : G \isog L solvable G = solvable L.

-Lemma quotient_sol G H : solvable G solvable (G / H).
+Lemma quotient_sol G H : solvable G solvable (G / H).

-Lemma series_sol G H : H <| G solvable G = solvable H && solvable (G / H).
+Lemma series_sol G H : H <| G solvable G = solvable H && solvable (G / H).

-Lemma metacyclic_sol G : metacyclic G solvable G.
+Lemma metacyclic_sol G : metacyclic G solvable G.

End QuotientSol.
-- cgit v1.2.3