From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.solvable.maximal.html | 808 ++++++++++++++++++++++++++++ 1 file changed, 808 insertions(+) create mode 100644 docs/htmldoc/mathcomp.solvable.maximal.html (limited to 'docs/htmldoc/mathcomp.solvable.maximal.html') diff --git a/docs/htmldoc/mathcomp.solvable.maximal.html b/docs/htmldoc/mathcomp.solvable.maximal.html new file mode 100644 index 0000000..af71368 --- /dev/null +++ b/docs/htmldoc/mathcomp.solvable.maximal.html @@ -0,0 +1,808 @@ + + + + + +mathcomp.solvable.maximal + + + + +
+ + + +
+ +

Library mathcomp.solvable.maximal

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ This file establishes basic properties of several important classes of + maximal subgroups: maximal, max and min normal, simple, characteristically + simple subgroups, the Frattini and Fitting subgroups, the Thompson + critical subgroup, special and extra-special groups, and self-centralising + normal (SCN) subgroups. In detail, we define: + charsimple G == G is characteristically simple (it has no nontrivial + characteristic subgroups, and is nontrivial) + 'Phi(G) == the Frattini subgroup of G, i.e., the intersection of + all its maximal proper subgroups. + 'F(G) == the Fitting subgroup of G, i.e., the largest normal + nilpotent subgroup of G (defined as the (direct) + product of all the p-cores of G). + critical C G == C is a critical subgroup of G: C is characteristic + (but not functorial) in G, the center of C contains + both its Frattini subgroup and the commutator [G, C], + and is equal to the centraliser of C in G. The + Thompson_critical theorem provides critical subgroups + for p-groups; we also show that in this case the + centraliser of C in Aut G is a p-group as well. + special G == G is a special group: its center, Frattini, and + derived sugroups coincide (we follow Aschbacher in + not considering nontrivial elementary abelian groups + as special); we show that a p-group factors under + coprime action into special groups (Aschbacher 24.7). + extraspecial G == G is a special group whose center has prime order + (hence G is non-abelian). + 'SCN(G) == the set of self-centralising normal abelian subgroups + of G (the A <| G such that 'C_G(A) = A). + 'SCN_n(G) == the subset of 'SCN(G) containing all groups with rank + at least n (i.e., A \in 'SCN(G) and 'm(A) >= n). +
+
+ +
+Set Implicit Arguments.
+ +
+Import GroupScope.
+ +
+Section Defs.
+ +
+Variable gT : finGroupType.
+Implicit Types (A B D : {set gT}) (G : {group gT}).
+ +
+Definition charsimple A := [min A of G | G :!=: 1 & G \char A].
+ +
+Definition Frattini A := \bigcap_(G : {group gT} | maximal_eq G A) G.
+ +
+Canonical Frattini_group A : {group gT} := Eval hnf in [group of Frattini A].
+ +
+Definition Fitting A := \big[dprod/1]_(p <- primes #|A|) 'O_p(A).
+ +
+Lemma Fitting_group_set G : group_set (Fitting G).
+ +
+Canonical Fitting_group G := group (Fitting_group_set G).
+ +
+Definition critical A B :=
+  [/\ A \char B,
+      Frattini A \subset 'Z(A),
+      [~: B, A] \subset 'Z(A)
+   & 'C_B(A) = 'Z(A)].
+ +
+Definition special A := Frattini A = 'Z(A) A^`(1) = 'Z(A).
+ +
+Definition extraspecial A := special A prime #|'Z(A)|.
+ +
+Definition SCN B := [set A : {group gT} | A <| B & 'C_B(A) == A].
+ +
+Definition SCN_at n B := [set A in SCN B | n 'r(A)].
+ +
+End Defs.
+ +
+ +
+ +
+Notation "''Phi' ( A )" := (Frattini A)
+  (at level 8, format "''Phi' ( A )") : group_scope.
+Notation "''Phi' ( G )" := (Frattini_group G) : Group_scope.
+ +
+Notation "''F' ( G )" := (Fitting G)
+  (at level 8, format "''F' ( G )") : group_scope.
+Notation "''F' ( G )" := (Fitting_group G) : Group_scope.
+ +
+Notation "''SCN' ( B )" := (SCN B)
+  (at level 8, format "''SCN' ( B )") : group_scope.
+Notation "''SCN_' n ( B )" := (SCN_at n B)
+  (at level 8, n at level 2, format "''SCN_' n ( B )") : group_scope.
+ +
+Section PMax.
+ +
+Variables (gT : finGroupType) (p : nat) (P M : {group gT}).
+Hypothesis pP : p.-group P.
+ +
+Lemma p_maximal_normal : maximal M P M <| P.
+ +
+Lemma p_maximal_index : maximal M P #|P : M| = p.
+ +
+Lemma p_index_maximal : M \subset P prime #|P : M| maximal M P.
+ +
+End PMax.
+ +
+Section Frattini.
+ +
+Variables gT : finGroupType.
+Implicit Type G M : {group gT}.
+ +
+Lemma Phi_sub G : 'Phi(G) \subset G.
+ +
+Lemma Phi_sub_max G M : maximal M G 'Phi(G) \subset M.
+ +
+Lemma Phi_proper G : G :!=: 1 'Phi(G) \proper G.
+ +
+Lemma Phi_nongen G X : 'Phi(G) <*> X = G <<X>> = G.
+ +
+Lemma Frattini_continuous (rT : finGroupType) G (f : {morphism G >-> rT}) :
+  f @* 'Phi(G) \subset 'Phi(f @* G).
+ +
+End Frattini.
+ +
+Canonical Frattini_igFun := [igFun by Phi_sub & Frattini_continuous].
+Canonical Frattini_gFun := [gFun by Frattini_continuous].
+ +
+Section Frattini0.
+ +
+Variable gT : finGroupType.
+Implicit Types (rT : finGroupType) (D G : {group gT}).
+ +
+Lemma Phi_char G : 'Phi(G) \char G.
+ +
+Lemma Phi_normal G : 'Phi(G) <| G.
+ +
+Lemma injm_Phi rT D G (f : {morphism D >-> rT}) :
+  'injm f G \subset D f @* 'Phi(G) = 'Phi(f @* G).
+ +
+Lemma isog_Phi rT G (H : {group rT}) : G \isog H 'Phi(G) \isog 'Phi(H).
+ +
+Lemma PhiJ G x : 'Phi(G :^ x) = 'Phi(G) :^ x.
+ +
+End Frattini0.
+ +
+Section Frattini2.
+ +
+Variables gT : finGroupType.
+Implicit Type G : {group gT}.
+ +
+Lemma Phi_quotient_id G : 'Phi (G / 'Phi(G)) = 1.
+ +
+Lemma Phi_quotient_cyclic G : cyclic (G / 'Phi(G)) cyclic G.
+ +
+Variables (p : nat) (P : {group gT}).
+ +
+Lemma trivg_Phi : p.-group P ('Phi(P) == 1) = p.-abelem P.
+ +
+End Frattini2.
+ +
+Section Frattini3.
+ +
+Variables (gT : finGroupType) (p : nat) (P : {group gT}).
+Hypothesis pP : p.-group P.
+ +
+Lemma Phi_quotient_abelem : p.-abelem (P / 'Phi(P)).
+ +
+Lemma Phi_joing : 'Phi(P) = P^`(1) <*> 'Mho^1(P).
+ +
+Lemma Phi_Mho : abelian P 'Phi(P) = 'Mho^1(P).
+ +
+End Frattini3.
+ +
+Section Frattini4.
+ +
+Variables (p : nat) (gT : finGroupType).
+Implicit Types (rT : finGroupType) (P G H K D : {group gT}).
+ +
+Lemma PhiS G H : p.-group H G \subset H 'Phi(G) \subset 'Phi(H).
+ +
+Lemma morphim_Phi rT P D (f : {morphism D >-> rT}) :
+  p.-group P P \subset D f @* 'Phi(P) = 'Phi(f @* P).
+ +
+Lemma quotient_Phi P H :
+  p.-group P P \subset 'N(H) 'Phi(P) / H = 'Phi(P / H).
+ +
+
+ +
+ This is Aschbacher (23.2) +
+
+Lemma Phi_min G H :
+  p.-group G G \subset 'N(H) p.-abelem (G / H) 'Phi(G) \subset H.
+ +
+Lemma Phi_cprod G H K :
+  p.-group G H \* K = G 'Phi(H) \* 'Phi(K) = 'Phi(G).
+ +
+Lemma Phi_mulg H K :
+    p.-group H p.-group K K \subset 'C(H)
+  'Phi(H × K) = 'Phi(H) × 'Phi(K).
+ +
+Lemma charsimpleP G :
+  reflect (G :!=: 1 K, K :!=: 1 K \char G K :=: G)
+          (charsimple G).
+ +
+End Frattini4.
+ +
+Section Fitting.
+ +
+Variable gT : finGroupType.
+Implicit Types (p : nat) (G H : {group gT}).
+ +
+Lemma Fitting_normal G : 'F(G) <| G.
+ +
+Lemma Fitting_sub G : 'F(G) \subset G.
+ +
+Lemma Fitting_nil G : nilpotent 'F(G).
+ +
+Lemma Fitting_max G H : H <| G nilpotent H H \subset 'F(G).
+ +
+Lemma pcore_Fitting pi G : 'O_pi('F(G)) \subset 'O_pi(G).
+ +
+Lemma p_core_Fitting p G : 'O_p('F(G)) = 'O_p(G).
+ +
+Lemma nilpotent_Fitting G : nilpotent G 'F(G) = G.
+ +
+Lemma Fitting_eq_pcore p G : 'O_p^'(G) = 1 'F(G) = 'O_p(G).
+ +
+Lemma FittingEgen G :
+  'F(G) = <<\bigcup_(p < #|G|.+1 | (p : nat) \in \pi(G)) 'O_p(G)>>.
+ +
+End Fitting.
+ +
+Section FittingFun.
+ +
+Implicit Types gT rT : finGroupType.
+ +
+Lemma morphim_Fitting : GFunctor.pcontinuous Fitting.
+ +
+Lemma FittingS gT (G H : {group gT}) : H \subset G H :&: 'F(G) \subset 'F(H).
+ +
+Lemma FittingJ gT (G : {group gT}) x : 'F(G :^ x) = 'F(G) :^ x.
+ +
+End FittingFun.
+ +
+Canonical Fitting_igFun := [igFun by Fitting_sub & morphim_Fitting].
+Canonical Fitting_gFun := [gFun by morphim_Fitting].
+Canonical Fitting_pgFun := [pgFun by morphim_Fitting].
+ +
+Section IsoFitting.
+ +
+Variables (gT rT : finGroupType) (G D : {group gT}) (f : {morphism D >-> rT}).
+ +
+Lemma Fitting_char : 'F(G) \char G.
+ +
+Lemma injm_Fitting : 'injm f G \subset D f @* 'F(G) = 'F(f @* G).
+ +
+Lemma isog_Fitting (H : {group rT}) : G \isog H 'F(G) \isog 'F(H).
+ +
+End IsoFitting.
+ +
+Section CharSimple.
+ +
+Variable gT : finGroupType.
+Implicit Types (rT : finGroupType) (G H K L : {group gT}) (p : nat).
+ +
+Lemma minnormal_charsimple G H : minnormal H G charsimple H.
+ +
+Lemma maxnormal_charsimple G H L :
+  G <| L maxnormal H G L charsimple (G / H).
+ +
+Lemma abelem_split_dprod rT p (A B : {group rT}) :
+  p.-abelem A B \subset A C : {group rT}, B \x C = A.
+ +
+Lemma p_abelem_split1 rT p (A : {group rT}) x :
+     p.-abelem A x \in A
+   B : {group rT}, [/\ B \subset A, #|B| = #|A| %/ #[x] & <[x]> \x B = A].
+ +
+Lemma abelem_charsimple p G : p.-abelem G G :!=: 1 charsimple G.
+ +
+Lemma charsimple_dprod G : charsimple G
+   H : {group gT}, [/\ H \subset G, simple H
+                         & exists2 I : {set {perm gT}}, I \subset Aut G
+                         & \big[dprod/1]_(f in I) f @: H = G].
+ +
+Lemma simple_sol_prime G : solvable G simple G prime #|G|.
+ +
+Lemma charsimple_solvable G : charsimple G solvable G is_abelem G.
+ +
+Lemma minnormal_solvable L G H :
+    minnormal H L H \subset G solvable G
+  [/\ L \subset 'N(H), H :!=: 1 & is_abelem H].
+ +
+Lemma solvable_norm_abelem L G :
+    solvable G G <| L G :!=: 1
+   H : {group gT}, [/\ H \subset G, H <| L, H :!=: 1 & is_abelem H].
+ +
+Lemma trivg_Fitting G : solvable G ('F(G) == 1) = (G :==: 1).
+ +
+Lemma Fitting_pcore pi G : 'F('O_pi(G)) = 'O_pi('F(G)).
+ +
+End CharSimple.
+ +
+Section SolvablePrimeFactor.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+ +
+Lemma index_maxnormal_sol_prime (H : {group gT}) :
+  solvable G maxnormal H G G prime #|G : H|.
+ +
+Lemma sol_prime_factor_exists :
+  solvable G G :!=: 1 {H : {group gT} | H <| G & prime #|G : H| }.
+ +
+End SolvablePrimeFactor.
+ +
+Section Special.
+ +
+Variables (gT : finGroupType) (p : nat) (A G : {group gT}).
+ +
+
+ +
+ This is Aschbacher (23.7) +
+ + +
+ Aschbacher 24.7 (replaces Gorenstein 5.3.7) +
+
+Theorem abelian_charsimple_special :
+    p.-group G coprime #|G| #|A| [~: G, A] = G
+    \bigcup_(H : {group gT} | (H \char G) && abelian H) H \subset 'C(A)
+  special G 'C_G(A) = 'Z(G).
+ +
+End Special.
+ +
+Section Extraspecial.
+ +
+Variables (p : nat) (gT rT : finGroupType).
+Implicit Types D E F G H K M R S T U : {group gT}.
+ +
+Section Basic.
+ +
+Variable S : {group gT}.
+Hypotheses (pS : p.-group S) (esS : extraspecial S).
+ +
+Let pZ : p.-group 'Z(S) := pgroupS (center_sub S) pS.
+Lemma extraspecial_prime : prime p.
+ +
+Lemma card_center_extraspecial : #|'Z(S)| = p.
+ +
+Lemma min_card_extraspecial : #|S| p ^ 3.
+ +
+End Basic.
+ +
+Lemma card_p3group_extraspecial E :
+  prime p #|E| = (p ^ 3)%N #|'Z(E)| = p extraspecial E.
+ +
+Lemma p3group_extraspecial G :
+  p.-group G ~~ abelian G logn p #|G| 3 extraspecial G.
+ +
+Lemma extraspecial_nonabelian G : extraspecial G ~~ abelian G.
+ +
+Lemma exponent_2extraspecial G : 2.-group G extraspecial G exponent G = 4.
+ +
+Lemma injm_special D G (f : {morphism D >-> rT}) :
+  'injm f G \subset D special G special (f @* G).
+ +
+Lemma injm_extraspecial D G (f : {morphism D >-> rT}) :
+  'injm f G \subset D extraspecial G extraspecial (f @* G).
+ +
+Lemma isog_special G (R : {group rT}) :
+  G \isog R special G special R.
+ +
+Lemma isog_extraspecial G (R : {group rT}) :
+  G \isog R extraspecial G extraspecial R.
+ +
+Lemma cprod_extraspecial G H K :
+    p.-group G H \* K = G H :&: K = 'Z(H)
+  extraspecial H extraspecial K extraspecial G.
+ +
+
+ +
+ Lemmas bundling Aschbacher (23.10) with (19.1), (19.2), (19.12) and (20.8) +
+
+Section ExtraspecialFormspace.
+ +
+Variable G : {group gT}.
+Hypotheses (pG : p.-group G) (esG : extraspecial G).
+ +
+Let p_pr := extraspecial_prime pG esG.
+Let oZ := card_center_extraspecial pG esG.
+Let p_gt1 := prime_gt1 p_pr.
+Let p_gt0 := prime_gt0 p_pr.
+ +
+
+ +
+ This encasulates Aschbacher (23.10)(1). +
+ + +
+ This is the tranposition of the hyperplane dimension theorem (Aschbacher + (19.1)) to subgroups of an extraspecial group. +
+ + +
+ This is the tranposition of the orthogonal subspace dimension theorem + (Aschbacher (19.2)) to subgroups of an extraspecial group. +
+ + +
+ This is the tranposition of the proof that a singular vector is contained + in a hyperbolic plane (Aschbacher (19.12)) to subgroups of an extraspecial + group. +
+
+Lemma split1_extraspecial x :
+    x \in G :\: 'Z(G)
+  {E : {group gT} & {R : {group gT} |
+    [/\ #|E| = (p ^ 3)%N #|R| = #|G| %/ p ^ 2,
+        E \* R = G E :&: R = 'Z(E),
+        'Z(E) = 'Z(G) 'Z(R) = 'Z(G),
+        extraspecial E x \in E
+      & if abelian R then R :=: 'Z(G) else extraspecial R]}}.
+ +
+
+ +
+ This is the tranposition of the proof that the dimension of any maximal + totally singular subspace is equal to the Witt index (Aschbacher (20.8)), + to subgroups of an extraspecial group (in a slightly more general form, + since we allow for p != 2). + Note that Aschbacher derives this from the Witt lemma, which we avoid. +
+ + +
+ This is B & G, Theorem 4.15, as done in Aschbacher (23.8) +
+ + +
+ This is part of Aschbacher (23.13) and (23.14). +
+
+Theorem extraspecial_structure S : p.-group S extraspecial S
+  {Es | all (fun E ⇒ (#|E| == p ^ 3)%N && ('Z(E) == 'Z(S))) Es
+      & \big[cprod/1%g]_(E <- Es) E \* 'Z(S) = S}.
+ +
+Section StructureCorollaries.
+ +
+Variable S : {group gT}.
+Hypotheses (pS : p.-group S) (esS : extraspecial S).
+ +
+Let p_pr := extraspecial_prime pS esS.
+Let oZ := card_center_extraspecial pS esS.
+ +
+
+ +
+ This is Aschbacher (23.10)(2). +
+
+Lemma card_extraspecial : {n | n > 0 & #|S| = (p ^ n.*2.+1)%N}.
+ +
+Lemma Aut_extraspecial_full : Aut_in (Aut S) 'Z(S) \isog Aut 'Z(S).
+ +
+
+ +
+ These are the parts of Aschbacher (23.12) and exercise 8.5 that are later + used in Aschbacher (34.9), which itself replaces the informal discussion + quoted from Gorenstein in the proof of B & G, Theorem 2.5. +
+
+Lemma center_aut_extraspecial k : coprime k p
+  exists2 f, f \in Aut S & z, z \in 'Z(S) f z = (z ^+ k)%g.
+ +
+End StructureCorollaries.
+ +
+End Extraspecial.
+ +
+Section SCN.
+ +
+Variables (gT : finGroupType) (p : nat) (G : {group gT}).
+Implicit Types A Z H : {group gT}.
+ +
+Lemma SCN_P A : reflect (A <| G 'C_G(A) = A) (A \in 'SCN(G)).
+ +
+Lemma SCN_abelian A : A \in 'SCN(G) abelian A.
+ +
+Lemma exponent_Ohm1_class2 H :
+  odd p p.-group H nil_class H 2 exponent 'Ohm_1(H) %| p.
+ +
+
+ +
+ SCN_max and max_SCN cover Aschbacher 23.15(1) +
+
+Lemma SCN_max A : A \in 'SCN(G) [max A | A <| G & abelian A].
+ +
+Lemma max_SCN A :
+  p.-group G [max A | A <| G & abelian A] A \in 'SCN(G).
+ +
+
+ +
+ The two other assertions of Aschbacher 23.15 state properties of the + normal series 1 <| Z = 'Ohm_1(A) <| A with A \in 'SCN(G). +
+
+ +
+Section SCNseries.
+ +
+Variables A : {group gT}.
+Hypothesis SCN_A : A \in 'SCN(G).
+ +
+Let Z := 'Ohm_1(A).
+Let cAA := SCN_abelian SCN_A.
+Let sZA: Z \subset A := Ohm_sub 1 A.
+Let nZA : A \subset 'N(Z) := sub_abelian_norm cAA sZA.
+ +
+
+ +
+ This is Aschbacher 23.15(2). +
+ + +
+ This is Aschbacher 23.15(3); note that this proof does not depend on the + maximality of A. +
+ + +
+ This is Aschbacher 23.16. +
+ + +
+ This proof of the Thompson critical lemma is adapted from Aschbacher 23.6 +
+ +
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3