From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.solvable.maximal.html | 353 ++++++++++++++--------------
1 file changed, 175 insertions(+), 178 deletions(-)
(limited to 'docs/htmldoc/mathcomp.solvable.maximal.html')
diff --git a/docs/htmldoc/mathcomp.solvable.maximal.html b/docs/htmldoc/mathcomp.solvable.maximal.html
index af71368..ba5d392 100644
--- a/docs/htmldoc/mathcomp.solvable.maximal.html
+++ b/docs/htmldoc/mathcomp.solvable.maximal.html
@@ -21,7 +21,6 @@
@@ -71,19 +70,19 @@
Variable gT : finGroupType.
-Implicit Types (A B D : {set gT}) (G : {group gT}).
+Implicit Types (A B D : {set gT}) (G : {group gT}).
-Definition charsimple A := [min A of G | G :!=: 1 & G \char A].
+Definition charsimple A := [min A of G | G :!=: 1 & G \char A].
-Definition Frattini A := \bigcap_(G : {group gT} | maximal_eq G A) G.
+Definition Frattini A := \bigcap_(G : {group gT} | maximal_eq G A) G.
-Canonical Frattini_group A : {group gT} := Eval hnf in [group of Frattini A].
+Canonical Frattini_group A : {group gT} := Eval hnf in [group of Frattini A].
-Definition Fitting A := \big[dprod/1]_(p <- primes #|A|) 'O_p(A).
+Definition Fitting A := \big[dprod/1]_(p <- primes #|A|) 'O_p(A).
Lemma Fitting_group_set G : group_set (Fitting G).
@@ -93,22 +92,22 @@
Definition critical A B :=
- [/\ A \char B,
- Frattini A \subset 'Z(A),
- [~: B, A] \subset 'Z(A)
- & 'C_B(A) = 'Z(A)].
+ [/\ A \char B,
+ Frattini A \subset 'Z(A),
+ [~: B, A] \subset 'Z(A)
+ & 'C_B(A) = 'Z(A)].
-Definition special A := Frattini A = 'Z(A) ∧ A^`(1) = 'Z(A).
+Definition special A := Frattini A = 'Z(A) ∧ A^`(1) = 'Z(A).
-Definition extraspecial A := special A ∧ prime #|'Z(A)|.
+Definition extraspecial A := special A ∧ prime #|'Z(A)|.
-Definition SCN B := [set A : {group gT} | A <| B & 'C_B(A) == A].
+Definition SCN B := [set A : {group gT} | A <| B & 'C_B(A) == A].
-Definition SCN_at n B := [set A in SCN B | n ≤ 'r(A)].
+Definition SCN_at n B := [set A in SCN B | n ≤ 'r(A)].
End Defs.
@@ -116,38 +115,36 @@
-
-
-Notation "''Phi' ( A )" := (Frattini A)
+Notation "''Phi' ( A )" := (Frattini A)
(at level 8, format "''Phi' ( A )") : group_scope.
-Notation "''Phi' ( G )" := (Frattini_group G) : Group_scope.
+Notation "''Phi' ( G )" := (Frattini_group G) : Group_scope.
-Notation "''F' ( G )" := (Fitting G)
+Notation "''F' ( G )" := (Fitting G)
(at level 8, format "''F' ( G )") : group_scope.
-Notation "''F' ( G )" := (Fitting_group G) : Group_scope.
+Notation "''F' ( G )" := (Fitting_group G) : Group_scope.
-Notation "''SCN' ( B )" := (SCN B)
+Notation "''SCN' ( B )" := (SCN B)
(at level 8, format "''SCN' ( B )") : group_scope.
-Notation "''SCN_' n ( B )" := (SCN_at n B)
+Notation "''SCN_' n ( B )" := (SCN_at n B)
(at level 8, n at level 2, format "''SCN_' n ( B )") : group_scope.
Section PMax.
-Variables (gT : finGroupType) (p : nat) (P M : {group gT}).
-Hypothesis pP : p.-group P.
+Variables (gT : finGroupType) (p : nat) (P M : {group gT}).
+Hypothesis pP : p.-group P.
-Lemma p_maximal_normal : maximal M P → M <| P.
+Lemma p_maximal_normal : maximal M P → M <| P.
-Lemma p_maximal_index : maximal M P → #|P : M| = p.
+Lemma p_maximal_index : maximal M P → #|P : M| = p.
-Lemma p_index_maximal : M \subset P → prime #|P : M| → maximal M P.
+Lemma p_index_maximal : M \subset P → prime #|P : M| → maximal M P.
End PMax.
@@ -157,53 +154,53 @@
Variables gT : finGroupType.
-Implicit Type G M : {group gT}.
+Implicit Type G M : {group gT}.
-Lemma Phi_sub G : 'Phi(G) \subset G.
+Lemma Phi_sub G : 'Phi(G) \subset G.
-Lemma Phi_sub_max G M : maximal M G → 'Phi(G) \subset M.
+Lemma Phi_sub_max G M : maximal M G → 'Phi(G) \subset M.
-Lemma Phi_proper G : G :!=: 1 → 'Phi(G) \proper G.
+Lemma Phi_proper G : G :!=: 1 → 'Phi(G) \proper G.
-Lemma Phi_nongen G X : 'Phi(G) <*> X = G → <<X>> = G.
+Lemma Phi_nongen G X : 'Phi(G) <*> X = G → <<X>> = G.
-Lemma Frattini_continuous (rT : finGroupType) G (f : {morphism G >-> rT}) :
- f @* 'Phi(G) \subset 'Phi(f @* G).
+Lemma Frattini_continuous (rT : finGroupType) G (f : {morphism G >-> rT}) :
+ f @* 'Phi(G) \subset 'Phi(f @* G).
End Frattini.
-Canonical Frattini_igFun := [igFun by Phi_sub & Frattini_continuous].
-Canonical Frattini_gFun := [gFun by Frattini_continuous].
+Canonical Frattini_igFun := [igFun by Phi_sub & Frattini_continuous].
+Canonical Frattini_gFun := [gFun by Frattini_continuous].
Section Frattini0.
Variable gT : finGroupType.
-Implicit Types (rT : finGroupType) (D G : {group gT}).
+Implicit Types (rT : finGroupType) (D G : {group gT}).
-Lemma Phi_char G : 'Phi(G) \char G.
+Lemma Phi_char G : 'Phi(G) \char G.
-Lemma Phi_normal G : 'Phi(G) <| G.
+Lemma Phi_normal G : 'Phi(G) <| G.
-Lemma injm_Phi rT D G (f : {morphism D >-> rT}) :
- 'injm f → G \subset D → f @* 'Phi(G) = 'Phi(f @* G).
+Lemma injm_Phi rT D G (f : {morphism D >-> rT}) :
+ 'injm f → G \subset D → f @* 'Phi(G) = 'Phi(f @* G).
-Lemma isog_Phi rT G (H : {group rT}) : G \isog H → 'Phi(G) \isog 'Phi(H).
+Lemma isog_Phi rT G (H : {group rT}) : G \isog H → 'Phi(G) \isog 'Phi(H).
-Lemma PhiJ G x : 'Phi(G :^ x) = 'Phi(G) :^ x.
+Lemma PhiJ G x : 'Phi(G :^ x) = 'Phi(G) :^ x.
End Frattini0.
@@ -213,19 +210,19 @@
Variables gT : finGroupType.
-Implicit Type G : {group gT}.
+Implicit Type G : {group gT}.
-Lemma Phi_quotient_id G : 'Phi (G / 'Phi(G)) = 1.
+Lemma Phi_quotient_id G : 'Phi (G / 'Phi(G)) = 1.
-Lemma Phi_quotient_cyclic G : cyclic (G / 'Phi(G)) → cyclic G.
+Lemma Phi_quotient_cyclic G : cyclic (G / 'Phi(G)) → cyclic G.
-Variables (p : nat) (P : {group gT}).
+Variables (p : nat) (P : {group gT}).
-Lemma trivg_Phi : p.-group P → ('Phi(P) == 1) = p.-abelem P.
+Lemma trivg_Phi : p.-group P → ('Phi(P) == 1) = p.-abelem P.
End Frattini2.
@@ -234,17 +231,17 @@
Section Frattini3.
-Variables (gT : finGroupType) (p : nat) (P : {group gT}).
-Hypothesis pP : p.-group P.
+Variables (gT : finGroupType) (p : nat) (P : {group gT}).
+Hypothesis pP : p.-group P.
-Lemma Phi_quotient_abelem : p.-abelem (P / 'Phi(P)).
+Lemma Phi_quotient_abelem : p.-abelem (P / 'Phi(P)).
-Lemma Phi_joing : 'Phi(P) = P^`(1) <*> 'Mho^1(P).
+Lemma Phi_joing : 'Phi(P) = P^`(1) <*> 'Mho^1(P).
-Lemma Phi_Mho : abelian P → 'Phi(P) = 'Mho^1(P).
+Lemma Phi_Mho : abelian P → 'Phi(P) = 'Mho^1(P).
End Frattini3.
@@ -253,19 +250,19 @@
Section Frattini4.
-Variables (p : nat) (gT : finGroupType).
-Implicit Types (rT : finGroupType) (P G H K D : {group gT}).
+Variables (p : nat) (gT : finGroupType).
+Implicit Types (rT : finGroupType) (P G H K D : {group gT}).
-Lemma PhiS G H : p.-group H → G \subset H → 'Phi(G) \subset 'Phi(H).
+Lemma PhiS G H : p.-group H → G \subset H → 'Phi(G) \subset 'Phi(H).
-Lemma morphim_Phi rT P D (f : {morphism D >-> rT}) :
- p.-group P → P \subset D → f @* 'Phi(P) = 'Phi(f @* P).
+Lemma morphim_Phi rT P D (f : {morphism D >-> rT}) :
+ p.-group P → P \subset D → f @* 'Phi(P) = 'Phi(f @* P).
Lemma quotient_Phi P H :
- p.-group P → P \subset 'N(H) → 'Phi(P) / H = 'Phi(P / H).
+ p.-group P → P \subset 'N(H) → 'Phi(P) / H = 'Phi(P / H).
@@ -275,20 +272,20 @@
Lemma Phi_min G H :
-
p.-group G → G \subset 'N(H) → p.-abelem (
G / H)
→ 'Phi(G) \subset H.
+
p.-group G → G \subset 'N(H) → p.-abelem (
G / H)
→ 'Phi(G) \subset H.
Lemma Phi_cprod G H K :
-
p.-group G → H \* K = G → 'Phi(H) \* 'Phi(K) = 'Phi(G).
+
p.-group G → H \* K = G → 'Phi(H) \* 'Phi(K) = 'Phi(G).
Lemma Phi_mulg H K :
-
p.-group H → p.-group K → K \subset 'C(H) →
-
'Phi(H × K) = 'Phi(H) × 'Phi(K).
+
p.-group H → p.-group K → K \subset 'C(H) →
+
'Phi(H × K) = 'Phi(H) × 'Phi(K).
Lemma charsimpleP G :
-
reflect (
G :!=: 1
∧ ∀ K,
K :!=: 1
→ K \char G → K :=: G)
+
reflect (
G :!=: 1
∧ ∀ K,
K :!=: 1
→ K \char G → K :=: G)
(
charsimple G).
@@ -299,35 +296,35 @@
Variable gT :
finGroupType.
-
Implicit Types (
p :
nat) (
G H :
{group gT}).
+
Implicit Types (
p :
nat) (
G H :
{group gT}).
-
Lemma Fitting_normal G :
'F(G) <| G.
+
Lemma Fitting_normal G :
'F(G) <| G.
-
Lemma Fitting_sub G :
'F(G) \subset G.
+
Lemma Fitting_sub G :
'F(G) \subset G.
-
Lemma Fitting_nil G :
nilpotent 'F(G).
+
Lemma Fitting_nil G :
nilpotent 'F(G).
-
Lemma Fitting_max G H :
H <| G → nilpotent H → H \subset 'F(G).
+
Lemma Fitting_max G H :
H <| G → nilpotent H → H \subset 'F(G).
-
Lemma pcore_Fitting pi G :
'O_pi('F(G)) \subset 'O_pi(G).
+
Lemma pcore_Fitting pi G :
'O_pi('F(G)) \subset 'O_pi(G).
-
Lemma p_core_Fitting p G :
'O_p('F(G)) = 'O_p(G).
+
Lemma p_core_Fitting p G :
'O_p('F(G)) = 'O_p(G).
-
Lemma nilpotent_Fitting G :
nilpotent G → 'F(G) = G.
+
Lemma nilpotent_Fitting G :
nilpotent G → 'F(G) = G.
-
Lemma Fitting_eq_pcore p G :
'O_p^'(G) = 1
→ 'F(G) = 'O_p(G).
+
Lemma Fitting_eq_pcore p G :
'O_p^'(G) = 1
→ 'F(G) = 'O_p(G).
Lemma FittingEgen G :
-
'F(G) = <<\bigcup_(p < #|G|.+1 | (p : nat) \in \pi(G)) 'O_p(G)>>.
+
'F(G) = <<\bigcup_(p < #|G|.+1 | (p : nat) \in \pi(G)) 'O_p(G)>>.
End Fitting.
@@ -339,36 +336,36 @@
Implicit Types gT rT :
finGroupType.
-
Lemma morphim_Fitting :
GFunctor.pcontinuous Fitting.
+
Lemma morphim_Fitting :
GFunctor.pcontinuous (@
Fitting).
-
Lemma FittingS gT (
G H :
{group gT}) :
H \subset G → H :&: 'F(G) \subset 'F(H).
+
Lemma FittingS gT (
G H :
{group gT}) :
H \subset G → H :&: 'F(G) \subset 'F(H).
-
Lemma FittingJ gT (
G :
{group gT})
x :
'F(G :^ x) = 'F(G) :^ x.
+
Lemma FittingJ gT (
G :
{group gT})
x :
'F(G :^ x) = 'F(G) :^ x.
End FittingFun.
-
Canonical Fitting_igFun :=
[igFun by Fitting_sub & morphim_Fitting].
-
Canonical Fitting_gFun :=
[gFun by morphim_Fitting].
-
Canonical Fitting_pgFun :=
[pgFun by morphim_Fitting].
+
Canonical Fitting_igFun :=
[igFun by Fitting_sub & morphim_Fitting].
+
Canonical Fitting_gFun :=
[gFun by morphim_Fitting].
+
Canonical Fitting_pgFun :=
[pgFun by morphim_Fitting].
Section IsoFitting.
-
Variables (
gT rT :
finGroupType) (
G D :
{group gT}) (
f :
{morphism D >-> rT}).
+
Variables (
gT rT :
finGroupType) (
G D :
{group gT}) (
f :
{morphism D >-> rT}).
-
Lemma Fitting_char :
'F(G) \char G.
+
Lemma Fitting_char :
'F(G) \char G.
-
Lemma injm_Fitting :
'injm f → G \subset D → f @* 'F(G) = 'F(f @* G).
+
Lemma injm_Fitting :
'injm f → G \subset D → f @* 'F(G) = 'F(f @* G).
-
Lemma isog_Fitting (
H :
{group rT}) :
G \isog H → 'F(G) \isog 'F(H).
+
Lemma isog_Fitting (
H :
{group rT}) :
G \isog H → 'F(G) \isog 'F(H).
End IsoFitting.
@@ -378,54 +375,54 @@
Variable gT :
finGroupType.
-
Implicit Types (
rT :
finGroupType) (
G H K L :
{group gT}) (
p :
nat).
+
Implicit Types (
rT :
finGroupType) (
G H K L :
{group gT}) (
p :
nat).
-
Lemma minnormal_charsimple G H :
minnormal H G → charsimple H.
+
Lemma minnormal_charsimple G H :
minnormal H G → charsimple H.
Lemma maxnormal_charsimple G H L :
-
G <| L → maxnormal H G L → charsimple (
G / H).
+
G <| L → maxnormal H G L → charsimple (
G / H).
-
Lemma abelem_split_dprod rT p (
A B :
{group rT}) :
-
p.-abelem A → B \subset A → ∃ C :
{group rT}, B \x C = A.
+
Lemma abelem_split_dprod rT p (
A B :
{group rT}) :
+
p.-abelem A → B \subset A → ∃ C :
{group rT}, B \x C = A.
-
Lemma p_abelem_split1 rT p (
A :
{group rT})
x :
-
p.-abelem A → x \in A →
-
∃ B :
{group rT}, [/\ B \subset A, #|B| = #|A| %/ #[x] & <[x]> \x B = A].
+
Lemma p_abelem_split1 rT p (
A :
{group rT})
x :
+
p.-abelem A → x \in A →
+
∃ B :
{group rT}, [/\ B \subset A, #|B| = #|A| %/ #[x] & <[x]> \x B = A].
-
Lemma abelem_charsimple p G :
p.-abelem G → G :!=: 1
→ charsimple G.
+
Lemma abelem_charsimple p G :
p.-abelem G → G :!=: 1
→ charsimple G.
-
Lemma charsimple_dprod G :
charsimple G →
-
∃ H :
{group gT}, [/\ H \subset G, simple H
-
& exists2 I : {set {perm gT}}, I \subset Aut G
-
& \big[dprod/1
]_(f in I) f @: H = G].
+
Lemma charsimple_dprod G :
charsimple G →
+
∃ H :
{group gT}, [/\ H \subset G, simple H
+
& exists2 I : {set {perm gT}}, I \subset Aut G
+
& \big[dprod/1
]_(f in I) f @: H = G].
-
Lemma simple_sol_prime G :
solvable G → simple G → prime #|G|.
+
Lemma simple_sol_prime G :
solvable G → simple G → prime #|G|.
-
Lemma charsimple_solvable G :
charsimple G → solvable G → is_abelem G.
+
Lemma charsimple_solvable G :
charsimple G → solvable G → is_abelem G.
Lemma minnormal_solvable L G H :
-
minnormal H L → H \subset G → solvable G →
-
[/\ L \subset 'N(H), H :!=: 1
& is_abelem H].
+
minnormal H L → H \subset G → solvable G →
+
[/\ L \subset 'N(H), H :!=: 1
& is_abelem H].
Lemma solvable_norm_abelem L G :
-
solvable G → G <| L → G :!=: 1
→
-
∃ H :
{group gT}, [/\ H \subset G, H <| L, H :!=: 1
& is_abelem H].
+
solvable G → G <| L → G :!=: 1
→
+
∃ H :
{group gT}, [/\ H \subset G, H <| L, H :!=: 1
& is_abelem H].
-
Lemma trivg_Fitting G :
solvable G → ('F(G) == 1
) = (G :==: 1
).
+
Lemma trivg_Fitting G :
solvable G → ('F(G) == 1
) = (G :==: 1
).
-
Lemma Fitting_pcore pi G :
'F('O_pi(G)) = 'O_pi('F(G)).
+
Lemma Fitting_pcore pi G :
'F('O_pi(G)) = 'O_pi('F(G)).
End CharSimple.
@@ -434,15 +431,15 @@
Section SolvablePrimeFactor.
-
Variables (
gT :
finGroupType) (
G :
{group gT}).
+
Variables (
gT :
finGroupType) (
G :
{group gT}).
-
Lemma index_maxnormal_sol_prime (
H :
{group gT}) :
-
solvable G → maxnormal H G G → prime #|G : H|.
+
Lemma index_maxnormal_sol_prime (
H :
{group gT}) :
+
solvable G → maxnormal H G G → prime #|G : H|.
Lemma sol_prime_factor_exists :
-
solvable G → G :!=: 1
→ {H : {group gT} | H <| G & prime #|G : H| }.
+
solvable G → G :!=: 1
→ {H : {group gT} | H <| G & prime #|G : H| }.
End SolvablePrimeFactor.
@@ -451,7 +448,7 @@
Section Special.
-
Variables (
gT :
finGroupType) (
p :
nat) (
A G :
{group gT}).
+
Variables (
gT :
finGroupType) (
p :
nat) (
A G :
{group gT}).
@@ -460,10 +457,10 @@
This is Aschbacher (23.7)
@@ -473,9 +470,9 @@
@@ -552,8 +549,8 @@
Section ExtraspecialFormspace.
-Variable G : {group gT}.
-Hypotheses (pG : p.-group G) (esG : extraspecial G).
+Variable G : {group gT}.
+Hypotheses (pG : p.-group G) (esG : extraspecial G).
Let p_pr := extraspecial_prime pG esG.
@@ -569,7 +566,7 @@
@@ -580,7 +577,7 @@
@@ -591,7 +588,7 @@
@@ -603,13 +600,13 @@
@@ -622,7 +619,7 @@
Note that Aschbacher derives this from the Witt lemma, which we avoid.
@@ -645,16 +642,16 @@
This is part of Aschbacher (23.13) and (23.14).
@@ -681,8 +678,8 @@
quoted from Gorenstein in the proof of B & G, Theorem 2.5.
@@ -714,11 +711,11 @@
SCN_max and max_SCN cover Aschbacher 23.15(1)
@@ -733,14 +730,14 @@
Section SCNseries.
-Variables A : {group gT}.
-Hypothesis SCN_A : A \in 'SCN(G).
+Variables A : {group gT}.
+Hypothesis SCN_A : A \in 'SCN(G).
-Let Z := 'Ohm_1(A).
+Let Z := 'Ohm_1(A).
Let cAA := SCN_abelian SCN_A.
-Let sZA: Z \subset A := Ohm_sub 1 A.
-Let nZA : A \subset 'N(Z) := sub_abelian_norm cAA sZA.
+Let sZA: Z \subset A := Ohm_sub 1 A.
+Let nZA : A \subset 'N(Z) := sub_abelian_norm cAA sZA.
@@ -749,7 +746,7 @@
This is Aschbacher 23.15(2).
@@ -760,7 +757,7 @@
@@ -785,11 +782,11 @@
This proof of the Thompson critical lemma is adapted from Aschbacher 23.6