From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.solvable.maximal.html | 805 ---------------------------- 1 file changed, 805 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.solvable.maximal.html (limited to 'docs/htmldoc/mathcomp.solvable.maximal.html') diff --git a/docs/htmldoc/mathcomp.solvable.maximal.html b/docs/htmldoc/mathcomp.solvable.maximal.html deleted file mode 100644 index ba5d392..0000000 --- a/docs/htmldoc/mathcomp.solvable.maximal.html +++ /dev/null @@ -1,805 +0,0 @@ - - - - - -mathcomp.solvable.maximal - - - - -
- - - -
- -

Library mathcomp.solvable.maximal

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- This file establishes basic properties of several important classes of - maximal subgroups: maximal, max and min normal, simple, characteristically - simple subgroups, the Frattini and Fitting subgroups, the Thompson - critical subgroup, special and extra-special groups, and self-centralising - normal (SCN) subgroups. In detail, we define: - charsimple G == G is characteristically simple (it has no nontrivial - characteristic subgroups, and is nontrivial) - 'Phi(G) == the Frattini subgroup of G, i.e., the intersection of - all its maximal proper subgroups. - 'F(G) == the Fitting subgroup of G, i.e., the largest normal - nilpotent subgroup of G (defined as the (direct) - product of all the p-cores of G). - critical C G == C is a critical subgroup of G: C is characteristic - (but not functorial) in G, the center of C contains - both its Frattini subgroup and the commutator [G, C], - and is equal to the centraliser of C in G. The - Thompson_critical theorem provides critical subgroups - for p-groups; we also show that in this case the - centraliser of C in Aut G is a p-group as well. - special G == G is a special group: its center, Frattini, and - derived sugroups coincide (we follow Aschbacher in - not considering nontrivial elementary abelian groups - as special); we show that a p-group factors under - coprime action into special groups (Aschbacher 24.7). - extraspecial G == G is a special group whose center has prime order - (hence G is non-abelian). - 'SCN(G) == the set of self-centralising normal abelian subgroups - of G (the A <| G such that 'C_G(A) = A). - 'SCN_n(G) == the subset of 'SCN(G) containing all groups with rank - at least n (i.e., A \in 'SCN(G) and 'm(A) >= n). -
-
- -
-Set Implicit Arguments.
- -
-Import GroupScope.
- -
-Section Defs.
- -
-Variable gT : finGroupType.
-Implicit Types (A B D : {set gT}) (G : {group gT}).
- -
-Definition charsimple A := [min A of G | G :!=: 1 & G \char A].
- -
-Definition Frattini A := \bigcap_(G : {group gT} | maximal_eq G A) G.
- -
-Canonical Frattini_group A : {group gT} := Eval hnf in [group of Frattini A].
- -
-Definition Fitting A := \big[dprod/1]_(p <- primes #|A|) 'O_p(A).
- -
-Lemma Fitting_group_set G : group_set (Fitting G).
- -
-Canonical Fitting_group G := group (Fitting_group_set G).
- -
-Definition critical A B :=
-  [/\ A \char B,
-      Frattini A \subset 'Z(A),
-      [~: B, A] \subset 'Z(A)
-   & 'C_B(A) = 'Z(A)].
- -
-Definition special A := Frattini A = 'Z(A) A^`(1) = 'Z(A).
- -
-Definition extraspecial A := special A prime #|'Z(A)|.
- -
-Definition SCN B := [set A : {group gT} | A <| B & 'C_B(A) == A].
- -
-Definition SCN_at n B := [set A in SCN B | n 'r(A)].
- -
-End Defs.
- -
- -
-Notation "''Phi' ( A )" := (Frattini A)
-  (at level 8, format "''Phi' ( A )") : group_scope.
-Notation "''Phi' ( G )" := (Frattini_group G) : Group_scope.
- -
-Notation "''F' ( G )" := (Fitting G)
-  (at level 8, format "''F' ( G )") : group_scope.
-Notation "''F' ( G )" := (Fitting_group G) : Group_scope.
- -
-Notation "''SCN' ( B )" := (SCN B)
-  (at level 8, format "''SCN' ( B )") : group_scope.
-Notation "''SCN_' n ( B )" := (SCN_at n B)
-  (at level 8, n at level 2, format "''SCN_' n ( B )") : group_scope.
- -
-Section PMax.
- -
-Variables (gT : finGroupType) (p : nat) (P M : {group gT}).
-Hypothesis pP : p.-group P.
- -
-Lemma p_maximal_normal : maximal M P M <| P.
- -
-Lemma p_maximal_index : maximal M P #|P : M| = p.
- -
-Lemma p_index_maximal : M \subset P prime #|P : M| maximal M P.
- -
-End PMax.
- -
-Section Frattini.
- -
-Variables gT : finGroupType.
-Implicit Type G M : {group gT}.
- -
-Lemma Phi_sub G : 'Phi(G) \subset G.
- -
-Lemma Phi_sub_max G M : maximal M G 'Phi(G) \subset M.
- -
-Lemma Phi_proper G : G :!=: 1 'Phi(G) \proper G.
- -
-Lemma Phi_nongen G X : 'Phi(G) <*> X = G <<X>> = G.
- -
-Lemma Frattini_continuous (rT : finGroupType) G (f : {morphism G >-> rT}) :
-  f @* 'Phi(G) \subset 'Phi(f @* G).
- -
-End Frattini.
- -
-Canonical Frattini_igFun := [igFun by Phi_sub & Frattini_continuous].
-Canonical Frattini_gFun := [gFun by Frattini_continuous].
- -
-Section Frattini0.
- -
-Variable gT : finGroupType.
-Implicit Types (rT : finGroupType) (D G : {group gT}).
- -
-Lemma Phi_char G : 'Phi(G) \char G.
- -
-Lemma Phi_normal G : 'Phi(G) <| G.
- -
-Lemma injm_Phi rT D G (f : {morphism D >-> rT}) :
-  'injm f G \subset D f @* 'Phi(G) = 'Phi(f @* G).
- -
-Lemma isog_Phi rT G (H : {group rT}) : G \isog H 'Phi(G) \isog 'Phi(H).
- -
-Lemma PhiJ G x : 'Phi(G :^ x) = 'Phi(G) :^ x.
- -
-End Frattini0.
- -
-Section Frattini2.
- -
-Variables gT : finGroupType.
-Implicit Type G : {group gT}.
- -
-Lemma Phi_quotient_id G : 'Phi (G / 'Phi(G)) = 1.
- -
-Lemma Phi_quotient_cyclic G : cyclic (G / 'Phi(G)) cyclic G.
- -
-Variables (p : nat) (P : {group gT}).
- -
-Lemma trivg_Phi : p.-group P ('Phi(P) == 1) = p.-abelem P.
- -
-End Frattini2.
- -
-Section Frattini3.
- -
-Variables (gT : finGroupType) (p : nat) (P : {group gT}).
-Hypothesis pP : p.-group P.
- -
-Lemma Phi_quotient_abelem : p.-abelem (P / 'Phi(P)).
- -
-Lemma Phi_joing : 'Phi(P) = P^`(1) <*> 'Mho^1(P).
- -
-Lemma Phi_Mho : abelian P 'Phi(P) = 'Mho^1(P).
- -
-End Frattini3.
- -
-Section Frattini4.
- -
-Variables (p : nat) (gT : finGroupType).
-Implicit Types (rT : finGroupType) (P G H K D : {group gT}).
- -
-Lemma PhiS G H : p.-group H G \subset H 'Phi(G) \subset 'Phi(H).
- -
-Lemma morphim_Phi rT P D (f : {morphism D >-> rT}) :
-  p.-group P P \subset D f @* 'Phi(P) = 'Phi(f @* P).
- -
-Lemma quotient_Phi P H :
-  p.-group P P \subset 'N(H) 'Phi(P) / H = 'Phi(P / H).
- -
-
- -
- This is Aschbacher (23.2) -
-
-Lemma Phi_min G H :
-  p.-group G G \subset 'N(H) p.-abelem (G / H) 'Phi(G) \subset H.
- -
-Lemma Phi_cprod G H K :
-  p.-group G H \* K = G 'Phi(H) \* 'Phi(K) = 'Phi(G).
- -
-Lemma Phi_mulg H K :
-    p.-group H p.-group K K \subset 'C(H)
-  'Phi(H × K) = 'Phi(H) × 'Phi(K).
- -
-Lemma charsimpleP G :
-  reflect (G :!=: 1 K, K :!=: 1 K \char G K :=: G)
-          (charsimple G).
- -
-End Frattini4.
- -
-Section Fitting.
- -
-Variable gT : finGroupType.
-Implicit Types (p : nat) (G H : {group gT}).
- -
-Lemma Fitting_normal G : 'F(G) <| G.
- -
-Lemma Fitting_sub G : 'F(G) \subset G.
- -
-Lemma Fitting_nil G : nilpotent 'F(G).
- -
-Lemma Fitting_max G H : H <| G nilpotent H H \subset 'F(G).
- -
-Lemma pcore_Fitting pi G : 'O_pi('F(G)) \subset 'O_pi(G).
- -
-Lemma p_core_Fitting p G : 'O_p('F(G)) = 'O_p(G).
- -
-Lemma nilpotent_Fitting G : nilpotent G 'F(G) = G.
- -
-Lemma Fitting_eq_pcore p G : 'O_p^'(G) = 1 'F(G) = 'O_p(G).
- -
-Lemma FittingEgen G :
-  'F(G) = <<\bigcup_(p < #|G|.+1 | (p : nat) \in \pi(G)) 'O_p(G)>>.
- -
-End Fitting.
- -
-Section FittingFun.
- -
-Implicit Types gT rT : finGroupType.
- -
-Lemma morphim_Fitting : GFunctor.pcontinuous (@Fitting).
- -
-Lemma FittingS gT (G H : {group gT}) : H \subset G H :&: 'F(G) \subset 'F(H).
- -
-Lemma FittingJ gT (G : {group gT}) x : 'F(G :^ x) = 'F(G) :^ x.
- -
-End FittingFun.
- -
-Canonical Fitting_igFun := [igFun by Fitting_sub & morphim_Fitting].
-Canonical Fitting_gFun := [gFun by morphim_Fitting].
-Canonical Fitting_pgFun := [pgFun by morphim_Fitting].
- -
-Section IsoFitting.
- -
-Variables (gT rT : finGroupType) (G D : {group gT}) (f : {morphism D >-> rT}).
- -
-Lemma Fitting_char : 'F(G) \char G.
- -
-Lemma injm_Fitting : 'injm f G \subset D f @* 'F(G) = 'F(f @* G).
- -
-Lemma isog_Fitting (H : {group rT}) : G \isog H 'F(G) \isog 'F(H).
- -
-End IsoFitting.
- -
-Section CharSimple.
- -
-Variable gT : finGroupType.
-Implicit Types (rT : finGroupType) (G H K L : {group gT}) (p : nat).
- -
-Lemma minnormal_charsimple G H : minnormal H G charsimple H.
- -
-Lemma maxnormal_charsimple G H L :
-  G <| L maxnormal H G L charsimple (G / H).
- -
-Lemma abelem_split_dprod rT p (A B : {group rT}) :
-  p.-abelem A B \subset A C : {group rT}, B \x C = A.
- -
-Lemma p_abelem_split1 rT p (A : {group rT}) x :
-     p.-abelem A x \in A
-   B : {group rT}, [/\ B \subset A, #|B| = #|A| %/ #[x] & <[x]> \x B = A].
- -
-Lemma abelem_charsimple p G : p.-abelem G G :!=: 1 charsimple G.
- -
-Lemma charsimple_dprod G : charsimple G
-   H : {group gT}, [/\ H \subset G, simple H
-                         & exists2 I : {set {perm gT}}, I \subset Aut G
-                         & \big[dprod/1]_(f in I) f @: H = G].
- -
-Lemma simple_sol_prime G : solvable G simple G prime #|G|.
- -
-Lemma charsimple_solvable G : charsimple G solvable G is_abelem G.
- -
-Lemma minnormal_solvable L G H :
-    minnormal H L H \subset G solvable G
-  [/\ L \subset 'N(H), H :!=: 1 & is_abelem H].
- -
-Lemma solvable_norm_abelem L G :
-    solvable G G <| L G :!=: 1
-   H : {group gT}, [/\ H \subset G, H <| L, H :!=: 1 & is_abelem H].
- -
-Lemma trivg_Fitting G : solvable G ('F(G) == 1) = (G :==: 1).
- -
-Lemma Fitting_pcore pi G : 'F('O_pi(G)) = 'O_pi('F(G)).
- -
-End CharSimple.
- -
-Section SolvablePrimeFactor.
- -
-Variables (gT : finGroupType) (G : {group gT}).
- -
-Lemma index_maxnormal_sol_prime (H : {group gT}) :
-  solvable G maxnormal H G G prime #|G : H|.
- -
-Lemma sol_prime_factor_exists :
-  solvable G G :!=: 1 {H : {group gT} | H <| G & prime #|G : H| }.
- -
-End SolvablePrimeFactor.
- -
-Section Special.
- -
-Variables (gT : finGroupType) (p : nat) (A G : {group gT}).
- -
-
- -
- This is Aschbacher (23.7) -
- - -
- Aschbacher 24.7 (replaces Gorenstein 5.3.7) -
-
-Theorem abelian_charsimple_special :
-    p.-group G coprime #|G| #|A| [~: G, A] = G
-    \bigcup_(H : {group gT} | (H \char G) && abelian H) H \subset 'C(A)
-  special G 'C_G(A) = 'Z(G).
- -
-End Special.
- -
-Section Extraspecial.
- -
-Variables (p : nat) (gT rT : finGroupType).
-Implicit Types D E F G H K M R S T U : {group gT}.
- -
-Section Basic.
- -
-Variable S : {group gT}.
-Hypotheses (pS : p.-group S) (esS : extraspecial S).
- -
-Let pZ : p.-group 'Z(S) := pgroupS (center_sub S) pS.
-Lemma extraspecial_prime : prime p.
- -
-Lemma card_center_extraspecial : #|'Z(S)| = p.
- -
-Lemma min_card_extraspecial : #|S| p ^ 3.
- -
-End Basic.
- -
-Lemma card_p3group_extraspecial E :
-  prime p #|E| = (p ^ 3)%N #|'Z(E)| = p extraspecial E.
- -
-Lemma p3group_extraspecial G :
-  p.-group G ~~ abelian G logn p #|G| 3 extraspecial G.
- -
-Lemma extraspecial_nonabelian G : extraspecial G ~~ abelian G.
- -
-Lemma exponent_2extraspecial G : 2.-group G extraspecial G exponent G = 4.
- -
-Lemma injm_special D G (f : {morphism D >-> rT}) :
-  'injm f G \subset D special G special (f @* G).
- -
-Lemma injm_extraspecial D G (f : {morphism D >-> rT}) :
-  'injm f G \subset D extraspecial G extraspecial (f @* G).
- -
-Lemma isog_special G (R : {group rT}) :
-  G \isog R special G special R.
- -
-Lemma isog_extraspecial G (R : {group rT}) :
-  G \isog R extraspecial G extraspecial R.
- -
-Lemma cprod_extraspecial G H K :
-    p.-group G H \* K = G H :&: K = 'Z(H)
-  extraspecial H extraspecial K extraspecial G.
- -
-
- -
- Lemmas bundling Aschbacher (23.10) with (19.1), (19.2), (19.12) and (20.8) -
-
-Section ExtraspecialFormspace.
- -
-Variable G : {group gT}.
-Hypotheses (pG : p.-group G) (esG : extraspecial G).
- -
-Let p_pr := extraspecial_prime pG esG.
-Let oZ := card_center_extraspecial pG esG.
-Let p_gt1 := prime_gt1 p_pr.
-Let p_gt0 := prime_gt0 p_pr.
- -
-
- -
- This encasulates Aschbacher (23.10)(1). -
- - -
- This is the tranposition of the hyperplane dimension theorem (Aschbacher - (19.1)) to subgroups of an extraspecial group. -
- - -
- This is the tranposition of the orthogonal subspace dimension theorem - (Aschbacher (19.2)) to subgroups of an extraspecial group. -
- - -
- This is the tranposition of the proof that a singular vector is contained - in a hyperbolic plane (Aschbacher (19.12)) to subgroups of an extraspecial - group. -
-
-Lemma split1_extraspecial x :
-    x \in G :\: 'Z(G)
-  {E : {group gT} & {R : {group gT} |
-    [/\ #|E| = (p ^ 3)%N #|R| = #|G| %/ p ^ 2,
-        E \* R = G E :&: R = 'Z(E),
-        'Z(E) = 'Z(G) 'Z(R) = 'Z(G),
-        extraspecial E x \in E
-      & if abelian R then R :=: 'Z(G) else extraspecial R]}}.
- -
-
- -
- This is the tranposition of the proof that the dimension of any maximal - totally singular subspace is equal to the Witt index (Aschbacher (20.8)), - to subgroups of an extraspecial group (in a slightly more general form, - since we allow for p != 2). - Note that Aschbacher derives this from the Witt lemma, which we avoid. -
- - -
- This is B & G, Theorem 4.15, as done in Aschbacher (23.8) -
- - -
- This is part of Aschbacher (23.13) and (23.14). -
-
-Theorem extraspecial_structure S : p.-group S extraspecial S
-  {Es | all (fun E ⇒ (#|E| == p ^ 3)%N && ('Z(E) == 'Z(S))) Es
-      & \big[cprod/1%g]_(E <- Es) E \* 'Z(S) = S}.
- -
-Section StructureCorollaries.
- -
-Variable S : {group gT}.
-Hypotheses (pS : p.-group S) (esS : extraspecial S).
- -
-Let p_pr := extraspecial_prime pS esS.
-Let oZ := card_center_extraspecial pS esS.
- -
-
- -
- This is Aschbacher (23.10)(2). -
-
-Lemma card_extraspecial : {n | n > 0 & #|S| = (p ^ n.*2.+1)%N}.
- -
-Lemma Aut_extraspecial_full : Aut_in (Aut S) 'Z(S) \isog Aut 'Z(S).
- -
-
- -
- These are the parts of Aschbacher (23.12) and exercise 8.5 that are later - used in Aschbacher (34.9), which itself replaces the informal discussion - quoted from Gorenstein in the proof of B & G, Theorem 2.5. -
-
-Lemma center_aut_extraspecial k : coprime k p
-  exists2 f, f \in Aut S & z, z \in 'Z(S) f z = (z ^+ k)%g.
- -
-End StructureCorollaries.
- -
-End Extraspecial.
- -
-Section SCN.
- -
-Variables (gT : finGroupType) (p : nat) (G : {group gT}).
-Implicit Types A Z H : {group gT}.
- -
-Lemma SCN_P A : reflect (A <| G 'C_G(A) = A) (A \in 'SCN(G)).
- -
-Lemma SCN_abelian A : A \in 'SCN(G) abelian A.
- -
-Lemma exponent_Ohm1_class2 H :
-  odd p p.-group H nil_class H 2 exponent 'Ohm_1(H) %| p.
- -
-
- -
- SCN_max and max_SCN cover Aschbacher 23.15(1) -
-
-Lemma SCN_max A : A \in 'SCN(G) [max A | A <| G & abelian A].
- -
-Lemma max_SCN A :
-  p.-group G [max A | A <| G & abelian A] A \in 'SCN(G).
- -
-
- -
- The two other assertions of Aschbacher 23.15 state properties of the - normal series 1 <| Z = 'Ohm_1(A) <| A with A \in 'SCN(G). -
-
- -
-Section SCNseries.
- -
-Variables A : {group gT}.
-Hypothesis SCN_A : A \in 'SCN(G).
- -
-Let Z := 'Ohm_1(A).
-Let cAA := SCN_abelian SCN_A.
-Let sZA: Z \subset A := Ohm_sub 1 A.
-Let nZA : A \subset 'N(Z) := sub_abelian_norm cAA sZA.
- -
-
- -
- This is Aschbacher 23.15(2). -
- - -
- This is Aschbacher 23.15(3); note that this proof does not depend on the - maximality of A. -
- - -
- This is Aschbacher 23.16. -
- - -
- This proof of the Thompson critical lemma is adapted from Aschbacher 23.6 -
- -
- - - -
- - - \ No newline at end of file -- cgit v1.2.3