From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Wed, 22 May 2019 13:43:08 +0200 Subject: htmldoc regenerated --- docs/htmldoc/mathcomp.solvable.jordanholder.html | 169 +++++++++++------------ 1 file changed, 84 insertions(+), 85 deletions(-) (limited to 'docs/htmldoc/mathcomp.solvable.jordanholder.html') diff --git a/docs/htmldoc/mathcomp.solvable.jordanholder.html b/docs/htmldoc/mathcomp.solvable.jordanholder.html index 267e1a4..a65d14f 100644 --- a/docs/htmldoc/mathcomp.solvable.jordanholder.html +++ b/docs/htmldoc/mathcomp.solvable.jordanholder.html @@ -21,7 +21,6 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
 Distributed under the terms of CeCILL-B.                                  *)

-Require Import mathcomp.ssreflect.ssreflect.

@@ -85,48 +84,48 @@ Set Implicit Arguments.

-Inductive section (gT : finGroupType) := GSection of {group gT} × {group gT}.
+Inductive section (gT : finGroupType) := GSection of {group gT} × {group gT}.

Delimit Scope section_scope with sec.

-Definition mkSec (gT : finGroupType) (G1 G2 : {group gT}) := GSection (G1, G2).
+Definition mkSec (gT : finGroupType) (G1 G2 : {group gT}) := GSection (G1, G2).

-Infix "/" := mkSec : section_scope.
+Infix "/" := mkSec : section_scope.

Coercion pair_of_section gT (s : section gT) := let: GSection u := s in u.

-Coercion quotient_of_section gT (s : section gT) : GroupSet.sort _ := s.1 / s.2.
+Coercion quotient_of_section gT (s : section gT) : GroupSet.sort _ := s.1 / s.2.

-Coercion section_group gT (s : section gT) : {group (coset_of s.2)} :=
-  Eval hnf in [group of s].
+Coercion section_group gT (s : section gT) : {group (coset_of s.2)} :=
+  Eval hnf in [group of s].

Section Sections.

Variables (gT : finGroupType).
-Implicit Types (G : {group gT}) (s : section gT).
+Implicit Types (G : {group gT}) (s : section gT).

-Canonical section_subType := Eval hnf in [newType for @pair_of_section gT].
-Definition section_eqMixin := Eval hnf in [eqMixin of section gT by <:].
+Canonical section_subType := Eval hnf in [newType for @pair_of_section gT].
+Definition section_eqMixin := Eval hnf in [eqMixin of section gT by <:].
Canonical section_eqType := Eval hnf in EqType (section gT) section_eqMixin.
-Definition section_choiceMixin := [choiceMixin of section gT by <:].
+Definition section_choiceMixin := [choiceMixin of section gT by <:].
Canonical section_choiceType :=
  Eval hnf in ChoiceType (section gT) section_choiceMixin.
-Definition section_countMixin := [countMixin of section gT by <:].
+Definition section_countMixin := [countMixin of section gT by <:].
Canonical section_countType :=
  Eval hnf in CountType (section gT) section_countMixin.
-Canonical section_subCountType := Eval hnf in [subCountType of section gT].
-Definition section_finMixin := [finMixin of section gT by <:].
+Canonical section_subCountType := Eval hnf in [subCountType of section gT].
+Definition section_finMixin := [finMixin of section gT by <:].
Canonical section_finType := Eval hnf in FinType (section gT) section_finMixin.
-Canonical section_subFinType := Eval hnf in [subFinType of section gT].
+Canonical section_subFinType := Eval hnf in [subFinType of section gT].
Canonical section_group.

@@ -138,7 +137,7 @@

-Definition section_isog := [rel x y : section gT | x \isog y].
+Definition section_isog := [rel x y : section gT | x \isog y].

@@ -147,20 +146,20 @@ A witness of the isomorphism class of a section
-Definition section_repr s := odflt (1 / 1)%sec (pick (section_isog ^~ s)).
+Definition section_repr s := odflt (1 / 1)%sec (pick (section_isog ^~ s)).

Definition mksrepr G1 G2 := section_repr (mkSec G1 G2).

-Lemma section_reprP s : section_repr s \isog s.
+Lemma section_reprP s : section_repr s \isog s.

Lemma section_repr_isog s1 s2 :
-  s1 \isog s2 section_repr s1 = section_repr s2.
+  s1 \isog s2 section_repr s1 = section_repr s2.

-Definition mkfactors (G : {group gT}) (s : seq {group gT}) :=
+Definition mkfactors (G : {group gT}) (s : seq {group gT}) :=
  map section_repr (pairmap (@mkSec _) G s).

@@ -176,24 +175,24 @@

-Definition comps G s := ((last G s) == 1%G) && compo.-series G s.
+Definition comps G s := ((last G s) == 1%G) && compo.-series G s.

Lemma compsP G s :
-  reflect (last G s = 1%G path [rel x y : gTg | maxnormal y x x] G s)
+  reflect (last G s = 1%G path [rel x y : gTg | maxnormal y x x] G s)
          (comps G s).

-Lemma trivg_comps G s : comps G s (G :==: 1) = (s == [::]).
+Lemma trivg_comps G s : comps G s (G :==: 1) = (s == [::]).

-Lemma comps_cons G H s : comps G (H :: s) comps H s.
+Lemma comps_cons G H s : comps G (H :: s) comps H s.

-Lemma simple_compsP G s : comps G s reflect (s = [:: 1%G]) (simple G).
+Lemma simple_compsP G s : comps G s reflect (s = [:: 1%G]) (simple G).

-Lemma exists_comps (G : gTg) : s, comps G s.
+Lemma exists_comps (G : gTg) : s, comps G s.

@@ -206,7 +205,7 @@
Lemma JordanHolderUniqueness (G : gTg) (s1 s2 : seq gTg) :
-  comps G s1 comps G s2 perm_eq (mkfactors G s1) (mkfactors G s2).
+  comps G s1 comps G s2 perm_eq (mkfactors G s1) (mkfactors G s2).

End CompositionSeries.
@@ -224,24 +223,24 @@
Variables (aT rT : finGroupType).
-Variables (A : {group aT}) (D : {group rT}).
+Variables (A : {group aT}) (D : {group rT}).
Variable to : groupAction A D.

-Lemma gactsP (G : {set rT}) : reflect {acts A, on G | to} [acts A, on G | to].
+Lemma gactsP (G : {set rT}) : reflect {acts A, on G | to} [acts A, on G | to].

-Lemma gactsM (N1 N2 : {set rT}) :
-    N1 \subset D N2 \subset D
-  [acts A, on N1 | to] [acts A, on N2 | to] [acts A, on N1 × N2 | to].
+Lemma gactsM (N1 N2 : {set rT}) :
+    N1 \subset D N2 \subset D
+  [acts A, on N1 | to] [acts A, on N2 | to] [acts A, on N1 × N2 | to].

-Lemma gactsI (N1 N2 : {set rT}) :
-  [acts A, on N1 | to] [acts A, on N2 | to] [acts A, on N1 :&: N2 | to].
+Lemma gactsI (N1 N2 : {set rT}) :
+  [acts A, on N1 | to] [acts A, on N2 | to] [acts A, on N1 :&: N2 | to].

-Lemma gastabsP (S : {set rT}) (a : aT) :
-  a \in A reflect ( x, (to x a \in S) = (x \in S)) (a \in 'N(S | to)).
+Lemma gastabsP (S : {set rT}) (a : aT) :
+  a \in A reflect ( x, (to x a \in S) = (x \in S)) (a \in 'N(S | to)).

End MoreGroupAction.
@@ -259,26 +258,26 @@
Variables (aT rT : finGroupType).
-Variables (A : {group aT})(D : {group rT}).
+Variables (A : {group aT})(D : {group rT}).
Variable to : groupAction A D.

-Lemma qact_dom_doms (H : {group rT}) : H \subset D qact_dom to H \subset A.
+Lemma qact_dom_doms (H : {group rT}) : H \subset D qact_dom to H \subset A.

-Lemma acts_qact_doms (H : {group rT}) :
-  H \subset D [acts A, on H | to] qact_dom to H :=: A.
+Lemma acts_qact_doms (H : {group rT}) :
+  H \subset D [acts A, on H | to] qact_dom to H :=: A.

-Lemma qacts_cosetpre (H : {group rT}) (K' : {group coset_of H}) :
-    H \subset D [acts A, on H | to]
-    [acts qact_dom to H, on K' | to / H]
-  [acts A, on coset H @*^-1 K' | to].
+Lemma qacts_cosetpre (H : {group rT}) (K' : {group coset_of H}) :
+    H \subset D [acts A, on H | to]
+    [acts qact_dom to H, on K' | to / H]
+  [acts A, on coset H @*^-1 K' | to].

-Lemma qacts_coset (H K : {group rT}) :
-    H \subset D [acts A, on K | to]
-  [acts qact_dom to H, on (coset H) @* K | to / H].
+Lemma qacts_coset (H K : {group rT}) :
+    H \subset D [acts A, on K | to]
+  [acts qact_dom to H, on (coset H) @* K | to / H].

End MoreQuotientAction.
@@ -288,78 +287,78 @@
Variables (aT rT : finGroupType).
-Variables (D : {group rT})(A : {group aT}).
+Variables (D : {group rT})(A : {group aT}).
Variable to : groupAction A D.

-Definition maxainv (B C : {set rT}) :=
-  [max C of H |
-    [&& (H <| B), ~~ (B \subset H) & [acts A, on H | to]]].
+Definition maxainv (B C : {set rT}) :=
+  [max C of H |
+    [&& (H <| B), ~~ (B \subset H) & [acts A, on H | to]]].

Section MaxAinvProps.

-Variables K N : {group rT}.
+Variables K N : {group rT}.

-Lemma maxainv_norm : maxainv K N N <| K.
+Lemma maxainv_norm : maxainv K N N <| K.

-Lemma maxainv_proper : maxainv K N N \proper K.
+Lemma maxainv_proper : maxainv K N N \proper K.

-Lemma maxainv_sub : maxainv K N N \subset K.
+Lemma maxainv_sub : maxainv K N N \subset K.

-Lemma maxainv_ainvar : maxainv K N A \subset 'N(N | to).
+Lemma maxainv_ainvar : maxainv K N A \subset 'N(N | to).

-Lemma maxainvS : maxainv K N N \subset K.
+Lemma maxainvS : maxainv K N N \subset K.

-Lemma maxainv_exists : K :!=: 1 {N : {group rT} | maxainv K N}.
+Lemma maxainv_exists : K :!=: 1 {N : {group rT} | maxainv K N}.

End MaxAinvProps.

-Lemma maxainvM (G H K : {group rT}) :
-    H \subset D K \subset D maxainv G H maxainv G K
-  H :<>: K H × K = G.
+Lemma maxainvM (G H K : {group rT}) :
+    H \subset D K \subset D maxainv G H maxainv G K
+  H :<>: K H × K = G.

-Definition asimple (K : {set rT}) := maxainv K 1.
+Definition asimple (K : {set rT}) := maxainv K 1.

-Implicit Types (H K : {group rT}) (s : seq {group rT}).
+Implicit Types (H K : {group rT}) (s : seq {group rT}).

Lemma asimpleP K :
-  reflect [/\ K :!=: 1
-            & H, H <| K [acts A, on H | to] H :=: 1 H :=: K]
+  reflect [/\ K :!=: 1
+            & H, H <| K [acts A, on H | to] H :=: 1 H :=: K]
          (asimple K).

Definition acomps K s :=
-  ((last K s) == 1%G) && path [rel x y : {group rT} | maxainv x y] K s.
+  ((last K s) == 1%G) && path [rel x y : {group rT} | maxainv x y] K s.

Lemma acompsP K s :
-  reflect (last K s = 1%G path [rel x y : {group rT} | maxainv x y] K s)
+  reflect (last K s = 1%G path [rel x y : {group rT} | maxainv x y] K s)
          (acomps K s).

-Lemma trivg_acomps K s : acomps K s (K :==: 1) = (s == [::]).
+Lemma trivg_acomps K s : acomps K s (K :==: 1) = (s == [::]).

-Lemma acomps_cons K H s : acomps K (H :: s) acomps H s.
+Lemma acomps_cons K H s : acomps K (H :: s) acomps H s.

-Lemma asimple_acompsP K s : acomps K s reflect (s = [:: 1%G]) (asimple K).
+Lemma asimple_acompsP K s : acomps K s reflect (s = [:: 1%G]) (asimple K).

-Lemma exists_acomps K : s, acomps K s.
+Lemma exists_acomps K : s, acomps K s.

End StableCompositionSeries.
@@ -374,31 +373,31 @@
Variables aT rT : finGroupType.
-Variables (A : {group aT}) (D : {group rT}) (to : groupAction A D).
+Variables (A : {group aT}) (D : {group rT}) (to : groupAction A D).

-Lemma maxainv_asimple_quo (G H : {group rT}) :
-   H \subset D maxainv to G H asimple (to / H) (G / H).
+Lemma maxainv_asimple_quo (G H : {group rT}) :
+   H \subset D maxainv to G H asimple (to / H) (G / H).

-Lemma asimple_quo_maxainv (G H : {group rT}) :
-    H \subset D G \subset D [acts A, on G | to] [acts A, on H | to]
-    H <| G asimple (to / H) (G / H)
+Lemma asimple_quo_maxainv (G H : {group rT}) :
+    H \subset D G \subset D [acts A, on G | to] [acts A, on H | to]
+    H <| G asimple (to / H) (G / H)
  maxainv to G H.

-Lemma asimpleI (N1 N2 : {group rT}) :
-    N2 \subset 'N(N1) N1 \subset D
-    [acts A, on N1 | to] [acts A, on N2 | to]
-    asimple (to / N1) (N2 / N1)
-  asimple (to / (N2 :&: N1)) (N2 / (N2 :&: N1)).
+Lemma asimpleI (N1 N2 : {group rT}) :
+    N2 \subset 'N(N1) N1 \subset D
+    [acts A, on N1 | to] [acts A, on N2 | to]
+    asimple (to / N1) (N2 / N1)
+  asimple (to / (N2 :&: N1)) (N2 / (N2 :&: N1)).

End AuxiliaryLemmas.

Variables (aT rT : finGroupType).
-Variables (A : {group aT}) (D : {group rT}) (to : groupAction A D).
+Variables (A : {group aT}) (D : {group rT}) (to : groupAction A D).

@@ -410,8 +409,8 @@

-Lemma StrongJordanHolderUniqueness (G : {group rT}) (s1 s2 : seq {group rT}) :
-    G \subset D acomps to G s1 acomps to G s2
+Lemma StrongJordanHolderUniqueness (G : {group rT}) (s1 s2 : seq {group rT}) :
+    G \subset D acomps to G s1 acomps to G s2
  perm_eq (mkfactors G s1) (mkfactors G s2).

-- cgit v1.2.3