From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.solvable.jordanholder.html | 430 ----------------------- 1 file changed, 430 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.solvable.jordanholder.html (limited to 'docs/htmldoc/mathcomp.solvable.jordanholder.html') diff --git a/docs/htmldoc/mathcomp.solvable.jordanholder.html b/docs/htmldoc/mathcomp.solvable.jordanholder.html deleted file mode 100644 index a65d14f..0000000 --- a/docs/htmldoc/mathcomp.solvable.jordanholder.html +++ /dev/null @@ -1,430 +0,0 @@ - - - - - -mathcomp.solvable.jordanholder - - - - -
- - - -
- -

Library mathcomp.solvable.jordanholder

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- This files establishes Jordan-Holder theorems for finite groups. These - theorems state the uniqueness up to permutation and isomorphism for the - series of quotient built from the successive elements of any composition - series of the same group. These quotients are also called factors of the - composition series. To avoid the heavy use of highly polymorphic lists - describing these quotient series, we introduce sections. - This library defines: - (G1 / G2)%sec == alias for the pair (G1, G2) of groups in the same - finGroupType, coerced to the actual quotient group - group G1 / G2. We call this pseudo-quotient a - section of G1 and G2. - section_isog s1 s2 == s1 and s2 respectively coerce to isomorphic - quotient groups. - section_repr s == canonical representative of the isomorphism class - of the section s. - mksrepr G1 G2 == canonical representative of the isomorphism class - of (G1 / G2)%sec. - mkfactors G s == if s is [:: s1, s2, ..., sn], constructs the list - [:: mksrepr G s1, mksrepr s1 s2, ..., mksrepr sn-1 sn] - comps G s == s is a composition series for G i.e. s is a - decreasing sequence of subgroups of G - in which two adjacent elements are maxnormal one - in the other and the last element of s is 1. - Given aT and rT two finGroupTypes, (D : {group rT}), (A : {group aT}) and - (to : groupAction A D) an external action. - maxainv to B C == C is a maximal proper normal subgroup of B - invariant by (the external action of A via) to. - asimple to B == the maximal proper normal subgroup of B invariant - by the external action to is trivial. - acomps to G s == s is a composition series for G invariant by to, - i.e. s is a decreasing sequence of subgroups of G - in which two adjacent elements are maximally - invariant by to one in the other and the - last element of s is 1. - We prove two versions of the result: -
    -
  • JordanHolderUniqueness establishes the uniqueness up to permutation - and isomorphism of the lists of factors in composition series of a - given group. - -
  • -
  • StrongJordanHolderUniqueness extends the result to composition series - invariant by an external group action. - -
  • -
- See also "The Rooster and the Butterflies", proceedings of Calculemus 2013, - by Assia Mahboubi. -
-
- -
-Import GroupScope.
- -
-Set Implicit Arguments.
- -
-Inductive section (gT : finGroupType) := GSection of {group gT} × {group gT}.
- -
-Delimit Scope section_scope with sec.
- -
-Definition mkSec (gT : finGroupType) (G1 G2 : {group gT}) := GSection (G1, G2).
- -
-Infix "/" := mkSec : section_scope.
- -
-Coercion pair_of_section gT (s : section gT) := let: GSection u := s in u.
- -
-Coercion quotient_of_section gT (s : section gT) : GroupSet.sort _ := s.1 / s.2.
- -
-Coercion section_group gT (s : section gT) : {group (coset_of s.2)} :=
-  Eval hnf in [group of s].
- -
-Section Sections.
- -
-Variables (gT : finGroupType).
-Implicit Types (G : {group gT}) (s : section gT).
- -
-Canonical section_subType := Eval hnf in [newType for @pair_of_section gT].
-Definition section_eqMixin := Eval hnf in [eqMixin of section gT by <:].
-Canonical section_eqType := Eval hnf in EqType (section gT) section_eqMixin.
-Definition section_choiceMixin := [choiceMixin of section gT by <:].
-Canonical section_choiceType :=
-  Eval hnf in ChoiceType (section gT) section_choiceMixin.
-Definition section_countMixin := [countMixin of section gT by <:].
-Canonical section_countType :=
-  Eval hnf in CountType (section gT) section_countMixin.
-Canonical section_subCountType := Eval hnf in [subCountType of section gT].
-Definition section_finMixin := [finMixin of section gT by <:].
-Canonical section_finType := Eval hnf in FinType (section gT) section_finMixin.
-Canonical section_subFinType := Eval hnf in [subFinType of section gT].
-Canonical section_group.
- -
-
- -
- Isomorphic sections -
-
- -
-Definition section_isog := [rel x y : section gT | x \isog y].
- -
-
- -
- A witness of the isomorphism class of a section -
-
-Definition section_repr s := odflt (1 / 1)%sec (pick (section_isog ^~ s)).
- -
-Definition mksrepr G1 G2 := section_repr (mkSec G1 G2).
- -
-Lemma section_reprP s : section_repr s \isog s.
- -
-Lemma section_repr_isog s1 s2 :
-  s1 \isog s2 section_repr s1 = section_repr s2.
- -
-Definition mkfactors (G : {group gT}) (s : seq {group gT}) :=
-  map section_repr (pairmap (@mkSec _) G s).
- -
-End Sections.
- -
-Section CompositionSeries.
- -
-Variable gT : finGroupType.
-Implicit Types (G : gTg) (s : seq gTg).
- -
- -
-Definition comps G s := ((last G s) == 1%G) && compo.-series G s.
- -
-Lemma compsP G s :
-  reflect (last G s = 1%G path [rel x y : gTg | maxnormal y x x] G s)
-          (comps G s).
- -
-Lemma trivg_comps G s : comps G s (G :==: 1) = (s == [::]).
- -
-Lemma comps_cons G H s : comps G (H :: s) comps H s.
- -
-Lemma simple_compsP G s : comps G s reflect (s = [:: 1%G]) (simple G).
- -
-Lemma exists_comps (G : gTg) : s, comps G s.
- -
-
- -
- The factors associated to two composition series of the same group are - the same up to isomorphism and permutation -
-
- -
-Lemma JordanHolderUniqueness (G : gTg) (s1 s2 : seq gTg) :
-  comps G s1 comps G s2 perm_eq (mkfactors G s1) (mkfactors G s2).
- -
-End CompositionSeries.
- -
-
- -
- Helper lemmas for group actions. -
-
- -
-Section MoreGroupAction.
- -
-Variables (aT rT : finGroupType).
-Variables (A : {group aT}) (D : {group rT}).
-Variable to : groupAction A D.
- -
-Lemma gactsP (G : {set rT}) : reflect {acts A, on G | to} [acts A, on G | to].
- -
-Lemma gactsM (N1 N2 : {set rT}) :
-    N1 \subset D N2 \subset D
-  [acts A, on N1 | to] [acts A, on N2 | to] [acts A, on N1 × N2 | to].
- -
-Lemma gactsI (N1 N2 : {set rT}) :
-  [acts A, on N1 | to] [acts A, on N2 | to] [acts A, on N1 :&: N2 | to].
- -
-Lemma gastabsP (S : {set rT}) (a : aT) :
-  a \in A reflect ( x, (to x a \in S) = (x \in S)) (a \in 'N(S | to)).
- -
-End MoreGroupAction.
- -
-
- -
- Helper lemmas for quotient actions. -
-
- -
-Section MoreQuotientAction.
- -
-Variables (aT rT : finGroupType).
-Variables (A : {group aT})(D : {group rT}).
-Variable to : groupAction A D.
- -
-Lemma qact_dom_doms (H : {group rT}) : H \subset D qact_dom to H \subset A.
- -
-Lemma acts_qact_doms (H : {group rT}) :
-  H \subset D [acts A, on H | to] qact_dom to H :=: A.
- -
-Lemma qacts_cosetpre (H : {group rT}) (K' : {group coset_of H}) :
-    H \subset D [acts A, on H | to]
-    [acts qact_dom to H, on K' | to / H]
-  [acts A, on coset H @*^-1 K' | to].
- -
-Lemma qacts_coset (H K : {group rT}) :
-    H \subset D [acts A, on K | to]
-  [acts qact_dom to H, on (coset H) @* K | to / H].
- -
-End MoreQuotientAction.
- -
-Section StableCompositionSeries.
- -
-Variables (aT rT : finGroupType).
-Variables (D : {group rT})(A : {group aT}).
-Variable to : groupAction A D.
- -
-Definition maxainv (B C : {set rT}) :=
-  [max C of H |
-    [&& (H <| B), ~~ (B \subset H) & [acts A, on H | to]]].
- -
-Section MaxAinvProps.
- -
-Variables K N : {group rT}.
- -
-Lemma maxainv_norm : maxainv K N N <| K.
- -
-Lemma maxainv_proper : maxainv K N N \proper K.
- -
-Lemma maxainv_sub : maxainv K N N \subset K.
- -
-Lemma maxainv_ainvar : maxainv K N A \subset 'N(N | to).
- -
-Lemma maxainvS : maxainv K N N \subset K.
- -
-Lemma maxainv_exists : K :!=: 1 {N : {group rT} | maxainv K N}.
- -
-End MaxAinvProps.
- -
-Lemma maxainvM (G H K : {group rT}) :
-    H \subset D K \subset D maxainv G H maxainv G K
-  H :<>: K H × K = G.
- -
-Definition asimple (K : {set rT}) := maxainv K 1.
- -
-Implicit Types (H K : {group rT}) (s : seq {group rT}).
- -
-Lemma asimpleP K :
-  reflect [/\ K :!=: 1
-            & H, H <| K [acts A, on H | to] H :=: 1 H :=: K]
-          (asimple K).
- -
-Definition acomps K s :=
-  ((last K s) == 1%G) && path [rel x y : {group rT} | maxainv x y] K s.
- -
-Lemma acompsP K s :
-  reflect (last K s = 1%G path [rel x y : {group rT} | maxainv x y] K s)
-          (acomps K s).
- -
-Lemma trivg_acomps K s : acomps K s (K :==: 1) = (s == [::]).
- -
-Lemma acomps_cons K H s : acomps K (H :: s) acomps H s.
- -
-Lemma asimple_acompsP K s : acomps K s reflect (s = [:: 1%G]) (asimple K).
- -
-Lemma exists_acomps K : s, acomps K s.
- -
-End StableCompositionSeries.
- -
- -
-Section StrongJordanHolder.
- -
-Section AuxiliaryLemmas.
- -
-Variables aT rT : finGroupType.
-Variables (A : {group aT}) (D : {group rT}) (to : groupAction A D).
- -
-Lemma maxainv_asimple_quo (G H : {group rT}) :
-   H \subset D maxainv to G H asimple (to / H) (G / H).
- -
-Lemma asimple_quo_maxainv (G H : {group rT}) :
-    H \subset D G \subset D [acts A, on G | to] [acts A, on H | to]
-    H <| G asimple (to / H) (G / H)
-  maxainv to G H.
- -
-Lemma asimpleI (N1 N2 : {group rT}) :
-    N2 \subset 'N(N1) N1 \subset D
-    [acts A, on N1 | to] [acts A, on N2 | to]
-    asimple (to / N1) (N2 / N1)
-  asimple (to / (N2 :&: N1)) (N2 / (N2 :&: N1)).
- -
-End AuxiliaryLemmas.
- -
-Variables (aT rT : finGroupType).
-Variables (A : {group aT}) (D : {group rT}) (to : groupAction A D).
- -
-
- -
- The factors associated to two A-stable composition series of the same - group are the same up to isomorphism and permutation -
-
- -
-Lemma StrongJordanHolderUniqueness (G : {group rT}) (s1 s2 : seq {group rT}) :
-    G \subset D acomps to G s1 acomps to G s2
-  perm_eq (mkfactors G s1) (mkfactors G s2).
- -
-End StrongJordanHolder.
- -
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3