From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.solvable.hall.html | 370 +++++++++++++++++++++++++++++++ 1 file changed, 370 insertions(+) create mode 100644 docs/htmldoc/mathcomp.solvable.hall.html (limited to 'docs/htmldoc/mathcomp.solvable.hall.html') diff --git a/docs/htmldoc/mathcomp.solvable.hall.html b/docs/htmldoc/mathcomp.solvable.hall.html new file mode 100644 index 0000000..f75c680 --- /dev/null +++ b/docs/htmldoc/mathcomp.solvable.hall.html @@ -0,0 +1,370 @@ + + + + + +mathcomp.solvable.hall + + + + +
+ + + +
+ +

Library mathcomp.solvable.hall

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ In this files we prove the Schur-Zassenhaus splitting and transitivity + theorems (under solvability assumptions), then derive P. Hall's + generalization of Sylow's theorem to solvable groups and its corollaries, + in particular the theory of coprime action. We develop both the theory of + coprime action of a solvable group on Sylow subgroups (as in Aschbacher + 18.7), and that of coprime action on Hall subgroups of a solvable group + as per B & G, Proposition 1.5; however we only support external group + action (as opposed to internal action by conjugation) for the latter case + because it is much harder to apply in practice. +
+
+ +
+Set Implicit Arguments.
+ +
+Import GroupScope.
+ +
+Section Hall.
+ +
+Implicit Type gT : finGroupType.
+ +
+Theorem SchurZassenhaus_split gT (G H : {group gT}) :
+  Hall G H H <| G [splits G, over H].
+ +
+Theorem SchurZassenhaus_trans_sol gT (H K K1 : {group gT}) :
+    solvable H K \subset 'N(H) K1 \subset H × K
+    coprime #|H| #|K| #|K1| = #|K|
+  exists2 x, x \in H & K1 :=: K :^ x.
+ +
+Lemma SchurZassenhaus_trans_actsol gT (G A B : {group gT}) :
+    solvable A A \subset 'N(G) B \subset A <*> G
+    coprime #|G| #|A| #|A| = #|B|
+  exists2 x, x \in G & B :=: A :^ x.
+ +
+Lemma Hall_exists_subJ pi gT (G : {group gT}) :
+  solvable G exists2 H : {group gT}, pi.-Hall(G) H
+                & K : {group gT}, K \subset G pi.-group K
+                  exists2 x, x \in G & K \subset H :^ x.
+ +
+End Hall.
+ +
+Section HallCorollaries.
+ +
+Variable gT : finGroupType.
+ +
+Corollary Hall_exists pi (G : {group gT}) :
+  solvable G H : {group gT}, pi.-Hall(G) H.
+ +
+Corollary Hall_trans pi (G H1 H2 : {group gT}) :
+  solvable G pi.-Hall(G) H1 pi.-Hall(G) H2
+  exists2 x, x \in G & H1 :=: H2 :^ x.
+ +
+Corollary Hall_superset pi (G K : {group gT}) :
+  solvable G K \subset G pi.-group K
+    exists2 H : {group gT}, pi.-Hall(G) H & K \subset H.
+ +
+Corollary Hall_subJ pi (G H K : {group gT}) :
+    solvable G pi.-Hall(G) H K \subset G pi.-group K
+  exists2 x, x \in G & K \subset H :^ x.
+ +
+Corollary Hall_Jsub pi (G H K : {group gT}) :
+    solvable G pi.-Hall(G) H K \subset G pi.-group K
+  exists2 x, x \in G & K :^ x \subset H.
+ +
+Lemma Hall_Frattini_arg pi (G K H : {group gT}) :
+  solvable K K <| G pi.-Hall(K) H K × 'N_G(H) = G.
+ +
+End HallCorollaries.
+ +
+Section InternalAction.
+ +
+Variables (pi : nat_pred) (gT : finGroupType).
+Implicit Types G H K A X : {group gT}.
+ +
+
+ +
+ Part of Aschbacher (18.7.4). +
+ + +
+ This is B & G, Proposition 1.5(a) +
+ + +
+ This is B & G, Proposition 1.5(c) +
+ + +
+ A complement to the above: 'C(A) acts on 'Nby(A) +
+
+Lemma norm_conj_cent A G x : x \in 'C(A)
+  (A \subset 'N(G :^ x)) = (A \subset 'N(G)).
+ +
+
+ +
+ Strongest version of the centraliser lemma -- not found in textbooks! + Obviously, the solvability condition could be removed once we have the + Odd Order Theorem. +
+
+Lemma strongest_coprime_quotient_cent A G H :
+      let R := H :&: [~: G, A] in
+      A \subset 'N(H) R \subset G coprime #|R| #|A|
+      solvable R || solvable A
+  'C_G(A) / H = 'C_(G / H)(A / H).
+ +
+
+ +
+ A weaker but more practical version, still stronger than the usual form + (viz. Aschbacher 18.7.4), similar to the one needed in Aschbacher's + proof of Thompson factorization. Note that the coprime and solvability + assumptions could be further weakened to H :&: G (and hence become + trivial if H and G are TI). However, the assumption that A act on G is + needed in this case. +
+ + +
+ A useful consequence (similar to Ex. 6.1 in Aschbacher) of the stronger + theorem. +
+ + +
+ Another special case of the strong coprime quotient lemma; not found in + textbooks, but nevertheless used implicitly throughout B & G, sometimes + justified by switching to external action. +
+
+Lemma quotient_TI_subcent K G H :
+    G \subset 'N(K) G \subset 'N(H) K :&: H = 1
+  'C_K(G) / H = 'C_(K / H)(G / H).
+ +
+
+ +
+ This is B & G, Proposition 1.5(d): the more traditional form of the lemma + above, with the assumption H <| G weakened to H \subset G. The stronger + coprime and solvability assumptions are easier to satisfy in practice. +
+ + +
+ This is B & G, Proposition 1.5(e). +
+ + +
+ This is B & G, Proposition 1.5(b). +
+
+Proposition coprime_Hall_subset pi (gT : finGroupType) (A G X : {group gT}) :
+    A \subset 'N(G) coprime #|G| #|A| solvable G
+    X \subset G pi.-group X A \subset 'N(X)
+   H : {group gT}, [/\ pi.-Hall(G) H, A \subset 'N(H) & X \subset H].
+ +
+Section ExternalAction.
+ +
+Variables (pi : nat_pred) (aT gT : finGroupType).
+Variables (A : {group aT}) (G : {group gT}) (to : groupAction A G).
+ +
+Section FullExtension.
+ +
+Let injG : 'injm inG := injm_sdpair1 _.
+Let injA : 'injm inA := injm_sdpair2 _.
+ +
+Hypotheses (coGA : coprime #|G| #|A|) (solG : solvable G).
+ +
+Lemma external_action_im_coprime : coprime #|G'| #|A'|.
+ +
+Let coGA' := external_action_im_coprime.
+ +
+Let solG' : solvable G' := morphim_sol _ solG.
+ +
+Let nGA' := im_sdpair_norm to.
+ +
+Lemma ext_coprime_Hall_exists :
+  exists2 H : {group gT}, pi.-Hall(G) H & [acts A, on H | to].
+ +
+Lemma ext_coprime_Hall_trans (H1 H2 : {group gT}) :
+    pi.-Hall(G) H1 [acts A, on H1 | to]
+    pi.-Hall(G) H2 [acts A, on H2 | to]
+  exists2 x, x \in 'C_(G | to)(A) & H1 :=: H2 :^ x.
+ +
+Lemma ext_norm_conj_cent (H : {group gT}) x :
+    H \subset G x \in 'C_(G | to)(A)
+  [acts A, on H :^ x | to] = [acts A, on H | to].
+ +
+Lemma ext_coprime_Hall_subset (X : {group gT}) :
+    X \subset G pi.-group X [acts A, on X | to]
+   H : {group gT},
+    [/\ pi.-Hall(G) H, [acts A, on H | to] & X \subset H].
+ +
+End FullExtension.
+ +
+
+ +
+ We only prove a weaker form of the coprime group action centraliser + lemma, because it is more convenient in practice to make G the range + of the action, whence G both contains H and is stable under A. + However we do restrict the coprime/solvable assumptions to H, and + we do not require that G normalize H. +
+ +
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3