From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.solvable.hall.html | 179 +++++++++++++++----------------
1 file changed, 89 insertions(+), 90 deletions(-)
(limited to 'docs/htmldoc/mathcomp.solvable.hall.html')
diff --git a/docs/htmldoc/mathcomp.solvable.hall.html b/docs/htmldoc/mathcomp.solvable.hall.html
index f75c680..b7a1b3b 100644
--- a/docs/htmldoc/mathcomp.solvable.hall.html
+++ b/docs/htmldoc/mathcomp.solvable.hall.html
@@ -21,7 +21,6 @@
@@ -52,26 +51,26 @@
Implicit Type gT : finGroupType.
-Theorem SchurZassenhaus_split gT (G H : {group gT}) :
- Hall G H → H <| G → [splits G, over H].
+Theorem SchurZassenhaus_split gT (G H : {group gT}) :
+ Hall G H → H <| G → [splits G, over H].
-Theorem SchurZassenhaus_trans_sol gT (H K K1 : {group gT}) :
- solvable H → K \subset 'N(H) → K1 \subset H × K →
- coprime #|H| #|K| → #|K1| = #|K| →
- exists2 x, x \in H & K1 :=: K :^ x.
+Theorem SchurZassenhaus_trans_sol gT (H K K1 : {group gT}) :
+ solvable H → K \subset 'N(H) → K1 \subset H × K →
+ coprime #|H| #|K| → #|K1| = #|K| →
+ exists2 x, x \in H & K1 :=: K :^ x.
-Lemma SchurZassenhaus_trans_actsol gT (G A B : {group gT}) :
- solvable A → A \subset 'N(G) → B \subset A <*> G →
- coprime #|G| #|A| → #|A| = #|B| →
- exists2 x, x \in G & B :=: A :^ x.
+Lemma SchurZassenhaus_trans_actsol gT (G A B : {group gT}) :
+ solvable A → A \subset 'N(G) → B \subset A <*> G →
+ coprime #|G| #|A| → #|A| = #|B| →
+ exists2 x, x \in G & B :=: A :^ x.
-Lemma Hall_exists_subJ pi gT (G : {group gT}) :
- solvable G → exists2 H : {group gT}, pi.-Hall(G) H
- & ∀ K : {group gT}, K \subset G → pi.-group K →
- exists2 x, x \in G & K \subset H :^ x.
+Lemma Hall_exists_subJ pi gT (G : {group gT}) :
+ solvable G → exists2 H : {group gT}, pi.-Hall(G) H
+ & ∀ K : {group gT}, K \subset G → pi.-group K →
+ exists2 x, x \in G & K \subset H :^ x.
End Hall.
@@ -83,32 +82,32 @@
Variable gT : finGroupType.
-Corollary Hall_exists pi (G : {group gT}) :
- solvable G → ∃ H : {group gT}, pi.-Hall(G) H.
+Corollary Hall_exists pi (G : {group gT}) :
+ solvable G → ∃ H : {group gT}, pi.-Hall(G) H.
-Corollary Hall_trans pi (G H1 H2 : {group gT}) :
- solvable G → pi.-Hall(G) H1 → pi.-Hall(G) H2 →
- exists2 x, x \in G & H1 :=: H2 :^ x.
+Corollary Hall_trans pi (G H1 H2 : {group gT}) :
+ solvable G → pi.-Hall(G) H1 → pi.-Hall(G) H2 →
+ exists2 x, x \in G & H1 :=: H2 :^ x.
-Corollary Hall_superset pi (G K : {group gT}) :
- solvable G → K \subset G → pi.-group K →
- exists2 H : {group gT}, pi.-Hall(G) H & K \subset H.
+Corollary Hall_superset pi (G K : {group gT}) :
+ solvable G → K \subset G → pi.-group K →
+ exists2 H : {group gT}, pi.-Hall(G) H & K \subset H.
-Corollary Hall_subJ pi (G H K : {group gT}) :
- solvable G → pi.-Hall(G) H → K \subset G → pi.-group K →
- exists2 x, x \in G & K \subset H :^ x.
+Corollary Hall_subJ pi (G H K : {group gT}) :
+ solvable G → pi.-Hall(G) H → K \subset G → pi.-group K →
+ exists2 x, x \in G & K \subset H :^ x.
-Corollary Hall_Jsub pi (G H K : {group gT}) :
- solvable G → pi.-Hall(G) H → K \subset G → pi.-group K →
- exists2 x, x \in G & K :^ x \subset H.
+Corollary Hall_Jsub pi (G H K : {group gT}) :
+ solvable G → pi.-Hall(G) H → K \subset G → pi.-group K →
+ exists2 x, x \in G & K :^ x \subset H.
-Lemma Hall_Frattini_arg pi (G K H : {group gT}) :
- solvable K → K <| G → pi.-Hall(K) H → K × 'N_G(H) = G.
+Lemma Hall_Frattini_arg pi (G K H : {group gT}) :
+ solvable K → K <| G → pi.-Hall(K) H → K × 'N_G(H) = G.
End HallCorollaries.
@@ -118,7 +117,7 @@
Variables (pi : nat_pred) (gT : finGroupType).
-Implicit Types G H K A X : {group gT}.
+Implicit Types G H K A X : {group gT}.
@@ -128,7 +127,7 @@
@@ -138,8 +137,8 @@
@@ -149,10 +148,10 @@
@@ -161,8 +160,8 @@
A complement to the above: 'C(A) acts on 'Nby(A)
@@ -174,10 +173,10 @@
@@ -192,8 +191,8 @@
@@ -204,9 +203,9 @@
@@ -218,8 +217,8 @@
@@ -231,8 +230,8 @@
@@ -242,9 +241,9 @@
-
Proposition coprime_Hall_subset pi (
gT :
finGroupType) (
A G X :
{group gT}) :
-
A \subset 'N(G) → coprime #|G| #|A| → solvable G →
-
X \subset G → pi.-group X → A \subset 'N(X) →
-
∃ H :
{group gT}, [/\ pi.-Hall(G) H, A \subset 'N(H) & X \subset H].
+
Proposition coprime_Hall_subset pi (
gT :
finGroupType) (
A G X :
{group gT}) :
+
A \subset 'N(G) → coprime #|G| #|A| → solvable G →
+
X \subset G → pi.-group X → A \subset 'N(X) →
+
∃ H :
{group gT}, [/\ pi.-Hall(G) H, A \subset 'N(H) & X \subset H].
Section ExternalAction.
Variables (
pi :
nat_pred) (
aT gT :
finGroupType).
-
Variables (
A :
{group aT}) (
G :
{group gT}) (
to :
groupAction A G).
+
Variables (
A :
{group aT}) (
G :
{group gT}) (
to :
groupAction A G).
Section FullExtension.
-
Let injG :
'injm inG :=
injm_sdpair1 _.
-
Let injA :
'injm inA :=
injm_sdpair2 _.
+
Let injG :
'injm inG :=
injm_sdpair1 _.
+
Let injA :
'injm inA :=
injm_sdpair2 _.
-
Hypotheses (
coGA :
coprime #|G| #|A|) (
solG :
solvable G).
+
Hypotheses (
coGA :
coprime #|G| #|A|) (
solG :
solvable G).
-
Lemma external_action_im_coprime :
coprime #|G'| #|A'|.
+
Lemma external_action_im_coprime :
coprime #|G'| #|A'|.
Let coGA' :=
external_action_im_coprime.
@@ -292,24 +291,24 @@
Lemma ext_coprime_Hall_exists :
-
exists2 H : {group gT}, pi.-Hall(G) H & [acts A, on H | to].
+
exists2 H : {group gT}, pi.-Hall(G) H & [acts A, on H | to].
-
Lemma ext_coprime_Hall_trans (
H1 H2 :
{group gT}) :
-
pi.-Hall(G) H1 → [acts A, on H1 | to] →
-
pi.-Hall(G) H2 → [acts A, on H2 | to] →
-
exists2 x, x \in 'C_(G | to)(A) & H1 :=: H2 :^ x.
+
Lemma ext_coprime_Hall_trans (
H1 H2 :
{group gT}) :
+
pi.-Hall(G) H1 → [acts A, on H1 | to] →
+
pi.-Hall(G) H2 → [acts A, on H2 | to] →
+
exists2 x, x \in 'C_(G | to)(A) & H1 :=: H2 :^ x.
-
Lemma ext_norm_conj_cent (
H :
{group gT})
x :
-
H \subset G → x \in 'C_(G | to)(A) →
-
[acts A, on H :^ x | to] = [acts A, on H | to].
+
Lemma ext_norm_conj_cent (
H :
{group gT})
x :
+
H \subset G → x \in 'C_(G | to)(A) →
+
[acts A, on H :^ x | to] = [acts A, on H | to].
-
Lemma ext_coprime_Hall_subset (
X :
{group gT}) :
-
X \subset G → pi.-group X → [acts A, on X | to] →
-
∃ H :
{group gT},
-
[/\ pi.-Hall(G) H, [acts A, on H | to] & X \subset H].
+
Lemma ext_coprime_Hall_subset (
X :
{group gT}) :
+
X \subset G → pi.-group X → [acts A, on X | to] →
+
∃ H :
{group gT},
+
[/\ pi.-Hall(G) H, [acts A, on H | to] & X \subset H].
End FullExtension.
@@ -325,9 +324,9 @@
we do not require that G normalize H.
-
Lemma ext_coprime_quotient_cent (
H :
{group gT}) :
-
H \subset G → [acts A, on H | to] → coprime #|H| #|A| → solvable H →
-
'C_(|to)(A) / H = 'C_(|to / H)(A).
+
Lemma ext_coprime_quotient_cent (
H :
{group gT}) :
+
H \subset G → [acts A, on H | to] → coprime #|H| #|A| → solvable H →
+
'C_(|to)(A) / H = 'C_(|to / H)(A).
End ExternalAction.
@@ -336,24 +335,24 @@
Section SylowSolvableAct.
-
Variables (
gT :
finGroupType) (
p :
nat).
-
Implicit Types A B G X :
{group gT}.
+
Variables (
gT :
finGroupType) (
p :
nat).
+
Implicit Types A B G X :
{group gT}.
Lemma sol_coprime_Sylow_exists A G :
-
solvable A → A \subset 'N(G) → coprime #|G| #|A| →
-
exists2 P : {group gT}, p.-Sylow(G) P & A \subset 'N(P).
+
solvable A → A \subset 'N(G) → coprime #|G| #|A| →
+
exists2 P : {group gT}, p.-Sylow(G) P & A \subset 'N(P).
Lemma sol_coprime_Sylow_trans A G :
-
solvable A → A \subset 'N(G) → coprime #|G| #|A| →
-
[transitive 'C_G(A), on [set P in 'Syl_p(G) | A \subset 'N(P)] | 'JG].
+
solvable A → A \subset 'N(G) → coprime #|G| #|A| →
+
[transitive 'C_G(A), on [set P in 'Syl_p(G) | A \subset 'N(P)] | 'JG].
Lemma sol_coprime_Sylow_subset A G X :
-
A \subset 'N(G) → coprime #|G| #|A| → solvable A →
-
X \subset G → p.-group X → A \subset 'N(X) →
-
∃ P :
{group gT}, [/\ p.-Sylow(G) P, A \subset 'N(P) & X \subset P].
+
A \subset 'N(G) → coprime #|G| #|A| → solvable A →
+
X \subset G → p.-group X → A \subset 'N(X) →
+
∃ P :
{group gT}, [/\ p.-Sylow(G) P, A \subset 'N(P) & X \subset P].
End SylowSolvableAct.
--
cgit v1.2.3