From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.solvable.hall.html | 369 ------------------------------- 1 file changed, 369 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.solvable.hall.html (limited to 'docs/htmldoc/mathcomp.solvable.hall.html') diff --git a/docs/htmldoc/mathcomp.solvable.hall.html b/docs/htmldoc/mathcomp.solvable.hall.html deleted file mode 100644 index b7a1b3b..0000000 --- a/docs/htmldoc/mathcomp.solvable.hall.html +++ /dev/null @@ -1,369 +0,0 @@ - - - - - -mathcomp.solvable.hall - - - - -
- - - -
- -

Library mathcomp.solvable.hall

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- In this files we prove the Schur-Zassenhaus splitting and transitivity - theorems (under solvability assumptions), then derive P. Hall's - generalization of Sylow's theorem to solvable groups and its corollaries, - in particular the theory of coprime action. We develop both the theory of - coprime action of a solvable group on Sylow subgroups (as in Aschbacher - 18.7), and that of coprime action on Hall subgroups of a solvable group - as per B & G, Proposition 1.5; however we only support external group - action (as opposed to internal action by conjugation) for the latter case - because it is much harder to apply in practice. -
-
- -
-Set Implicit Arguments.
- -
-Import GroupScope.
- -
-Section Hall.
- -
-Implicit Type gT : finGroupType.
- -
-Theorem SchurZassenhaus_split gT (G H : {group gT}) :
-  Hall G H H <| G [splits G, over H].
- -
-Theorem SchurZassenhaus_trans_sol gT (H K K1 : {group gT}) :
-    solvable H K \subset 'N(H) K1 \subset H × K
-    coprime #|H| #|K| #|K1| = #|K|
-  exists2 x, x \in H & K1 :=: K :^ x.
- -
-Lemma SchurZassenhaus_trans_actsol gT (G A B : {group gT}) :
-    solvable A A \subset 'N(G) B \subset A <*> G
-    coprime #|G| #|A| #|A| = #|B|
-  exists2 x, x \in G & B :=: A :^ x.
- -
-Lemma Hall_exists_subJ pi gT (G : {group gT}) :
-  solvable G exists2 H : {group gT}, pi.-Hall(G) H
-                & K : {group gT}, K \subset G pi.-group K
-                  exists2 x, x \in G & K \subset H :^ x.
- -
-End Hall.
- -
-Section HallCorollaries.
- -
-Variable gT : finGroupType.
- -
-Corollary Hall_exists pi (G : {group gT}) :
-  solvable G H : {group gT}, pi.-Hall(G) H.
- -
-Corollary Hall_trans pi (G H1 H2 : {group gT}) :
-  solvable G pi.-Hall(G) H1 pi.-Hall(G) H2
-  exists2 x, x \in G & H1 :=: H2 :^ x.
- -
-Corollary Hall_superset pi (G K : {group gT}) :
-  solvable G K \subset G pi.-group K
-    exists2 H : {group gT}, pi.-Hall(G) H & K \subset H.
- -
-Corollary Hall_subJ pi (G H K : {group gT}) :
-    solvable G pi.-Hall(G) H K \subset G pi.-group K
-  exists2 x, x \in G & K \subset H :^ x.
- -
-Corollary Hall_Jsub pi (G H K : {group gT}) :
-    solvable G pi.-Hall(G) H K \subset G pi.-group K
-  exists2 x, x \in G & K :^ x \subset H.
- -
-Lemma Hall_Frattini_arg pi (G K H : {group gT}) :
-  solvable K K <| G pi.-Hall(K) H K × 'N_G(H) = G.
- -
-End HallCorollaries.
- -
-Section InternalAction.
- -
-Variables (pi : nat_pred) (gT : finGroupType).
-Implicit Types G H K A X : {group gT}.
- -
-
- -
- Part of Aschbacher (18.7.4). -
- - -
- This is B & G, Proposition 1.5(a) -
- - -
- This is B & G, Proposition 1.5(c) -
- - -
- A complement to the above: 'C(A) acts on 'Nby(A) -
-
-Lemma norm_conj_cent A G x : x \in 'C(A)
-  (A \subset 'N(G :^ x)) = (A \subset 'N(G)).
- -
-
- -
- Strongest version of the centraliser lemma -- not found in textbooks! - Obviously, the solvability condition could be removed once we have the - Odd Order Theorem. -
-
-Lemma strongest_coprime_quotient_cent A G H :
-      let R := H :&: [~: G, A] in
-      A \subset 'N(H) R \subset G coprime #|R| #|A|
-      solvable R || solvable A
-  'C_G(A) / H = 'C_(G / H)(A / H).
- -
-
- -
- A weaker but more practical version, still stronger than the usual form - (viz. Aschbacher 18.7.4), similar to the one needed in Aschbacher's - proof of Thompson factorization. Note that the coprime and solvability - assumptions could be further weakened to H :&: G (and hence become - trivial if H and G are TI). However, the assumption that A act on G is - needed in this case. -
- - -
- A useful consequence (similar to Ex. 6.1 in Aschbacher) of the stronger - theorem. -
- - -
- Another special case of the strong coprime quotient lemma; not found in - textbooks, but nevertheless used implicitly throughout B & G, sometimes - justified by switching to external action. -
-
-Lemma quotient_TI_subcent K G H :
-    G \subset 'N(K) G \subset 'N(H) K :&: H = 1
-  'C_K(G) / H = 'C_(K / H)(G / H).
- -
-
- -
- This is B & G, Proposition 1.5(d): the more traditional form of the lemma - above, with the assumption H <| G weakened to H \subset G. The stronger - coprime and solvability assumptions are easier to satisfy in practice. -
- - -
- This is B & G, Proposition 1.5(e). -
- - -
- This is B & G, Proposition 1.5(b). -
-
-Proposition coprime_Hall_subset pi (gT : finGroupType) (A G X : {group gT}) :
-    A \subset 'N(G) coprime #|G| #|A| solvable G
-    X \subset G pi.-group X A \subset 'N(X)
-   H : {group gT}, [/\ pi.-Hall(G) H, A \subset 'N(H) & X \subset H].
- -
-Section ExternalAction.
- -
-Variables (pi : nat_pred) (aT gT : finGroupType).
-Variables (A : {group aT}) (G : {group gT}) (to : groupAction A G).
- -
-Section FullExtension.
- -
-Let injG : 'injm inG := injm_sdpair1 _.
-Let injA : 'injm inA := injm_sdpair2 _.
- -
-Hypotheses (coGA : coprime #|G| #|A|) (solG : solvable G).
- -
-Lemma external_action_im_coprime : coprime #|G'| #|A'|.
- -
-Let coGA' := external_action_im_coprime.
- -
-Let solG' : solvable G' := morphim_sol _ solG.
- -
-Let nGA' := im_sdpair_norm to.
- -
-Lemma ext_coprime_Hall_exists :
-  exists2 H : {group gT}, pi.-Hall(G) H & [acts A, on H | to].
- -
-Lemma ext_coprime_Hall_trans (H1 H2 : {group gT}) :
-    pi.-Hall(G) H1 [acts A, on H1 | to]
-    pi.-Hall(G) H2 [acts A, on H2 | to]
-  exists2 x, x \in 'C_(G | to)(A) & H1 :=: H2 :^ x.
- -
-Lemma ext_norm_conj_cent (H : {group gT}) x :
-    H \subset G x \in 'C_(G | to)(A)
-  [acts A, on H :^ x | to] = [acts A, on H | to].
- -
-Lemma ext_coprime_Hall_subset (X : {group gT}) :
-    X \subset G pi.-group X [acts A, on X | to]
-   H : {group gT},
-    [/\ pi.-Hall(G) H, [acts A, on H | to] & X \subset H].
- -
-End FullExtension.
- -
-
- -
- We only prove a weaker form of the coprime group action centraliser - lemma, because it is more convenient in practice to make G the range - of the action, whence G both contains H and is stable under A. - However we do restrict the coprime/solvable assumptions to H, and - we do not require that G normalize H. -
- -
- - - -
- - - \ No newline at end of file -- cgit v1.2.3