From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.solvable.gseries.html | 425 ++++++++++++++++++++++++++++ 1 file changed, 425 insertions(+) create mode 100644 docs/htmldoc/mathcomp.solvable.gseries.html (limited to 'docs/htmldoc/mathcomp.solvable.gseries.html') diff --git a/docs/htmldoc/mathcomp.solvable.gseries.html b/docs/htmldoc/mathcomp.solvable.gseries.html new file mode 100644 index 0000000..47341ea --- /dev/null +++ b/docs/htmldoc/mathcomp.solvable.gseries.html @@ -0,0 +1,425 @@ + + + + + +mathcomp.solvable.gseries + + + + +
+ + + +
+ +

Library mathcomp.solvable.gseries

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ H <|<| G <=> H is subnormal in G, i.e., H <| ... <| G. + invariant_factor A H G <=> A normalises both H and G, and H <| G. + A.-invariant <=> the (invariant_factor A) relation, in the context + of the g_rel.-series notation. + g_rel.-series H s <=> H :: s is a sequence of groups whose projection + to sets satisfies relation g_rel pairwise; for + example H <|<| G iff G = last H s for some s such + that normal.-series H s. + stable_factor A H G == H <| G and A centralises G / H. + A.-stable == the stable_factor relation, in the scope of the + r.-series notation. + G.-central == the central_factor relation, in the scope of the + r.-series notation. + maximal M G == M is a maximal proper subgroup of G. + maximal_eq M G == (M == G) or (maximal M G). + maxnormal M G N == M is a maximal subgroup of G normalized by N. + minnormal M N == M is a minimal nontrivial group normalized by N. + simple G == G is a (nontrivial) simple group. + := minnormal G G + G.-chief == the chief_factor relation, in the scope of the + r.-series notation. +
+
+ +
+Set Implicit Arguments.
+ +
+Import GroupScope.
+ +
+Section GroupDefs.
+ +
+Variable gT : finGroupType.
+Implicit Types A B U V : {set gT}.
+ +
+ +
+Definition subnormal A B :=
+  (A \subset B) && (iter #|B| (fun Ngenerated (class_support A N)) B == A).
+ +
+Definition invariant_factor A B C :=
+  [&& A \subset 'N(B), A \subset 'N(C) & B <| C].
+ +
+Definition group_rel_of (r : rel {set gT}) := [rel H G : groupT | r H G].
+ +
+Definition stable_factor A V U :=
+  ([~: U, A] \subset V) && (V <| U). (* this orders allows and3P to be used *)
+ +
+Definition central_factor A V U :=
+  [&& [~: U, A] \subset V, V \subset U & U \subset A].
+ +
+Definition maximal A B := [max A of G | G \proper B].
+ +
+Definition maximal_eq A B := (A == B) || maximal A B.
+ +
+Definition maxnormal A B U := [max A of G | G \proper B & U \subset 'N(G)].
+ +
+Definition minnormal A B := [min A of G | G :!=: 1 & B \subset 'N(G)].
+ +
+Definition simple A := minnormal A A.
+ +
+Definition chief_factor A V U := maxnormal V U A && (U <| A).
+End GroupDefs.
+ +
+ +
+Notation "H <|<| G" := (subnormal H G)
+  (at level 70, no associativity) : group_scope.
+ +
+Notation "A .-invariant" := (invariant_factor A)
+  (at level 2, format "A .-invariant") : group_rel_scope.
+Notation "A .-stable" := (stable_factor A)
+  (at level 2, format "A .-stable") : group_rel_scope.
+Notation "A .-central" := (central_factor A)
+  (at level 2, format "A .-central") : group_rel_scope.
+Notation "G .-chief" := (chief_factor G)
+  (at level 2, format "G .-chief") : group_rel_scope.
+ +
+ +
+Notation "r .-series" := (path (rel_of_simpl_rel (group_rel_of r)))
+  (at level 2, format "r .-series") : group_scope.
+ +
+Section Subnormal.
+ +
+Variable gT : finGroupType.
+Implicit Types (A B C D : {set gT}) (G H K : {group gT}).
+ +
+Let setIgr H G := (G :&: H)%G.
+Let sub_setIgr G H : G \subset H G = setIgr H G.
+ +
+Let path_setIgr H G s :
+   normal.-series H s normal.-series (setIgr G H) (map (setIgr G) s).
+ +
+Lemma subnormalP H G :
+  reflect (exists2 s, normal.-series H s & last H s = G) (H <|<| G).
+ +
+Lemma subnormal_refl G : G <|<| G.
+ +
+Lemma subnormal_trans K H G : H <|<| K K <|<| G H <|<| G.
+ +
+Lemma normal_subnormal H G : H <| G H <|<| G.
+ +
+Lemma setI_subnormal G H K : K \subset G H <|<| G H :&: K <|<| K.
+ +
+Lemma subnormal_sub G H : H <|<| G H \subset G.
+ +
+Lemma invariant_subnormal A G H :
+    A \subset 'N(G) A \subset 'N(H) H <|<| G
+  exists2 s, (A.-invariant).-series H s & last H s = G.
+ +
+Lemma subnormalEsupport G H :
+  H <|<| G H :=: G <<class_support H G>> \proper G.
+ +
+Lemma subnormalEr G H : H <|<| G
+  H :=: G ( K : {group gT}, [/\ H <|<| K, K <| G & K \proper G]).
+ +
+Lemma subnormalEl G H : H <|<| G
+  H :=: G ( K : {group gT}, [/\ H <| K, K <|<| G & H \proper K]).
+ +
+End Subnormal.
+ +
+ +
+Section MorphSubNormal.
+ +
+Variable gT : finGroupType.
+Implicit Type G H K : {group gT}.
+ +
+Lemma morphim_subnormal (rT : finGroupType) G (f : {morphism G >-> rT}) H K :
+  H <|<| K f @* H <|<| f @* K.
+ +
+Lemma quotient_subnormal H G K : G <|<| K G / H <|<| K / H.
+ +
+End MorphSubNormal.
+ +
+Section MaxProps.
+ +
+Variable gT : finGroupType.
+Implicit Types G H M : {group gT}.
+ +
+Lemma maximal_eqP M G :
+  reflect (M \subset G
+              H, M \subset H H \subset G H :=: M H :=: G)
+       (maximal_eq M G).
+ +
+Lemma maximal_exists H G :
+    H \subset G
+  H :=: G (exists2 M : {group gT}, maximal M G & H \subset M).
+ +
+Lemma mulg_normal_maximal G M H :
+  M <| G maximal M G H \subset G ~~ (H \subset M) (M × H = G)%g.
+ +
+End MaxProps.
+ +
+Section MinProps.
+ +
+Variable gT : finGroupType.
+Implicit Types G H M : {group gT}.
+ +
+Lemma minnormal_exists G H : H :!=: 1 G \subset 'N(H)
+  {M : {group gT} | minnormal M G & M \subset H}.
+ +
+End MinProps.
+ +
+Section MorphPreMax.
+ +
+Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
+Variables (M G : {group rT}).
+Hypotheses (dM : M \subset f @* D) (dG : G \subset f @* D).
+ +
+Lemma morphpre_maximal : maximal (f @*^-1 M) (f @*^-1 G) = maximal M G.
+ +
+Lemma morphpre_maximal_eq : maximal_eq (f @*^-1 M) (f @*^-1 G) = maximal_eq M G.
+ +
+End MorphPreMax.
+ +
+Section InjmMax.
+ +
+Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
+Variables M G L : {group gT}.
+ +
+Hypothesis injf : 'injm f.
+Hypotheses (dM : M \subset D) (dG : G \subset D) (dL : L \subset D).
+ +
+Lemma injm_maximal : maximal (f @* M) (f @* G) = maximal M G.
+ +
+Lemma injm_maximal_eq : maximal_eq (f @* M) (f @* G) = maximal_eq M G.
+ +
+Lemma injm_maxnormal : maxnormal (f @* M) (f @* G) (f @* L) = maxnormal M G L.
+ +
+Lemma injm_minnormal : minnormal (f @* M) (f @* G) = minnormal M G.
+ +
+End InjmMax.
+ +
+Section QuoMax.
+ +
+Variables (gT : finGroupType) (K G H : {group gT}).
+ +
+Lemma cosetpre_maximal (Q R : {group coset_of K}) :
+  maximal (coset K @*^-1 Q) (coset K @*^-1 R) = maximal Q R.
+ +
+Lemma cosetpre_maximal_eq (Q R : {group coset_of K}) :
+  maximal_eq (coset K @*^-1 Q) (coset K @*^-1 R) = maximal_eq Q R.
+ +
+Lemma quotient_maximal :
+  K <| G K <| H maximal (G / K) (H / K) = maximal G H.
+ +
+Lemma quotient_maximal_eq :
+  K <| G K <| H maximal_eq (G / K) (H / K) = maximal_eq G H.
+ +
+Lemma maximalJ x : maximal (G :^ x) (H :^ x) = maximal G H.
+ +
+Lemma maximal_eqJ x : maximal_eq (G :^ x) (H :^ x) = maximal_eq G H.
+ +
+End QuoMax.
+ +
+Section MaxNormalProps.
+ +
+Variables (gT : finGroupType).
+Implicit Types (A B C : {set gT}) (G H K L M : {group gT}).
+ +
+Lemma maxnormal_normal A B : maxnormal A B B A <| B.
+ +
+Lemma maxnormal_proper A B C : maxnormal A B C A \proper B.
+ +
+Lemma maxnormal_sub A B C : maxnormal A B C A \subset B.
+ +
+Lemma ex_maxnormal_ntrivg G : G :!=: 1 {N : {group gT} | maxnormal N G G}.
+ +
+Lemma maxnormalM G H K :
+  maxnormal H G G maxnormal K G G H :<>: K H × K = G.
+ +
+Lemma maxnormal_minnormal G L M :
+    G \subset 'N(M) L \subset 'N(G) maxnormal M G L
+  minnormal (G / M) (L / M).
+ +
+Lemma minnormal_maxnormal G L M :
+  M <| G L \subset 'N(M) minnormal (G / M) (L / M) maxnormal M G L.
+ +
+End MaxNormalProps.
+ +
+Section Simple.
+ +
+Implicit Types gT rT : finGroupType.
+ +
+Lemma simpleP gT (G : {group gT}) :
+  reflect (G :!=: 1 H : {group gT}, H <| G H :=: 1 H :=: G)
+          (simple G).
+ +
+Lemma quotient_simple gT (G H : {group gT}) :
+  H <| G simple (G / H) = maxnormal H G G.
+ +
+Lemma isog_simple gT rT (G : {group gT}) (M : {group rT}) :
+  G \isog M simple G = simple M.
+ +
+Lemma simple_maxnormal gT (G : {group gT}) : simple G = maxnormal 1 G G.
+ +
+End Simple.
+ +
+Section Chiefs.
+ +
+Variable gT : finGroupType.
+Implicit Types G H U V : {group gT}.
+ +
+Lemma chief_factor_minnormal G V U :
+  chief_factor G V U minnormal (U / V) (G / V).
+ +
+Lemma acts_irrQ G U V :
+    G \subset 'N(V) V <| U
+  acts_irreducibly G (U / V) 'Q = minnormal (U / V) (G / V).
+ +
+Lemma chief_series_exists H G :
+  H <| G {s | (G.-chief).-series 1%G s & last 1%G s = H}.
+ +
+End Chiefs.
+ +
+Section Central.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+Implicit Types H K : {group gT}.
+ +
+Lemma central_factor_central H K :
+  central_factor G H K (K / H) \subset 'Z(G / H).
+ +
+Lemma central_central_factor H K :
+  (K / H) \subset 'Z(G / H) H <| K H <| G central_factor G H K.
+ +
+End Central.
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3