From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.solvable.gseries.html | 424 ---------------------------- 1 file changed, 424 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.solvable.gseries.html (limited to 'docs/htmldoc/mathcomp.solvable.gseries.html') diff --git a/docs/htmldoc/mathcomp.solvable.gseries.html b/docs/htmldoc/mathcomp.solvable.gseries.html deleted file mode 100644 index d503193..0000000 --- a/docs/htmldoc/mathcomp.solvable.gseries.html +++ /dev/null @@ -1,424 +0,0 @@ - - - - - -mathcomp.solvable.gseries - - - - -
- - - -
- -

Library mathcomp.solvable.gseries

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- H <|<| G <=> H is subnormal in G, i.e., H <| ... <| G. - invariant_factor A H G <=> A normalises both H and G, and H <| G. - A.-invariant <=> the (invariant_factor A) relation, in the context - of the g_rel.-series notation. - g_rel.-series H s <=> H :: s is a sequence of groups whose projection - to sets satisfies relation g_rel pairwise; for - example H <|<| G iff G = last H s for some s such - that normal.-series H s. - stable_factor A H G == H <| G and A centralises G / H. - A.-stable == the stable_factor relation, in the scope of the - r.-series notation. - G.-central == the central_factor relation, in the scope of the - r.-series notation. - maximal M G == M is a maximal proper subgroup of G. - maximal_eq M G == (M == G) or (maximal M G). - maxnormal M G N == M is a maximal subgroup of G normalized by N. - minnormal M N == M is a minimal nontrivial group normalized by N. - simple G == G is a (nontrivial) simple group. - := minnormal G G - G.-chief == the chief_factor relation, in the scope of the - r.-series notation. -
-
- -
-Set Implicit Arguments.
- -
-Import GroupScope.
- -
-Section GroupDefs.
- -
-Variable gT : finGroupType.
-Implicit Types A B U V : {set gT}.
- -
- -
-Definition subnormal A B :=
-  (A \subset B) && (iter #|B| (fun Ngenerated (class_support A N)) B == A).
- -
-Definition invariant_factor A B C :=
-  [&& A \subset 'N(B), A \subset 'N(C) & B <| C].
- -
-Definition group_rel_of (r : rel {set gT}) := [rel H G : groupT | r H G].
- -
-Definition stable_factor A V U :=
-  ([~: U, A] \subset V) && (V <| U). (* this orders allows and3P to be used *)
- -
-Definition central_factor A V U :=
-  [&& [~: U, A] \subset V, V \subset U & U \subset A].
- -
-Definition maximal A B := [max A of G | G \proper B].
- -
-Definition maximal_eq A B := (A == B) || maximal A B.
- -
-Definition maxnormal A B U := [max A of G | G \proper B & U \subset 'N(G)].
- -
-Definition minnormal A B := [min A of G | G :!=: 1 & B \subset 'N(G)].
- -
-Definition simple A := minnormal A A.
- -
-Definition chief_factor A V U := maxnormal V U A && (U <| A).
-End GroupDefs.
- -
- -
-Notation "H <|<| G" := (subnormal H G)
-  (at level 70, no associativity) : group_scope.
- -
-Notation "A .-invariant" := (invariant_factor A)
-  (at level 2, format "A .-invariant") : group_rel_scope.
-Notation "A .-stable" := (stable_factor A)
-  (at level 2, format "A .-stable") : group_rel_scope.
-Notation "A .-central" := (central_factor A)
-  (at level 2, format "A .-central") : group_rel_scope.
-Notation "G .-chief" := (chief_factor G)
-  (at level 2, format "G .-chief") : group_rel_scope.
- -
- -
-Notation "r .-series" := (path (rel_of_simpl_rel (group_rel_of r)))
-  (at level 2, format "r .-series") : group_scope.
- -
-Section Subnormal.
- -
-Variable gT : finGroupType.
-Implicit Types (A B C D : {set gT}) (G H K : {group gT}).
- -
-Let setIgr H G := (G :&: H)%G.
-Let sub_setIgr G H : G \subset H G = setIgr H G.
- -
-Let path_setIgr H G s :
-   normal.-series H s normal.-series (setIgr G H) (map (setIgr G) s).
- -
-Lemma subnormalP H G :
-  reflect (exists2 s, normal.-series H s & last H s = G) (H <|<| G).
- -
-Lemma subnormal_refl G : G <|<| G.
- -
-Lemma subnormal_trans K H G : H <|<| K K <|<| G H <|<| G.
- -
-Lemma normal_subnormal H G : H <| G H <|<| G.
- -
-Lemma setI_subnormal G H K : K \subset G H <|<| G H :&: K <|<| K.
- -
-Lemma subnormal_sub G H : H <|<| G H \subset G.
- -
-Lemma invariant_subnormal A G H :
-    A \subset 'N(G) A \subset 'N(H) H <|<| G
-  exists2 s, (A.-invariant).-series H s & last H s = G.
- -
-Lemma subnormalEsupport G H :
-  H <|<| G H :=: G <<class_support H G>> \proper G.
- -
-Lemma subnormalEr G H : H <|<| G
-  H :=: G ( K : {group gT}, [/\ H <|<| K, K <| G & K \proper G]).
- -
-Lemma subnormalEl G H : H <|<| G
-  H :=: G ( K : {group gT}, [/\ H <| K, K <|<| G & H \proper K]).
- -
-End Subnormal.
- -
- -
-Section MorphSubNormal.
- -
-Variable gT : finGroupType.
-Implicit Type G H K : {group gT}.
- -
-Lemma morphim_subnormal (rT : finGroupType) G (f : {morphism G >-> rT}) H K :
-  H <|<| K f @* H <|<| f @* K.
- -
-Lemma quotient_subnormal H G K : G <|<| K G / H <|<| K / H.
- -
-End MorphSubNormal.
- -
-Section MaxProps.
- -
-Variable gT : finGroupType.
-Implicit Types G H M : {group gT}.
- -
-Lemma maximal_eqP M G :
-  reflect (M \subset G
-              H, M \subset H H \subset G H :=: M H :=: G)
-       (maximal_eq M G).
- -
-Lemma maximal_exists H G :
-    H \subset G
-  H :=: G (exists2 M : {group gT}, maximal M G & H \subset M).
- -
-Lemma mulg_normal_maximal G M H :
-  M <| G maximal M G H \subset G ~~ (H \subset M) (M × H = G)%g.
- -
-End MaxProps.
- -
-Section MinProps.
- -
-Variable gT : finGroupType.
-Implicit Types G H M : {group gT}.
- -
-Lemma minnormal_exists G H : H :!=: 1 G \subset 'N(H)
-  {M : {group gT} | minnormal M G & M \subset H}.
- -
-End MinProps.
- -
-Section MorphPreMax.
- -
-Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
-Variables (M G : {group rT}).
-Hypotheses (dM : M \subset f @* D) (dG : G \subset f @* D).
- -
-Lemma morphpre_maximal : maximal (f @*^-1 M) (f @*^-1 G) = maximal M G.
- -
-Lemma morphpre_maximal_eq : maximal_eq (f @*^-1 M) (f @*^-1 G) = maximal_eq M G.
- -
-End MorphPreMax.
- -
-Section InjmMax.
- -
-Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
-Variables M G L : {group gT}.
- -
-Hypothesis injf : 'injm f.
-Hypotheses (dM : M \subset D) (dG : G \subset D) (dL : L \subset D).
- -
-Lemma injm_maximal : maximal (f @* M) (f @* G) = maximal M G.
- -
-Lemma injm_maximal_eq : maximal_eq (f @* M) (f @* G) = maximal_eq M G.
- -
-Lemma injm_maxnormal : maxnormal (f @* M) (f @* G) (f @* L) = maxnormal M G L.
- -
-Lemma injm_minnormal : minnormal (f @* M) (f @* G) = minnormal M G.
- -
-End InjmMax.
- -
-Section QuoMax.
- -
-Variables (gT : finGroupType) (K G H : {group gT}).
- -
-Lemma cosetpre_maximal (Q R : {group coset_of K}) :
-  maximal (coset K @*^-1 Q) (coset K @*^-1 R) = maximal Q R.
- -
-Lemma cosetpre_maximal_eq (Q R : {group coset_of K}) :
-  maximal_eq (coset K @*^-1 Q) (coset K @*^-1 R) = maximal_eq Q R.
- -
-Lemma quotient_maximal :
-  K <| G K <| H maximal (G / K) (H / K) = maximal G H.
- -
-Lemma quotient_maximal_eq :
-  K <| G K <| H maximal_eq (G / K) (H / K) = maximal_eq G H.
- -
-Lemma maximalJ x : maximal (G :^ x) (H :^ x) = maximal G H.
- -
-Lemma maximal_eqJ x : maximal_eq (G :^ x) (H :^ x) = maximal_eq G H.
- -
-End QuoMax.
- -
-Section MaxNormalProps.
- -
-Variables (gT : finGroupType).
-Implicit Types (A B C : {set gT}) (G H K L M : {group gT}).
- -
-Lemma maxnormal_normal A B : maxnormal A B B A <| B.
- -
-Lemma maxnormal_proper A B C : maxnormal A B C A \proper B.
- -
-Lemma maxnormal_sub A B C : maxnormal A B C A \subset B.
- -
-Lemma ex_maxnormal_ntrivg G : G :!=: 1 {N : {group gT} | maxnormal N G G}.
- -
-Lemma maxnormalM G H K :
-  maxnormal H G G maxnormal K G G H :<>: K H × K = G.
- -
-Lemma maxnormal_minnormal G L M :
-    G \subset 'N(M) L \subset 'N(G) maxnormal M G L
-  minnormal (G / M) (L / M).
- -
-Lemma minnormal_maxnormal G L M :
-  M <| G L \subset 'N(M) minnormal (G / M) (L / M) maxnormal M G L.
- -
-End MaxNormalProps.
- -
-Section Simple.
- -
-Implicit Types gT rT : finGroupType.
- -
-Lemma simpleP gT (G : {group gT}) :
-  reflect (G :!=: 1 H : {group gT}, H <| G H :=: 1 H :=: G)
-          (simple G).
- -
-Lemma quotient_simple gT (G H : {group gT}) :
-  H <| G simple (G / H) = maxnormal H G G.
- -
-Lemma isog_simple gT rT (G : {group gT}) (M : {group rT}) :
-  G \isog M simple G = simple M.
- -
-Lemma simple_maxnormal gT (G : {group gT}) : simple G = maxnormal 1 G G.
- -
-End Simple.
- -
-Section Chiefs.
- -
-Variable gT : finGroupType.
-Implicit Types G H U V : {group gT}.
- -
-Lemma chief_factor_minnormal G V U :
-  chief_factor G V U minnormal (U / V) (G / V).
- -
-Lemma acts_irrQ G U V :
-    G \subset 'N(V) V <| U
-  acts_irreducibly G (U / V) 'Q = minnormal (U / V) (G / V).
- -
-Lemma chief_series_exists H G :
-  H <| G {s | (G.-chief).-series 1%G s & last 1%G s = H}.
- -
-End Chiefs.
- -
-Section Central.
- -
-Variables (gT : finGroupType) (G : {group gT}).
-Implicit Types H K : {group gT}.
- -
-Lemma central_factor_central H K :
-  central_factor G H K (K / H) \subset 'Z(G / H).
- -
-Lemma central_central_factor H K :
-  (K / H) \subset 'Z(G / H) H <| K H <| G central_factor G H K.
- -
-End Central.
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3