From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Wed, 22 May 2019 13:43:08 +0200 Subject: htmldoc regenerated --- docs/htmldoc/mathcomp.solvable.gfunctor.html | 173 +++++++++++++-------------- 1 file changed, 86 insertions(+), 87 deletions(-) (limited to 'docs/htmldoc/mathcomp.solvable.gfunctor.html') diff --git a/docs/htmldoc/mathcomp.solvable.gfunctor.html b/docs/htmldoc/mathcomp.solvable.gfunctor.html index 871ba2b..c5f3789 100644 --- a/docs/htmldoc/mathcomp.solvable.gfunctor.html +++ b/docs/htmldoc/mathcomp.solvable.gfunctor.html @@ -21,7 +21,6 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
 Distributed under the terms of CeCILL-B.                                  *)

-Require Import mathcomp.ssreflect.ssreflect.

@@ -117,7 +116,7 @@ Module GFunctor.

-Definition object_map := gT : finGroupType, {set gT} {set gT}.
+Definition object_map := gT : finGroupType, {set gT} {set gT}.

@@ -137,7 +136,7 @@ Group closure.
-Definition group_valued := gT (G : {group gT}), group_set (F G).
+Definition group_valued := gT (G : {group gT}), group_set (F G).

@@ -146,7 +145,7 @@ Subgroup closure.
-Definition closed := gT (G : {group gT}), F G \subset G.
+Definition closed := gT (G : {group gT}), F G \subset G.

@@ -156,8 +155,8 @@
Definition continuous :=
-   gT hT (G : {group gT}) (phi : {morphism G >-> hT}),
-    phi @* F G \subset F (phi @* G).
+   gT hT (G : {group gT}) (phi : {morphism G >-> hT}),
+    phi @* F G \subset F (phi @* G).

@@ -167,11 +166,11 @@
Definition iso_continuous :=
-   gT hT (G : {group gT}) (phi : {morphism G >-> hT}),
-   'injm phi phi @* F G \subset F (phi @* G).
+   gT hT (G : {group gT}) (phi : {morphism G >-> hT}),
+   'injm phi phi @* F G \subset F (phi @* G).

-Lemma continuous_is_iso_continuous : continuous iso_continuous.
+Lemma continuous_is_iso_continuous : continuous iso_continuous.

@@ -181,11 +180,11 @@
Definition pcontinuous :=
-   gT hT (G D : {group gT}) (phi : {morphism D >-> hT}),
-    phi @* F G \subset F (phi @* G).
+   gT hT (G D : {group gT}) (phi : {morphism D >-> hT}),
+    phi @* F G \subset F (phi @* G).

-Lemma pcontinuous_is_continuous : pcontinuous continuous.
+Lemma pcontinuous_is_continuous : pcontinuous continuous.

@@ -195,10 +194,10 @@
Definition hereditary :=
-   gT (H G : {group gT}), H \subset G F G :&: H \subset F H.
+   gT (H G : {group gT}), H \subset G F G :&: H \subset F H.

-Lemma pcontinuous_is_hereditary : pcontinuous hereditary.
+Lemma pcontinuous_is_hereditary : pcontinuous hereditary.

@@ -208,7 +207,7 @@
Definition monotonic :=
-   gT (H G : {group gT}), H \subset G F H \subset F G.
+   gT (H G : {group gT}), H \subset G F H \subset F G.

@@ -219,14 +218,14 @@

-Variables (k : unit) (F1 F2 : object_map).
+Variables (k : unit) (F1 F2 : object_map).

-Definition comp_head : object_map := fun gT Alet: tt := k in F1 (F2 A).
+Definition comp_head : object_map := fun gT Alet: tt := k in F1 (F2 A).

Definition modulo : object_map :=
-  fun gT Acoset (F2 A) @*^-1 (F1 (A / (F2 A))).
+  fun gT Acoset (F2 A) @*^-1 (F1 (A / (F2 A))).

End Definitions.
@@ -257,25 +256,25 @@
Definition clone_iso (F : object_map) :=
  fun Fgrp Fsub Fcont (isoF := @IsoMap F Fgrp Fsub Fcont) ⇒
-  fun isoF0 & phant_id (apply isoF0) F & phant_id isoF isoF0isoF.
+  fun isoF0 & phant_id (apply isoF0) F & phant_id isoF isoF0isoF.

Definition clone (F : object_map) :=
-  fun isoF & phant_id (apply isoF) F
-  fun (funF0 : map) & phant_id (apply funF0) F
-  fun Fcont (funF := @Map isoF Fcont) & phant_id funF0 funFfunF.
+  fun isoF & phant_id (apply isoF) F
+  fun (funF0 : map) & phant_id (apply funF0) F
+  fun Fcont (funF := @Map isoF Fcont) & phant_id funF0 funFfunF.

Definition clone_pmap (F : object_map) :=
-  fun (funF : map) & phant_id (apply funF) F
-  fun (pfunF0 : pmap) & phant_id (apply pfunF0) F
-  fun Fher (pfunF := @Pmap funF Fher) & phant_id pfunF0 pfunFpfunF.
+  fun (funF : map) & phant_id (apply funF) F
+  fun (pfunF0 : pmap) & phant_id (apply pfunF0) F
+  fun Fher (pfunF := @Pmap funF Fher) & phant_id pfunF0 pfunFpfunF.

Definition clone_mono (F : object_map) :=
-  fun (funF : map) & phant_id (apply funF) F
-  fun (mfunF0 : mono_map) & phant_id (apply mfunF0) F
-  fun Fmon (mfunF := @MonoMap funF Fmon) & phant_id mfunF0 mfunFmfunF.
+  fun (funF : map) & phant_id (apply funF) F
+  fun (mfunF0 : mono_map) & phant_id (apply mfunF0) F
+  fun Fmon (mfunF := @MonoMap funF Fmon) & phant_id mfunF0 mfunFmfunF.

End ClassDefinitions.
@@ -294,41 +293,41 @@ Coercion pcontinuous_is_hereditary : pcontinuous >-> hereditary.

-Notation "[ 'igFun' 'by' Fsub & Fcont ]" :=
+Notation "[ 'igFun' 'by' Fsub & Fcont ]" :=
    (pack_iso (continuous_is_iso_continuous Fcont) (fun gT GgroupP _) Fsub)
  (at level 0, format "[ 'igFun' 'by' Fsub & Fcont ]") : form_scope.

-Notation "[ 'igFun' 'by' Fsub & ! Fcont ]" :=
+Notation "[ 'igFun' 'by' Fsub & ! Fcont ]" :=
    (pack_iso Fcont (fun gT GgroupP _) Fsub)
  (at level 0, format "[ 'igFun' 'by' Fsub & ! Fcont ]") : form_scope.

-Notation "[ 'igFun' 'of' F ]" := (@clone_iso F _ _ _ _ id id)
+Notation "[ 'igFun' 'of' F ]" := (@clone_iso F _ _ _ _ id id)
  (at level 0, format "[ 'igFun' 'of' F ]") : form_scope.

-Notation "[ 'gFun' 'by' Fcont ]" := (Map Fcont)
+Notation "[ 'gFun' 'by' Fcont ]" := (Map Fcont)
  (at level 0, format "[ 'gFun' 'by' Fcont ]") : form_scope.

-Notation "[ 'gFun' 'of' F ]" := (@clone F _ id _ id _ id)
+Notation "[ 'gFun' 'of' F ]" := (@clone F _ id _ id _ id)
  (at level 0, format "[ 'gFun' 'of' F ]") : form_scope.

-Notation "[ 'pgFun' 'by' Fher ]" := (Pmap Fher)
+Notation "[ 'pgFun' 'by' Fher ]" := (Pmap Fher)
  (at level 0, format "[ 'pgFun' 'by' Fher ]") : form_scope.

-Notation "[ 'pgFun' 'of' F ]" := (@clone_pmap F _ id _ id _ id)
+Notation "[ 'pgFun' 'of' F ]" := (@clone_pmap F _ id _ id _ id)
  (at level 0, format "[ 'pgFun' 'of' F ]") : form_scope.

-Notation "[ 'mgFun' 'by' Fmon ]" := (MonoMap Fmon)
+Notation "[ 'mgFun' 'by' Fmon ]" := (MonoMap Fmon)
  (at level 0, format "[ 'mgFun' 'by' Fmon ]") : form_scope.

-Notation "[ 'mgFun' 'of' F ]" := (@clone_mono F _ id _ id _ id)
+Notation "[ 'mgFun' 'of' F ]" := (@clone_mono F _ id _ id _ id)
  (at level 0, format "[ 'mgFun' 'of' F ]") : form_scope.

@@ -341,14 +340,14 @@

-Notation "F1 \o F2" := (GFunctor.comp_head tt F1 F2) : gFun_scope.
-Notation "F1 %% F2" := (GFunctor.modulo F1 F2) : gFun_scope.
+Notation "F1 \o F2" := (GFunctor.comp_head tt F1 F2) : gFun_scope.
+Notation "F1 %% F2" := (GFunctor.modulo F1 F2) : gFun_scope.

Section FunctorGroup.

-Variables (F : GFunctor.iso_map) (gT : finGroupType) (G : {group gT}).
+Variables (F : GFunctor.iso_map) (gT : finGroupType) (G : {group gT}).
Lemma gFgroupset : group_set (F gT G).
Canonical gFgroup := Group gFgroupset.
@@ -358,8 +357,8 @@
Canonical gFmod_group
    (F1 : GFunctor.iso_map) (F2 : GFunctor.object_map)
-    (gT : finGroupType) (G : {group gT}) :=
-  [group of (F1 %% F2)%gF gT G].
+    (gT : finGroupType) (G : {group gT}) :=
+  [group of (F1 %% F2)%gF gT G].

Section IsoFunctorTheory.
@@ -369,55 +368,55 @@ Variable F : GFunctor.iso_map.

-Lemma gFsub gT (G : {group gT}) : F gT G \subset G.
+Lemma gFsub gT (G : {group gT}) : F gT G \subset G.

-Lemma gFsub_trans gT (G : {group gT}) (A : pred_class) :
-  G \subset A F gT G \subset A.
+Lemma gFsub_trans gT (G : {group gT}) (A : {pred gT}) :
+  G \subset A F gT G \subset A.

-Lemma gF1 gT : F gT 1 = 1.
+Lemma gF1 gT : F gT 1 = 1.

Lemma gFiso_cont : GFunctor.iso_continuous F.

-Lemma gFchar gT (G : {group gT}) : F gT G \char G.
+Lemma gFchar gT (G : {group gT}) : F gT G \char G.

-Lemma gFnorm gT (G : {group gT}) : G \subset 'N(F gT G).
+Lemma gFnorm gT (G : {group gT}) : G \subset 'N(F gT G).

-Lemma gFnorms gT (G : {group gT}) : 'N(G) \subset 'N(F gT G).
+Lemma gFnorms gT (G : {group gT}) : 'N(G) \subset 'N(F gT G).

-Lemma gFnormal gT (G : {group gT}) : F gT G <| G.
+Lemma gFnormal gT (G : {group gT}) : F gT G <| G.

-Lemma gFchar_trans gT (G H : {group gT}) : H \char G F gT H \char G.
+Lemma gFchar_trans gT (G H : {group gT}) : H \char G F gT H \char G.

-Lemma gFnormal_trans gT (G H : {group gT}) : H <| G F gT H <| G.
+Lemma gFnormal_trans gT (G H : {group gT}) : H <| G F gT H <| G.

-Lemma gFnorm_trans gT (A : pred_class) (G : {group gT}) :
-  A \subset 'N(G) A \subset 'N(F gT G).
+Lemma gFnorm_trans gT (A : {pred gT}) (G : {group gT}) :
+  A \subset 'N(G) A \subset 'N(F gT G).

-Lemma injmF_sub gT rT (G D : {group gT}) (f : {morphism D >-> rT}) :
-  'injm f G \subset D f @* (F gT G) \subset F rT (f @* G).
+Lemma injmF_sub gT rT (G D : {group gT}) (f : {morphism D >-> rT}) :
+  'injm f G \subset D f @* (F gT G) \subset F rT (f @* G).

-Lemma injmF gT rT (G D : {group gT}) (f : {morphism D >-> rT}) :
-  'injm f G \subset D f @* (F gT G) = F rT (f @* G).
+Lemma injmF gT rT (G D : {group gT}) (f : {morphism D >-> rT}) :
+  'injm f G \subset D f @* (F gT G) = F rT (f @* G).

-Lemma gFisom gT rT (G D : {group gT}) R (f : {morphism D >-> rT}) :
-  G \subset D isom G (gval R) f isom (F gT G) (F rT R) f.
+Lemma gFisom gT rT (G D : {group gT}) R (f : {morphism D >-> rT}) :
+  G \subset D isom G (gval R) f isom (F gT G) (F rT R) f.

-Lemma gFisog gT rT (G : {group gT}) (R : {group rT}) :
-  G \isog R F gT G \isog F rT R.
+Lemma gFisog gT rT (G : {group gT}) (R : {group rT}) :
+  G \isog R F gT G \isog F rT R.

End IsoFunctorTheory.
@@ -433,8 +432,8 @@ Lemma gFcont : GFunctor.continuous F.

-Lemma morphimF gT rT (G D : {group gT}) (f : {morphism D >-> rT}) :
-  G \subset D f @* (F gT G) \subset F rT (f @* G).
+Lemma morphimF gT rT (G D : {group gT}) (f : {morphism D >-> rT}) :
+  G \subset D f @* (F gT G) \subset F rT (f @* G).

End FunctorTheory.
@@ -455,14 +454,14 @@ Lemma gFhereditary : GFunctor.hereditary F.

-Lemma gFunctorI gT (G H : {group gT}) :
-  F gT G :&: H = F gT G :&: F gT (G :&: H).
+Lemma gFunctorI gT (G H : {group gT}) :
+  F gT G :&: H = F gT G :&: F gT (G :&: H).

Lemma pmorphimF : GFunctor.pcontinuous F.

-Lemma gFid gT (G : {group gT}) : F gT (F gT G) = F gT G.
+Lemma gFid gT (G : {group gT}) : F gT (F gT G) = F gT G.

End BasicTheory.
@@ -474,14 +473,14 @@ Variables (F1 : GFunctor.pmap) (F2 : GFunctor.map).

-Lemma gFmod_closed : GFunctor.closed (F1 %% F2).
+Lemma gFmod_closed : GFunctor.closed (F1 %% F2).

-Lemma gFmod_cont : GFunctor.continuous (F1 %% F2).
+Lemma gFmod_cont : GFunctor.continuous (F1 %% F2).

-Canonical gFmod_igFun := [igFun by gFmod_closed & gFmod_cont].
-Canonical gFmod_gFun := [gFun by gFmod_cont].
+Canonical gFmod_igFun := [igFun by gFmod_closed & gFmod_cont].
+Canonical gFmod_gFun := [gFun by gFmod_cont].

End Modulo.
@@ -490,10 +489,10 @@ Variables F1 F2 : GFunctor.pmap.

-Lemma gFmod_hereditary : GFunctor.hereditary (F1 %% F2).
+Lemma gFmod_hereditary : GFunctor.hereditary (F1 %% F2).

-Canonical gFmod_pgFun := [pgFun by gFmod_hereditary].
+Canonical gFmod_pgFun := [pgFun by gFmod_hereditary].

End PartialFunctorTheory.
@@ -514,14 +513,14 @@ Variables (F1 : GFunctor.mono_map) (F2 : GFunctor.map).

-Lemma gFcomp_closed : GFunctor.closed (F1 \o F2).
+Lemma gFcomp_closed : GFunctor.closed (F1 \o F2).

-Lemma gFcomp_cont : GFunctor.continuous (F1 \o F2).
+Lemma gFcomp_cont : GFunctor.continuous (F1 \o F2).

-Canonical gFcomp_igFun := [igFun by gFcomp_closed & gFcomp_cont].
-Canonical gFcomp_gFun :=[gFun by gFcomp_cont].
+Canonical gFcomp_igFun := [igFun by gFcomp_closed & gFcomp_cont].
+Canonical gFcomp_gFun :=[gFun by gFcomp_cont].

End Composition.
@@ -530,10 +529,10 @@ Variables F1 F2 : GFunctor.mono_map.

-Lemma gFcompS : GFunctor.monotonic (F1 \o F2).
+Lemma gFcompS : GFunctor.monotonic (F1 \o F2).

-Canonical gFcomp_mgFun := [mgFun by gFcompS].
+Canonical gFcomp_mgFun := [mgFun by gFcompS].

End MonotonicFunctorTheory.
@@ -545,7 +544,7 @@ Implicit Types gT : finGroupType.

-Definition idGfun gT := @id {set gT}.
+Definition idGfun gT := @id {set gT}.

Lemma idGfun_closed : GFunctor.closed idGfun.
@@ -553,20 +552,20 @@ Lemma idGfun_monotonic : GFunctor.monotonic idGfun.

-Canonical bgFunc_id := [igFun by idGfun_closed & idGfun_cont].
-Canonical gFunc_id := [gFun by idGfun_cont].
-Canonical mgFunc_id := [mgFun by idGfun_monotonic].
+Canonical bgFunc_id := [igFun by idGfun_closed & idGfun_cont].
+Canonical gFunc_id := [gFun by idGfun_cont].
+Canonical mgFunc_id := [mgFun by idGfun_monotonic].

-Definition trivGfun gT of {set gT} := [1 gT].
+Definition trivGfun gT of {set gT} := [1 gT].

Lemma trivGfun_cont : GFunctor.pcontinuous trivGfun.

-Canonical trivGfun_igFun := [igFun by sub1G & trivGfun_cont].
-Canonical trivGfun_gFun := [gFun by trivGfun_cont].
-Canonical trivGfun_pgFun := [pgFun by trivGfun_cont].
+Canonical trivGfun_igFun := [igFun by sub1G & trivGfun_cont].
+Canonical trivGfun_gFun := [gFun by trivGfun_cont].
+Canonical trivGfun_pgFun := [pgFun by trivGfun_cont].

End GFunctorExamples.
-- cgit v1.2.3