From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Wed, 22 May 2019 13:43:08 +0200 Subject: htmldoc regenerated --- docs/htmldoc/mathcomp.solvable.frobenius.html | 185 +++++++++++++------------- 1 file changed, 92 insertions(+), 93 deletions(-) (limited to 'docs/htmldoc/mathcomp.solvable.frobenius.html') diff --git a/docs/htmldoc/mathcomp.solvable.frobenius.html b/docs/htmldoc/mathcomp.solvable.frobenius.html index d1eb384..16cd5fa 100644 --- a/docs/htmldoc/mathcomp.solvable.frobenius.html +++ b/docs/htmldoc/mathcomp.solvable.frobenius.html @@ -21,7 +21,6 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
 Distributed under the terms of CeCILL-B.                                  *)

-Require Import mathcomp.ssreflect.ssreflect.

@@ -79,7 +78,7 @@
Variable gT : finGroupType.
-Implicit Types A G K H L : {set gT}.
+Implicit Types A G K H L : {set gT}.

@@ -88,7 +87,7 @@ Corresponds to "H acts on K in a regular manner" in B & G.
-Definition semiregular K H := {in H^#, x, 'C_K[x] = 1}.
+Definition semiregular K H := {in H^#, x, 'C_K[x] = 1}.

@@ -97,46 +96,46 @@ Corresponds to "H acts on K in a prime manner" in B & G.
-Definition semiprime K H := {in H^#, x, 'C_K[x] = 'C_K(H)}.
+Definition semiprime K H := {in H^#, x, 'C_K[x] = 'C_K(H)}.

-Definition normedTI A G L := [&& A != set0, trivIset (A :^: G) & 'N_G(A) == L].
+Definition normedTI A G L := [&& A != set0, trivIset (A :^: G) & 'N_G(A) == L].

-Definition Frobenius_group_with_complement G H := (H != G) && normedTI H^# G H.
+Definition Frobenius_group_with_complement G H := (H != G) && normedTI H^# G H.

Definition Frobenius_group G :=
-  [ H : {group gT}, Frobenius_group_with_complement G H].
+  [ H : {group gT}, Frobenius_group_with_complement G H].

Definition Frobenius_group_with_kernel_and_complement G K H :=
-  (K ><| H == G) && Frobenius_group_with_complement G H.
+  (K ><| H == G) && Frobenius_group_with_complement G H.

Definition Frobenius_group_with_kernel G K :=
-  [ H : {group gT}, Frobenius_group_with_kernel_and_complement G K H].
+  [ H : {group gT}, Frobenius_group_with_kernel_and_complement G K H].

Section FrobeniusAction.

-Variables G H : {set gT}.
-Variables (sT : finType) (S : {set sT}) (to : {action gT &-> sT}).
+Variables G H : {set gT}.
+Variables (sT : finType) (S : {set sT}) (to : {action gT &-> sT}).

Definition Frobenius_action :=
-  [/\ [faithful G, on S | to],
-      [transitive G, on S | to],
-      {in G^#, x, #|'Fix_(S | to)[x]| 1},
-      H != 1
-    & exists2 u, u \in S & H = 'C_G[u | to]].
+  [/\ [faithful G, on S | to],
+      [transitive G, on S | to],
+      {in G^#, x, #|'Fix_(S | to)[x]| 1},
+      H != 1
+    & exists2 u, u \in S & H = 'C_G[u | to]].

End FrobeniusAction.

-CoInductive has_Frobenius_action G H : Prop :=
+Variant has_Frobenius_action G H : Prop :=
  HasFrobeniusAction sT S to of @Frobenius_action G H sT S to.

@@ -145,25 +144,25 @@

-Notation "[ 'Frobenius' G 'with' 'complement' H ]" :=
+Notation "[ 'Frobenius' G 'with' 'complement' H ]" :=
  (Frobenius_group_with_complement G H)
  (at level 0, G at level 50, H at level 35,
   format "[ 'Frobenius' G 'with' 'complement' H ]") : group_scope.

-Notation "[ 'Frobenius' G 'with' 'kernel' K ]" :=
+Notation "[ 'Frobenius' G 'with' 'kernel' K ]" :=
  (Frobenius_group_with_kernel G K)
  (at level 0, G at level 50, K at level 35,
   format "[ 'Frobenius' G 'with' 'kernel' K ]") : group_scope.

-Notation "[ 'Frobenius' G ]" :=
+Notation "[ 'Frobenius' G ]" :=
  (Frobenius_group G)
  (at level 0, G at level 50,
   format "[ 'Frobenius' G ]") : group_scope.

-Notation "[ 'Frobenius' G = K ><| H ]" :=
+Notation "[ 'Frobenius' G = K ><| H ]" :=
  (Frobenius_group_with_kernel_and_complement G K H)
  (at level 0, G at level 50, K, H at level 35,
   format "[ 'Frobenius' G = K ><| H ]") : group_scope.
@@ -173,7 +172,7 @@
Variable gT : finGroupType.
-Implicit Types (A B : {set gT}) (G H K L R X : {group gT}).
+Implicit Types (A B : {set gT}) (G H K L R X : {group gT}).

Lemma semiregular1l H : semiregular 1 H.
@@ -182,110 +181,110 @@ Lemma semiregular1r K : semiregular K 1.

-Lemma semiregular_sym H K : semiregular K H semiregular H K.
+Lemma semiregular_sym H K : semiregular K H semiregular H K.

Lemma semiregularS K1 K2 A1 A2 :
-  K1 \subset K2 A1 \subset A2 semiregular K2 A2 semiregular K1 A1.
+  K1 \subset K2 A1 \subset A2 semiregular K2 A2 semiregular K1 A1.

-Lemma semiregular_prime H K : semiregular K H semiprime K H.
+Lemma semiregular_prime H K : semiregular K H semiprime K H.

-Lemma semiprime_regular H K : semiprime K H 'C_K(H) = 1 semiregular K H.
+Lemma semiprime_regular H K : semiprime K H 'C_K(H) = 1 semiregular K H.

Lemma semiprimeS K1 K2 A1 A2 :
-  K1 \subset K2 A1 \subset A2 semiprime K2 A2 semiprime K1 A1.
+  K1 \subset K2 A1 \subset A2 semiprime K2 A2 semiprime K1 A1.

Lemma cent_semiprime H K X :
-   semiprime K H X \subset H X :!=: 1 'C_K(X) = 'C_K(H).
+   semiprime K H X \subset H X :!=: 1 'C_K(X) = 'C_K(H).

Lemma stab_semiprime H K X :
-   semiprime K H X \subset K 'C_H(X) != 1 'C_H(X) = H.
+   semiprime K H X \subset K 'C_H(X) != 1 'C_H(X) = H.

Lemma cent_semiregular H K X :
-   semiregular K H X \subset H X :!=: 1 'C_K(X) = 1.
+   semiregular K H X \subset H X :!=: 1 'C_K(X) = 1.

Lemma regular_norm_dvd_pred K H :
-  H \subset 'N(K) semiregular K H #|H| %| #|K|.-1.
+  H \subset 'N(K) semiregular K H #|H| %| #|K|.-1.

Lemma regular_norm_coprime K H :
-  H \subset 'N(K) semiregular K H coprime #|K| #|H|.
+  H \subset 'N(K) semiregular K H coprime #|K| #|H|.

-Lemma semiregularJ K H x : semiregular K H semiregular (K :^ x) (H :^ x).
+Lemma semiregularJ K H x : semiregular K H semiregular (K :^ x) (H :^ x).

-Lemma semiprimeJ K H x : semiprime K H semiprime (K :^ x) (H :^ x).
+Lemma semiprimeJ K H x : semiprime K H semiprime (K :^ x) (H :^ x).

Lemma normedTI_P A G L :
-  reflect [/\ A != set0, L \subset 'N_G(A)
-           & {in G, g, ~~ [disjoint A & A :^ g] g \in L}]
+  reflect [/\ A != set0, L \subset 'N_G(A)
+           & {in G, g, ~~ [disjoint A & A :^ g] g \in L}]
          (normedTI A G L).

Lemma normedTI_memJ_P A G L :
-  reflect [/\ A != set0, L \subset G
-            & {in A & G, a g, (a ^ g \in A) = (g \in L)}]
+  reflect [/\ A != set0, L \subset G
+            & {in A & G, a g, (a ^ g \in A) = (g \in L)}]
          (normedTI A G L).

Lemma partition_class_support A G :
-  A != set0 trivIset (A :^: G) partition (A :^: G) (class_support A G).
+  A != set0 trivIset (A :^: G) partition (A :^: G) (class_support A G).

Lemma partition_normedTI A G L :
-  normedTI A G L partition (A :^: G) (class_support A G).
+  normedTI A G L partition (A :^: G) (class_support A G).

Lemma card_support_normedTI A G L :
-  normedTI A G L #|class_support A G| = (#|A| × #|G : L|)%N.
+  normedTI A G L #|class_support A G| = (#|A| × #|G : L|)%N.

Lemma normedTI_S A B G L :
-    A != set0 L \subset 'N(A) A \subset B normedTI B G L
+    A != set0 L \subset 'N(A) A \subset B normedTI B G L
  normedTI A G L.

Lemma cent1_normedTI A G L :
-  normedTI A G L {in A, x, 'C_G[x] \subset L}.
+  normedTI A G L {in A, x, 'C_G[x] \subset L}.

Lemma Frobenius_actionP G H :
-  reflect (has_Frobenius_action G H) [Frobenius G with complement H].
+  reflect (has_Frobenius_action G H) [Frobenius G with complement H].

Section FrobeniusProperties.

-Variables G H K : {group gT}.
-Hypothesis frobG : [Frobenius G = K ><| H].
+Variables G H K : {group gT}.
+Hypothesis frobG : [Frobenius G = K ><| H].

-Lemma FrobeniusWker : [Frobenius G with kernel K].
+Lemma FrobeniusWker : [Frobenius G with kernel K].

-Lemma FrobeniusWcompl : [Frobenius G with complement H].
+Lemma FrobeniusWcompl : [Frobenius G with complement H].

-Lemma FrobeniusW : [Frobenius G].
+Lemma FrobeniusW : [Frobenius G].

Lemma Frobenius_context :
-  [/\ K ><| H = G, K :!=: 1, H :!=: 1, K \proper G & H \proper G].
+  [/\ K ><| H = G, K :!=: 1, H :!=: 1, K \proper G & H \proper G].

-Lemma Frobenius_partition : partition (gval K |: (H^# :^: K)) G.
+Lemma Frobenius_partition : partition (gval K |: (H^# :^: K)) G.

-Lemma Frobenius_cent1_ker : {in K^#, x, 'C_G[x] \subset K}.
+Lemma Frobenius_cent1_ker : {in K^#, x, 'C_G[x] \subset K}.

Lemma Frobenius_reg_ker : semiregular K H.
@@ -294,22 +293,22 @@ Lemma Frobenius_reg_compl : semiregular H K.

-Lemma Frobenius_dvd_ker1 : #|H| %| #|K|.-1.
+Lemma Frobenius_dvd_ker1 : #|H| %| #|K|.-1.

-Lemma ltn_odd_Frobenius_ker : odd #|G| #|H|.*2 < #|K|.
+Lemma ltn_odd_Frobenius_ker : odd #|G| #|H|.*2 < #|K|.

-Lemma Frobenius_index_dvd_ker1 : #|G : K| %| #|K|.-1.
+Lemma Frobenius_index_dvd_ker1 : #|G : K| %| #|K|.-1.

-Lemma Frobenius_coprime : coprime #|K| #|H|.
+Lemma Frobenius_coprime : coprime #|K| #|H|.

-Lemma Frobenius_trivg_cent : 'C_K(H) = 1.
+Lemma Frobenius_trivg_cent : 'C_K(H) = 1.

-Lemma Frobenius_index_coprime : coprime #|K| #|G : K|.
+Lemma Frobenius_index_coprime : coprime #|K| #|G : K|.

Lemma Frobenius_ker_Hall : Hall G K.
@@ -321,70 +320,70 @@ End FrobeniusProperties.

-Lemma normedTI_J x A G L : normedTI (A :^ x) (G :^ x) (L :^ x) = normedTI A G L.
+Lemma normedTI_J x A G L : normedTI (A :^ x) (G :^ x) (L :^ x) = normedTI A G L.

Lemma FrobeniusJcompl x G H :
-  [Frobenius G :^ x with complement H :^ x] = [Frobenius G with complement H].
+  [Frobenius G :^ x with complement H :^ x] = [Frobenius G with complement H].

Lemma FrobeniusJ x G K H :
-  [Frobenius G :^ x = K :^ x ><| H :^ x] = [Frobenius G = K ><| H].
+  [Frobenius G :^ x = K :^ x ><| H :^ x] = [Frobenius G = K ><| H].

Lemma FrobeniusJker x G K :
-  [Frobenius G :^ x with kernel K :^ x] = [Frobenius G with kernel K].
+  [Frobenius G :^ x with kernel K :^ x] = [Frobenius G with kernel K].

-Lemma FrobeniusJgroup x G : [Frobenius G :^ x] = [Frobenius G].
+Lemma FrobeniusJgroup x G : [Frobenius G :^ x] = [Frobenius G].

Lemma Frobenius_ker_dvd_ker1 G K :
-  [Frobenius G with kernel K] #|G : K| %| #|K|.-1.
+  [Frobenius G with kernel K] #|G : K| %| #|K|.-1.

Lemma Frobenius_ker_coprime G K :
-  [Frobenius G with kernel K] coprime #|K| #|G : K|.
+  [Frobenius G with kernel K] coprime #|K| #|G : K|.

Lemma Frobenius_semiregularP G K H :
-    K ><| H = G K :!=: 1 H :!=: 1
-  reflect (semiregular K H) [Frobenius G = K ><| H].
+    K ><| H = G K :!=: 1 H :!=: 1
+  reflect (semiregular K H) [Frobenius G = K ><| H].

Lemma prime_FrobeniusP G K H :
-    K :!=: 1 prime #|H|
-  reflect (K ><| H = G 'C_K(H) = 1) [Frobenius G = K ><| H].
+    K :!=: 1 prime #|H|
+  reflect (K ><| H = G 'C_K(H) = 1) [Frobenius G = K ><| H].

Lemma Frobenius_subl G K K1 H :
-    K1 :!=: 1 K1 \subset K H \subset 'N(K1) [Frobenius G = K ><| H]
-  [Frobenius K1 <*> H = K1 ><| H].
+    K1 :!=: 1 K1 \subset K H \subset 'N(K1) [Frobenius G = K ><| H]
+  [Frobenius K1 <*> H = K1 ><| H].

Lemma Frobenius_subr G K H H1 :
-    H1 :!=: 1 H1 \subset H [Frobenius G = K ><| H]
-  [Frobenius K <*> H1 = K ><| H1].
+    H1 :!=: 1 H1 \subset H [Frobenius G = K ><| H]
+  [Frobenius K <*> H1 = K ><| H1].

Lemma Frobenius_kerP G K :
-  reflect [/\ K :!=: 1, K \proper G, K <| G
-            & {in K^#, x, 'C_G[x] \subset K}]
-          [Frobenius G with kernel K].
+  reflect [/\ K :!=: 1, K \proper G, K <| G
+            & {in K^#, x, 'C_G[x] \subset K}]
+          [Frobenius G with kernel K].

Lemma set_Frobenius_compl G K H :
-  K ><| H = G [Frobenius G with kernel K] [Frobenius G = K ><| H].
+  K ><| H = G [Frobenius G with kernel K] [Frobenius G = K ><| H].

Lemma Frobenius_kerS G K G1 :
-    G1 \subset G K \proper G1
-  [Frobenius G with kernel K] [Frobenius G1 with kernel K].
+    G1 \subset G K \proper G1
+  [Frobenius G with kernel K] [Frobenius G1 with kernel K].

Lemma Frobenius_action_kernel_def G H K sT S to :
-    K ><| H = G @Frobenius_action _ G H sT S to
-  K :=: 1 :|: [set x in G | 'Fix_(S | to)[x] == set0].
+    K ><| H = G @Frobenius_action _ G H sT S to
+  K :=: 1 :|: [set x in G | 'Fix_(S | to)[x] == set0].

End FrobeniusBasics.
@@ -392,39 +391,39 @@

-Lemma Frobenius_coprime_quotient (gT : finGroupType) (G K H N : {group gT}) :
-    K ><| H = G N <| G coprime #|K| #|H| H :!=: 1%g
-    N \proper K {in H^#, x, 'C_K[x] \subset N}
-  [Frobenius G / N = (K / N) ><| (H / N)]%g.
+Lemma Frobenius_coprime_quotient (gT : finGroupType) (G K H N : {group gT}) :
+    K ><| H = G N <| G coprime #|K| #|H| H :!=: 1%g
+    N \proper K {in H^#, x, 'C_K[x] \subset N}
+  [Frobenius G / N = (K / N) ><| (H / N)]%g.

Section InjmFrobenius.

-Variables (gT rT : finGroupType) (D G : {group gT}) (f : {morphism D >-> rT}).
-Implicit Types (H K : {group gT}) (sGD : G \subset D) (injf : 'injm f).
+Variables (gT rT : finGroupType) (D G : {group gT}) (f : {morphism D >-> rT}).
+Implicit Types (H K : {group gT}) (sGD : G \subset D) (injf : 'injm f).

Lemma injm_Frobenius_compl H sGD injf :
-  [Frobenius G with complement H] [Frobenius f @* G with complement f @* H].
+  [Frobenius G with complement H] [Frobenius f @* G with complement f @* H].

Lemma injm_Frobenius H K sGD injf :
-  [Frobenius G = K ><| H] [Frobenius f @* G = f @* K ><| f @* H].
+  [Frobenius G = K ><| H] [Frobenius f @* G = f @* K ><| f @* H].

Lemma injm_Frobenius_ker K sGD injf :
-  [Frobenius G with kernel K] [Frobenius f @* G with kernel f @* K].
+  [Frobenius G with kernel K] [Frobenius f @* G with kernel f @* K].

-Lemma injm_Frobenius_group sGD injf : [Frobenius G] [Frobenius f @* G].
+Lemma injm_Frobenius_group sGD injf : [Frobenius G] [Frobenius f @* G].

End InjmFrobenius.

-Theorem Frobenius_Ldiv (gT : finGroupType) (G : {group gT}) n :
-  n %| #|G| n %| #|'Ldiv_n(G)|.
+Theorem Frobenius_Ldiv (gT : finGroupType) (G : {group gT}) n :
+  n %| #|G| n %| #|'Ldiv_n(G)|.
-- cgit v1.2.3