From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.solvable.extraspecial.html | 335 +++++++++++++++++++++++ 1 file changed, 335 insertions(+) create mode 100644 docs/htmldoc/mathcomp.solvable.extraspecial.html (limited to 'docs/htmldoc/mathcomp.solvable.extraspecial.html') diff --git a/docs/htmldoc/mathcomp.solvable.extraspecial.html b/docs/htmldoc/mathcomp.solvable.extraspecial.html new file mode 100644 index 0000000..4e8e995 --- /dev/null +++ b/docs/htmldoc/mathcomp.solvable.extraspecial.html @@ -0,0 +1,335 @@ + + + + + +mathcomp.solvable.extraspecial + + + + +
+ + + +
+ +

Library mathcomp.solvable.extraspecial

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ This file contains the fine structure thorems for extraspecial p-groups. + Together with the material in the maximal and extremal libraries, it + completes the coverage of Aschbacher, section 23. + We define canonical representatives for the group classes that cover the + extremal p-groups (non-abelian p-groups with a cyclic maximal subgroup): + 'Mod_m == the modular group of order m, for m = p ^ n, p prime and n >= 3. + 'D_m == the dihedral group of order m, for m = 2n >= 4. + 'Q_m == the generalized quaternion group of order m, for q = 2 ^ n >= 8. + 'SD_m == the semi-dihedral group of order m, for m = 2 ^ n >= 16. + In each case the notation is defined in the %type, %g and %G scopes, where + it denotes a finGroupType, a full gset and the full group for that type. + However each notation is only meaningful under the given conditions, in + We construct and study the following extraspecial groups: + p^{1+2} == if p is prime, an extraspecial group of order p^3 that has + exponent p or 4, and p-rank 2: thus p^{1+2} is isomorphic to + 'D_8 if p - 2, and NOT isomorphic to 'Mod(p^3) if p is odd. + p^{1+2*n} == the central product of n copies of p^{1+2}, thus of order + p^(1+2*n) if p is a prime, and, when n > 0, a representative + of the (unique) isomorphism class of extraspecial groups of + order p^(1+2*n), of exponent p or 4, and p-rank n+1. + 'D^n == an alternative (and preferred) notation for 2^{1+2*n}, which + is isomorphic to the central product of n copies od 'D_8. + 'D^n*Q == the central product of 'D^n with 'Q_8, thus isomorphic to + all extraspecial groups of order 2 ^ (2 * n + 3) that are + not isomorphic to 'D^n.+1 (or, equivalently, have 2-rank n). + As in extremal.v, these notations are simultaneously defined in the %type, + %g and %G scopes -- depending on the syntactic context, they denote either + a finGroupType, the set, or the group of all its elements. +
+
+ +
+Set Implicit Arguments.
+ +
+Local Open Scope ring_scope.
+Import GroupScope GRing.Theory.
+ +
+Reserved Notation "p ^{1+2}" (at level 2, format "p ^{1+2}").
+Reserved Notation "p ^{1+2* n }"
+  (at level 2, n at level 2, format "p ^{1+2* n }").
+Reserved Notation "''D^' n" (at level 8, n at level 2, format "''D^' n").
+Reserved Notation "''D^' n * 'Q'"
+  (at level 8, n at level 2, format "''D^' n * 'Q'").
+ +
+Module Pextraspecial.
+ +
+Section Construction.
+ +
+Variable p : nat.
+ +
+Definition act ij (k : 'Z_p) := let: (i, j) := ij in (i + k × j, j).
+Lemma actP : is_action [set: 'Z_p] act.
+Canonical action := Action actP.
+ +
+Lemma gactP : is_groupAction [set: 'Z_p × 'Z_p] action.
+Definition groupAction := GroupAction gactP.
+ +
+Fact gtype_key : unit.
+Definition gtype := locked_with gtype_key (sdprod_groupType groupAction).
+ +
+Definition ngtype := ncprod [set: gtype].
+ +
+End Construction.
+ +
+Definition ngtypeQ n := xcprod [set: ngtype 2 n] 'Q_8.
+ +
+End Pextraspecial.
+ +
+Notation "p ^{1+2}" := (Pextraspecial.gtype p) : type_scope.
+Notation "p ^{1+2}" := [set: gsort p^{1+2}] : group_scope.
+Notation "p ^{1+2}" := [set: gsort p^{1+2}]%G : Group_scope.
+ +
+Notation "p ^{1+2* n }" := (Pextraspecial.ngtype p n) : type_scope.
+Notation "p ^{1+2* n }" := [set: gsort p^{1+2*n}] : group_scope.
+Notation "p ^{1+2* n }" := [set: gsort p^{1+2*n}]%G : Group_scope.
+ +
+Notation "''D^' n" := (Pextraspecial.ngtype 2 n) : type_scope.
+Notation "''D^' n" := [set: gsort 'D^n] : group_scope.
+Notation "''D^' n" := [set: gsort 'D^n]%G : Group_scope.
+ +
+Notation "''D^' n * 'Q'" := (Pextraspecial.ngtypeQ n) : type_scope.
+Notation "''D^' n * 'Q'" := [set: gsort 'D^n×Q] : group_scope.
+Notation "''D^' n * 'Q'" := [set: gsort 'D^n×Q]%G : Group_scope.
+ +
+Section ExponentPextraspecialTheory.
+ +
+Variable p : nat.
+Hypothesis p_pr : prime p.
+Let p_gt1 := prime_gt1 p_pr.
+Let p_gt0 := ltnW p_gt1.
+ +
+ +
+Lemma card_pX1p2 : #|p^{1+2}| = (p ^ 3)%N.
+ +
+Lemma Grp_pX1p2 :
+  p^{1+2} \isog Grp (x : y : (x ^+ p, y ^+ p, [~ x, y, x], [~ x, y, y])).
+ +
+Lemma pX1p2_pgroup : p.-group p^{1+2}.
+ +
+
+ +
+ This is part of the existence half of Aschbacher ex. (8.7)(1) +
+ + +
+ This is part of the existence half of Aschbacher ex. (8.7)(1) +
+ + +
+ This is the uniqueness half of Aschbacher ex. (8.7)(1) +
+ + +
+ This is part of the existence half of Aschbacher (23.13) +
+ + +
+ This is part of the existence half of Aschbacher (23.13) and (23.14) +
+ + +
+ This is Aschbacher (23.12) +
+
+Lemma Ohm1_extraspecial_odd (gT : finGroupType) (G : {group gT}) :
+    p.-group G extraspecial G odd #|G|
let Y := 'Ohm_1(G) in
+  [/\ exponent Y = p, #|G : Y| %| p
+    & Y != G
+       E : {group gT},
+        [/\ #|G : Y| = p, #|E| = p extraspecial E,
+            exists2 X : {group gT}, #|X| = p & X \x E = Y
+          & M : {group gT},
+             [/\ M \isog 'Mod_(p ^ 3), M \* E = G & M :&: E = 'Z(M)]]].
+ +
+
+ +
+ This is the uniqueness half of Aschbacher (23.13); the proof incorporates + in part the proof that symplectic spaces are hyperbolic (19.16). +
+
+Lemma isog_pX1p2n n (gT : finGroupType) (G : {group gT}) :
+    prime p extraspecial G #|G| = (p ^ n.*2.+1)%N exponent G %| p
+  G \isog p^{1+2*n}.
+ +
+End GeneralExponentPextraspecialTheory.
+ +
+Lemma isog_2X1p2 : 2^{1+2} \isog 'D_8.
+ +
+Lemma Q8_extraspecial : extraspecial 'Q_8.
+ +
+Lemma DnQ_P n : xcprod_spec 'D^n 'Q_8 ('D^n×Q)%type.
+ +
+Lemma card_DnQ n : #|'D^n×Q| = (2 ^ n.+1.*2.+1)%N.
+ +
+Lemma DnQ_pgroup n : 2.-group 'D^n×Q.
+ +
+
+ +
+ Final part of the existence half of Aschbacher (23.14). +
+ + +
+ A special case of the uniqueness half of Achsbacher (23.14). +
+ + +
+ The uniqueness half of Achsbacher (23.14). The proof incorporates in part + the proof that symplectic spces are hyperbolic (Aschbacher (19.16)), and + the determination of quadratic spaces over 'F_2 (21.2); however we use + the second part of exercise (8.4) to avoid resorting to Witt's lemma and + Galois theory as in (20.9) and (21.1). +
+ + +
+ The first concluding remark of Aschbacher (23.14). +
+
+Lemma rank_Dn n : 'r_2('D^n) = n.+1.
+ +
+
+ +
+ The second concluding remark of Aschbacher (23.14). +
+
+Lemma rank_DnQ n : 'r_2('D^n×Q) = n.+1.
+ +
+
+ +
+ The final concluding remark of Aschbacher (23.14). +
+ +
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3