From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.solvable.extraspecial.html | 123 +++++++++++------------
1 file changed, 61 insertions(+), 62 deletions(-)
(limited to 'docs/htmldoc/mathcomp.solvable.extraspecial.html')
diff --git a/docs/htmldoc/mathcomp.solvable.extraspecial.html b/docs/htmldoc/mathcomp.solvable.extraspecial.html
index 4e8e995..c0f4274 100644
--- a/docs/htmldoc/mathcomp.solvable.extraspecial.html
+++ b/docs/htmldoc/mathcomp.solvable.extraspecial.html
@@ -21,7 +21,6 @@
@@ -80,58 +79,58 @@
Section Construction.
-Variable p : nat.
+Variable p : nat.
-Definition act ij (k : 'Z_p) := let: (i, j) := ij in (i + k × j, j).
-Lemma actP : is_action [set: 'Z_p] act.
+Definition act ij (k : 'Z_p) := let: (i, j) := ij in (i + k × j, j).
+Lemma actP : is_action [set: 'Z_p] act.
Canonical action := Action actP.
-Lemma gactP : is_groupAction [set: 'Z_p × 'Z_p] action.
+Lemma gactP : is_groupAction [set: 'Z_p × 'Z_p] action.
Definition groupAction := GroupAction gactP.
-Fact gtype_key : unit.
-Definition gtype := locked_with gtype_key (sdprod_groupType groupAction).
+Fact gtype_key : unit.
+Definition gtype := locked_with gtype_key (sdprod_groupType groupAction).
-Definition ngtype := ncprod [set: gtype].
+Definition ngtype := ncprod [set: gtype].
End Construction.
-Definition ngtypeQ n := xcprod [set: ngtype 2 n] 'Q_8.
+Definition ngtypeQ n := xcprod [set: ngtype 2 n] 'Q_8.
End Pextraspecial.
-Notation "p ^{1+2}" := (Pextraspecial.gtype p) : type_scope.
-Notation "p ^{1+2}" := [set: gsort p^{1+2}] : group_scope.
-Notation "p ^{1+2}" := [set: gsort p^{1+2}]%G : Group_scope.
+Notation "p ^{1+2}" := (Pextraspecial.gtype p) : type_scope.
+Notation "p ^{1+2}" := [set: gsort p^{1+2}] : group_scope.
+Notation "p ^{1+2}" := [set: gsort p^{1+2}]%G : Group_scope.
-Notation "p ^{1+2* n }" := (Pextraspecial.ngtype p n) : type_scope.
-Notation "p ^{1+2* n }" := [set: gsort p^{1+2*n}] : group_scope.
-Notation "p ^{1+2* n }" := [set: gsort p^{1+2*n}]%G : Group_scope.
+Notation "p ^{1+2* n }" := (Pextraspecial.ngtype p n) : type_scope.
+Notation "p ^{1+2* n }" := [set: gsort p^{1+2*n}] : group_scope.
+Notation "p ^{1+2* n }" := [set: gsort p^{1+2*n}]%G : Group_scope.
-Notation "''D^' n" := (Pextraspecial.ngtype 2 n) : type_scope.
-Notation "''D^' n" := [set: gsort 'D^n] : group_scope.
-Notation "''D^' n" := [set: gsort 'D^n]%G : Group_scope.
+Notation "''D^' n" := (Pextraspecial.ngtype 2 n) : type_scope.
+Notation "''D^' n" := [set: gsort 'D^n] : group_scope.
+Notation "''D^' n" := [set: gsort 'D^n]%G : Group_scope.
-Notation "''D^' n * 'Q'" := (Pextraspecial.ngtypeQ n) : type_scope.
-Notation "''D^' n * 'Q'" := [set: gsort 'D^n×Q] : group_scope.
-Notation "''D^' n * 'Q'" := [set: gsort 'D^n×Q]%G : Group_scope.
+Notation "''D^' n * 'Q'" := (Pextraspecial.ngtypeQ n) : type_scope.
+Notation "''D^' n * 'Q'" := [set: gsort 'D^n×Q] : group_scope.
+Notation "''D^' n * 'Q'" := [set: gsort 'D^n×Q]%G : Group_scope.
Section ExponentPextraspecialTheory.
-Variable p : nat.
+Variable p : nat.
Hypothesis p_pr : prime p.
Let p_gt1 := prime_gt1 p_pr.
Let p_gt0 := ltnW p_gt1.
@@ -139,14 +138,14 @@
-Lemma card_pX1p2 : #|p^{1+2}| = (p ^ 3)%N.
+Lemma card_pX1p2 : #|p^{1+2}| = (p ^ 3)%N.
Lemma Grp_pX1p2 :
- p^{1+2} \isog Grp (x : y : (x ^+ p, y ^+ p, [~ x, y, x], [~ x, y, y])).
+ p^{1+2} \isog Grp (x : y : (x ^+ p, y ^+ p, [~ x, y, x], [~ x, y, y])).
-Lemma pX1p2_pgroup : p.-group p^{1+2}.
+Lemma pX1p2_pgroup : p.-group p^{1+2}.
@@ -155,7 +154,7 @@
This is part of the existence half of Aschbacher ex. (8.7)(1)
@@ -164,7 +163,7 @@
This is part of the existence half of Aschbacher ex. (8.7)(1)
@@ -173,8 +172,8 @@
This is the uniqueness half of Aschbacher ex. (8.7)(1)
@@ -204,7 +203,7 @@
This is part of the existence half of Aschbacher (23.13)
@@ -213,7 +212,7 @@
This is part of the existence half of Aschbacher (23.13) and (23.14)
@@ -222,16 +221,16 @@
This is Aschbacher (23.12)
-
Lemma Ohm1_extraspecial_odd (
gT :
finGroupType) (
G :
{group gT}) :
-
p.-group G → extraspecial G → odd #|G| →
-
let Y :=
'Ohm_1(G) in
-
[/\ exponent Y = p, #|G : Y| %| p
-
& Y != G →
-
∃ E :
{group gT},
-
[/\ #|G : Y| = p, #|E| = p ∨ extraspecial E,
-
exists2 X : {group gT}, #|X| = p & X \x E = Y
-
& ∃ M :
{group gT},
-
[/\ M \isog 'Mod_(p ^ 3
), M \* E = G & M :&: E = 'Z(M)]]].
+
Lemma Ohm1_extraspecial_odd (
gT :
finGroupType) (
G :
{group gT}) :
+
p.-group G → extraspecial G → odd #|G| →
+
let Y :=
'Ohm_1(G) in
+
[/\ exponent Y = p, #|G : Y| %| p
+
& Y != G →
+
∃ E :
{group gT},
+
[/\ #|G : Y| = p, #|E| = p ∨ extraspecial E,
+
exists2 X : {group gT}, #|X| = p & X \x E = Y
+
& ∃ M :
{group gT},
+
[/\ M \isog 'Mod_(p ^ 3
), M \* E = G & M :&: E = 'Z(M)]]].
@@ -241,27 +240,27 @@
in part the proof that symplectic spaces are hyperbolic (19.16).
@@ -270,7 +269,7 @@
Final part of the existence half of Aschbacher (23.14).
@@ -279,8 +278,8 @@
A special case of the uniqueness half of Achsbacher (23.14).
@@ -293,8 +292,8 @@
Galois theory as in (20.9) and (21.1).
@@ -303,7 +302,7 @@
The first concluding remark of Aschbacher (23.14).
@@ -312,7 +311,7 @@
The second concluding remark of Aschbacher (23.14).
@@ -321,7 +320,7 @@
The final concluding remark of Aschbacher (23.14).
--
cgit v1.2.3