From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.solvable.cyclic.html | 652 +++++++++++++++++++++++++++++ 1 file changed, 652 insertions(+) create mode 100644 docs/htmldoc/mathcomp.solvable.cyclic.html (limited to 'docs/htmldoc/mathcomp.solvable.cyclic.html') diff --git a/docs/htmldoc/mathcomp.solvable.cyclic.html b/docs/htmldoc/mathcomp.solvable.cyclic.html new file mode 100644 index 0000000..858273d --- /dev/null +++ b/docs/htmldoc/mathcomp.solvable.cyclic.html @@ -0,0 +1,652 @@ + + + + + +mathcomp.solvable.cyclic + + + + +
+ + + +
+ +

Library mathcomp.solvable.cyclic

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ Properties of cyclic groups. + Definitions: + Defined in fingroup.v: + < [x]> == the cycle (cyclic group) generated by x. + # [x] == the order of x, i.e., the cardinal of < [x]>. + Defined in prime.v: + totient n == Euler's totient function + Definitions in this file: + cyclic G <=> G is a cyclic group. + metacyclic G <=> G is a metacyclic group (i.e., a cyclic extension of a + cyclic group). + generator G x <=> x is a generator of the (cyclic) group G. + Zpm x == the isomorphism mapping the additive group of integers + mod # [x] to the cyclic group < [x]>. + cyclem x n == the endomorphism y |-> y ^+ n of < [x]>. + Zp_unitm x == the isomorphism mapping the multiplicative group of the + units of the ring of integers mod # [x] to the group of + automorphisms of < [x]> (i.e., Aut < [x]>). + Zp_unitm x maps u to cyclem x u. + eltm dvd_y_x == the smallest morphism (with domain < [x]>) mapping x to + y, given a proof dvd_y_x : # [y] %| # [x]. + expg_invn G k == if coprime #|G| k, the inverse of exponent k in G. + Basic results for these notions, plus the classical result that any finite + group isomorphic to a subgroup of a field is cyclic, hence that Aut G is + cyclic when G is of prime order. +
+
+ +
+Set Implicit Arguments.
+ +
+Import GroupScope GRing.Theory.
+ +
+
+ +
+ Cyclic groups. +
+
+ +
+Section Cyclic.
+ +
+Variable gT : finGroupType.
+Implicit Types (a x y : gT) (A B : {set gT}) (G K H : {group gT}).
+ +
+Definition cyclic A := [ x, A == <[x]>].
+ +
+Lemma cyclicP A : reflect ( x, A = <[x]>) (cyclic A).
+ +
+Lemma cycle_cyclic x : cyclic <[x]>.
+ +
+Lemma cyclic1 : cyclic [1 gT].
+ +
+
+ +
+ Isomorphism with the additive group +
+
+ +
+Section Zpm.
+ +
+Variable a : gT.
+ +
+Definition Zpm (i : 'Z_#[a]) := a ^+ i.
+ +
+Lemma ZpmM : {in Zp #[a] &, {morph Zpm : x y / x × y}}.
+ +
+Canonical Zpm_morphism := Morphism ZpmM.
+ +
+Lemma im_Zpm : Zpm @* Zp #[a] = <[a]>.
+ +
+Lemma injm_Zpm : 'injm Zpm.
+ +
+Lemma eq_expg_mod_order m n : (a ^+ m == a ^+ n) = (m == n %[mod #[a]]).
+ +
+Lemma Zp_isom : isom (Zp #[a]) <[a]> Zpm.
+ +
+Lemma Zp_isog : isog (Zp #[a]) <[a]>.
+ +
+End Zpm.
+ +
+
+ +
+ Central and direct product of cycles +
+
+ +
+Lemma cyclic_abelian A : cyclic A abelian A.
+ +
+Lemma cycleMsub a b :
+  commute a b coprime #[a] #[b] <[a]> \subset <[a × b]>.
+ +
+Lemma cycleM a b :
+  commute a b coprime #[a] #[b] <[a × b]> = <[a]> × <[b]>.
+ +
+Lemma cyclicM A B :
+    cyclic A cyclic B B \subset 'C(A) coprime #|A| #|B|
+  cyclic (A × B).
+ +
+Lemma cyclicY K H :
+    cyclic K cyclic H H \subset 'C(K) coprime #|K| #|H|
+  cyclic (K <*> H).
+ +
+
+ +
+ Order properties +
+
+ +
+Lemma order_dvdn a n : #[a] %| n = (a ^+ n == 1).
+ +
+Lemma order_inf a n : a ^+ n.+1 == 1 #[a] n.+1.
+ +
+Lemma order_dvdG G a : a \in G #[a] %| #|G|.
+ +
+Lemma expg_cardG G a : a \in G a ^+ #|G| = 1.
+ +
+Lemma expg_znat G x k : x \in G x ^+ (k%:R : 'Z_(#|G|))%R = x ^+ k.
+ +
+Lemma expg_zneg G x (k : 'Z_(#|G|)) : x \in G x ^+ (- k)%R = x ^- k.
+ +
+Lemma nt_gen_prime G x : prime #|G| x \in G^# G :=: <[x]>.
+ +
+Lemma nt_prime_order p x : prime p x ^+ p = 1 x != 1 #[x] = p.
+ +
+Lemma orderXdvd a n : #[a ^+ n] %| #[a].
+ +
+Lemma orderXgcd a n : #[a ^+ n] = #[a] %/ gcdn #[a] n.
+ +
+Lemma orderXdiv a n : n %| #[a] #[a ^+ n] = #[a] %/ n.
+ +
+Lemma orderXexp p m n x : #[x] = (p ^ n)%N #[x ^+ (p ^ m)] = (p ^ (n - m))%N.
+ +
+Lemma orderXpfactor p k n x :
+  #[x ^+ (p ^ k)] = n prime p p %| n #[x] = (p ^ k × n)%N.
+ +
+Lemma orderXprime p n x :
+  #[x ^+ p] = n prime p p %| n #[x] = (p × n)%N.
+ +
+Lemma orderXpnat m n x : #[x ^+ m] = n \pi(n).-nat m #[x] = (m × n)%N.
+ +
+Lemma orderM a b :
+  commute a b coprime #[a] #[b] #[a × b] = (#[a] × #[b])%N.
+ +
+Definition expg_invn A k := (egcdn k #|A|).1.
+ +
+Lemma expgK G k :
+  coprime #|G| k {in G, cancel (expgn^~ k) (expgn^~ (expg_invn G k))}.
+ +
+Lemma cyclic_dprod K H G :
+  K \x H = G cyclic K cyclic H cyclic G = coprime #|K| #|H| .
+ +
+
+ +
+ Generator +
+
+ +
+Definition generator (A : {set gT}) a := A == <[a]>.
+ +
+Lemma generator_cycle a : generator <[a]> a.
+ +
+Lemma cycle_generator a x : generator <[a]> x x \in <[a]>.
+ +
+Lemma generator_order a b : generator <[a]> b #[a] = #[b].
+ +
+End Cyclic.
+ +
+ +
+
+ +
+ Euler's theorem +
+
+Theorem Euler_exp_totient a n : coprime a n a ^ totient n = 1 %[mod n].
+ +
+Section Eltm.
+ +
+Variables (aT rT : finGroupType) (x : aT) (y : rT).
+ +
+Definition eltm of #[y] %| #[x] := fun x_iy ^+ invm (injm_Zpm x) x_i.
+ +
+Hypothesis dvd_y_x : #[y] %| #[x].
+ +
+Lemma eltmE i : eltm dvd_y_x (x ^+ i) = y ^+ i.
+ +
+Lemma eltm_id : eltm dvd_y_x x = y.
+ +
+Lemma eltmM : {in <[x]> &, {morph eltm dvd_y_x : x_i x_j / x_i × x_j}}.
+Canonical eltm_morphism := Morphism eltmM.
+ +
+Lemma im_eltm : eltm dvd_y_x @* <[x]> = <[y]>.
+ +
+Lemma ker_eltm : 'ker (eltm dvd_y_x) = <[x ^+ #[y]]>.
+ +
+Lemma injm_eltm : 'injm (eltm dvd_y_x) = (#[x] %| #[y]).
+ +
+End Eltm.
+ +
+Section CycleSubGroup.
+ +
+Variable gT : finGroupType.
+ +
+
+ +
+ Gorenstein, 1.3.1 (i) +
+
+Lemma cycle_sub_group (a : gT) m :
+     m %| #[a]
+  [set H : {group gT} | H \subset <[a]> & #|H| == m]
+     = [set <[a ^+ (#[a] %/ m)]>%G].
+ +
+Lemma cycle_subgroup_char a (H : {group gT}) : H \subset <[a]> H \char <[a]>.
+ +
+End CycleSubGroup.
+ +
+
+ +
+ Reflected boolean property and morphic image, injection, bijection +
+
+ +
+Section MorphicImage.
+ +
+Variables aT rT : finGroupType.
+Variables (D : {group aT}) (f : {morphism D >-> rT}) (x : aT).
+Hypothesis Dx : x \in D.
+ +
+Lemma morph_order : #[f x] %| #[x].
+ +
+Lemma morph_generator A : generator A x generator (f @* A) (f x).
+ +
+End MorphicImage.
+ +
+Section CyclicProps.
+ +
+Variables gT : finGroupType.
+Implicit Types (aT rT : finGroupType) (G H K : {group gT}).
+ +
+Lemma cyclicS G H : H \subset G cyclic G cyclic H.
+ +
+Lemma cyclicJ G x : cyclic (G :^ x) = cyclic G.
+ +
+Lemma eq_subG_cyclic G H K :
+  cyclic G H \subset G K \subset G (H :==: K) = (#|H| == #|K|).
+ +
+Lemma cardSg_cyclic G H K :
+  cyclic G H \subset G K \subset G (#|H| %| #|K|) = (H \subset K).
+ +
+Lemma sub_cyclic_char G H : cyclic G (H \char G) = (H \subset G).
+ +
+Lemma morphim_cyclic rT G H (f : {morphism G >-> rT}) :
+  cyclic H cyclic (f @* H).
+ +
+Lemma quotient_cycle x H : x \in 'N(H) <[x]> / H = <[coset H x]>.
+ +
+Lemma quotient_cyclic G H : cyclic G cyclic (G / H).
+ +
+Lemma quotient_generator x G H :
+  x \in 'N(H) generator G x generator (G / H) (coset H x).
+ +
+Lemma prime_cyclic G : prime #|G| cyclic G.
+ +
+Lemma dvdn_prime_cyclic G p : prime p #|G| %| p cyclic G.
+ +
+Lemma cyclic_small G : #|G| 3 cyclic G.
+ +
+End CyclicProps.
+ +
+Section IsoCyclic.
+ +
+Variables gT rT : finGroupType.
+Implicit Types (G H : {group gT}) (M : {group rT}).
+ +
+Lemma injm_cyclic G H (f : {morphism G >-> rT}) :
+  'injm f H \subset G cyclic (f @* H) = cyclic H.
+ +
+Lemma isog_cyclic G M : G \isog M cyclic G = cyclic M.
+ +
+Lemma isog_cyclic_card G M : cyclic G isog G M = cyclic M && (#|M| == #|G|).
+ +
+Lemma injm_generator G H (f : {morphism G >-> rT}) x :
+    'injm f x \in G H \subset G
+  generator (f @* H) (f x) = generator H x.
+ +
+End IsoCyclic.
+ +
+
+ +
+ Metacyclic groups. +
+
+Section Metacyclic.
+ +
+Variable gT : finGroupType.
+Implicit Types (A : {set gT}) (G H : {group gT}).
+ +
+Definition metacyclic A :=
+  [ H : {group gT}, [&& cyclic H, H <| A & cyclic (A / H)]].
+ +
+Lemma metacyclicP A :
+  reflect ( H : {group gT}, [/\ cyclic H, H <| A & cyclic (A / H)])
+          (metacyclic A).
+ +
+Lemma metacyclic1 : metacyclic 1.
+ +
+Lemma cyclic_metacyclic A : cyclic A metacyclic A.
+ +
+Lemma metacyclicS G H : H \subset G metacyclic G metacyclic H.
+ +
+End Metacyclic.
+ +
+ +
+
+ +
+ Automorphisms of cyclic groups. +
+
+Section CyclicAutomorphism.
+ +
+Variable gT : finGroupType.
+ +
+Section CycleAutomorphism.
+ +
+Variable a : gT.
+ +
+Section CycleMorphism.
+ +
+Variable n : nat.
+ +
+Definition cyclem of gT := fun x : gTx ^+ n.
+ +
+Lemma cyclemM : {in <[a]> & , {morph cyclem a : x y / x × y}}.
+ +
+Canonical cyclem_morphism := Morphism cyclemM.
+ +
+End CycleMorphism.
+ +
+Section ZpUnitMorphism.
+ +
+Variable u : {unit 'Z_#[a]}.
+ +
+Lemma injm_cyclem : 'injm (cyclem (val u) a).
+ +
+Lemma im_cyclem : cyclem (val u) a @* <[a]> = <[a]>.
+ +
+Definition Zp_unitm := aut injm_cyclem im_cyclem.
+ +
+End ZpUnitMorphism.
+ +
+Lemma Zp_unitmM : {in units_Zp #[a] &, {morph Zp_unitm : u v / u × v}}.
+ +
+Canonical Zp_unit_morphism := Morphism Zp_unitmM.
+ +
+Lemma injm_Zp_unitm : 'injm Zp_unitm.
+ +
+Lemma generator_coprime m : generator <[a]> (a ^+ m) = coprime #[a] m.
+ +
+Lemma im_Zp_unitm : Zp_unitm @* units_Zp #[a] = Aut <[a]>.
+ +
+Lemma Zp_unit_isom : isom (units_Zp #[a]) (Aut <[a]>) Zp_unitm.
+ +
+Lemma Zp_unit_isog : isog (units_Zp #[a]) (Aut <[a]>).
+ +
+Lemma card_Aut_cycle : #|Aut <[a]>| = totient #[a].
+ +
+Lemma totient_gen : totient #[a] = #|[set x | generator <[a]> x]|.
+ +
+Lemma Aut_cycle_abelian : abelian (Aut <[a]>).
+ +
+End CycleAutomorphism.
+ +
+Variable G : {group gT}.
+ +
+Lemma Aut_cyclic_abelian : cyclic G abelian (Aut G).
+ +
+Lemma card_Aut_cyclic : cyclic G #|Aut G| = totient #|G|.
+ +
+Lemma sum_ncycle_totient :
+  \sum_(d < #|G|.+1) #|[set <[x]> | x in G & #[x] == d]| × totient d = #|G|.
+ +
+End CyclicAutomorphism.
+ +
+Lemma sum_totient_dvd n : \sum_(d < n.+1 | d %| n) totient d = n.
+ +
+Section FieldMulCyclic.
+ +
+
+ +
+ A classic application to finite multiplicative subgroups of fields. +
+
+ +
+Import GRing.Theory.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+ +
+Lemma order_inj_cyclic :
+  {in G &, x y, #[x] = #[y] <[x]> = <[y]>} cyclic G.
+ +
+Lemma div_ring_mul_group_cyclic (R : unitRingType) (f : gT R) :
+    f 1 = 1%R {in G &, {morph f : u v / u × v >-> (u × v)%R}}
+    {in G^#, x, f x - 1 \in GRing.unit}%R
+  abelian G cyclic G.
+ +
+Lemma field_mul_group_cyclic (F : fieldType) (f : gT F) :
+    {in G &, {morph f : u v / u × v >-> (u × v)%R}}
+    {in G, x, f x = 1%R x = 1}
+  cyclic G.
+ +
+End FieldMulCyclic.
+ +
+Lemma field_unit_group_cyclic (F : finFieldType) (G : {group {unit F}}) :
+  cyclic G.
+ +
+Section PrimitiveRoots.
+ +
+Open Scope ring_scope.
+Import GRing.Theory.
+ +
+Lemma has_prim_root (F : fieldType) (n : nat) (rs : seq F) :
+    n > 0 all n.-unity_root rs uniq rs size rs n
+  has n.-primitive_root rs.
+ +
+End PrimitiveRoots.
+ +
+
+ +
+ Cycles of prime order +
+
+ +
+Section AutPrime.
+ +
+Variable gT : finGroupType.
+ +
+Lemma Aut_prime_cycle_cyclic (a : gT) : prime #[a] cyclic (Aut <[a]>).
+ +
+Lemma Aut_prime_cyclic (G : {group gT}) : prime #|G| cyclic (Aut G).
+ +
+End AutPrime.
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3