From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.solvable.cyclic.html | 243 ++++++++++++++---------------
1 file changed, 121 insertions(+), 122 deletions(-)
(limited to 'docs/htmldoc/mathcomp.solvable.cyclic.html')
diff --git a/docs/htmldoc/mathcomp.solvable.cyclic.html b/docs/htmldoc/mathcomp.solvable.cyclic.html
index 858273d..731109c 100644
--- a/docs/htmldoc/mathcomp.solvable.cyclic.html
+++ b/docs/htmldoc/mathcomp.solvable.cyclic.html
@@ -21,7 +21,6 @@
@@ -74,19 +73,19 @@
Variable gT : finGroupType.
-Implicit Types (a x y : gT) (A B : {set gT}) (G K H : {group gT}).
+Implicit Types (a x y : gT) (A B : {set gT}) (G K H : {group gT}).
-Definition cyclic A := [∃ x, A == <[x]>].
+Definition cyclic A := [∃ x, A == <[x]>].
-Lemma cyclicP A : reflect (∃ x, A = <[x]>) (cyclic A).
+Lemma cyclicP A : reflect (∃ x, A = <[x]>) (cyclic A).
-Lemma cycle_cyclic x : cyclic <[x]>.
+Lemma cycle_cyclic x : cyclic <[x]>.
-Lemma cyclic1 : cyclic [1 gT].
+Lemma cyclic1 : cyclic [1 gT].
@@ -103,28 +102,28 @@
Variable a : gT.
-Definition Zpm (i : 'Z_#[a]) := a ^+ i.
+Definition Zpm (i : 'Z_#[a]) := a ^+ i.
-Lemma ZpmM : {in Zp #[a] &, {morph Zpm : x y / x × y}}.
+Lemma ZpmM : {in Zp #[a] &, {morph Zpm : x y / x × y}}.
Canonical Zpm_morphism := Morphism ZpmM.
-Lemma im_Zpm : Zpm @* Zp #[a] = <[a]>.
+Lemma im_Zpm : Zpm @* Zp #[a] = <[a]>.
-Lemma injm_Zpm : 'injm Zpm.
+Lemma injm_Zpm : 'injm Zpm.
-Lemma eq_expg_mod_order m n : (a ^+ m == a ^+ n) = (m == n %[mod #[a]]).
+Lemma eq_expg_mod_order m n : (a ^+ m == a ^+ n) = (m == n %[mod #[a]]).
-Lemma Zp_isom : isom (Zp #[a]) <[a]> Zpm.
+Lemma Zp_isom : isom (Zp #[a]) <[a]> Zpm.
-Lemma Zp_isog : isog (Zp #[a]) <[a]>.
+Lemma Zp_isog : isog (Zp #[a]) <[a]>.
End Zpm.
@@ -138,25 +137,25 @@
@@ -167,66 +166,66 @@
@@ -237,16 +236,16 @@
Lemma cycle_sub_group (
a :
gT)
m :
-
m %| #[a] →
-
[set H : {group gT} | H \subset <[a]> & #|H| == m]
-
= [set <[a ^+ (#[a] %/ m)]>%
G].
+
m %| #[a] →
+
[set H : {group gT} | H \subset <[a]> & #|H| == m]
+
= [set <[a ^+ (#[a] %/ m)]>%
G].
-
Lemma cycle_subgroup_char a (
H :
{group gT}) :
H \subset <[a]> → H \char <[a]>.
+
Lemma cycle_subgroup_char a (
H :
{group gT}) :
H \subset <[a]> → H \char <[a]>.
End CycleSubGroup.
@@ -333,14 +332,14 @@
Variables aT rT :
finGroupType.
-
Variables (
D :
{group aT}) (
f :
{morphism D >-> rT}) (
x :
aT).
-
Hypothesis Dx :
x \in D.
+
Variables (
D :
{group aT}) (
f :
{morphism D >-> rT}) (
x :
aT).
+
Hypothesis Dx :
x \in D.
-
Lemma morph_order :
#[f x] %| #[x].
+
Lemma morph_order :
#[f x] %| #[x].
-
Lemma morph_generator A :
generator A x → generator (
f @* A) (
f x).
+
Lemma morph_generator A :
generator A x → generator (
f @* A) (
f x).
End MorphicImage.
@@ -350,47 +349,47 @@
Variables gT :
finGroupType.
-
Implicit Types (
aT rT :
finGroupType) (
G H K :
{group gT}).
+
Implicit Types (
aT rT :
finGroupType) (
G H K :
{group gT}).
-
Lemma cyclicS G H :
H \subset G → cyclic G → cyclic H.
+
Lemma cyclicS G H :
H \subset G → cyclic G → cyclic H.
-
Lemma cyclicJ G x :
cyclic (
G :^ x)
= cyclic G.
+
Lemma cyclicJ G x :
cyclic (
G :^ x)
= cyclic G.
Lemma eq_subG_cyclic G H K :
-
cyclic G → H \subset G → K \subset G → (H :==: K) = (#|H| == #|K|).
+
cyclic G → H \subset G → K \subset G → (H :==: K) = (#|H| == #|K|).
Lemma cardSg_cyclic G H K :
-
cyclic G → H \subset G → K \subset G → (#|H| %| #|K|) = (H \subset K).
+
cyclic G → H \subset G → K \subset G → (#|H| %| #|K|) = (H \subset K).
-
Lemma sub_cyclic_char G H :
cyclic G → (H \char G) = (H \subset G).
+
Lemma sub_cyclic_char G H :
cyclic G → (H \char G) = (H \subset G).
-
Lemma morphim_cyclic rT G H (
f :
{morphism G >-> rT}) :
-
cyclic H → cyclic (
f @* H).
+
Lemma morphim_cyclic rT G H (
f :
{morphism G >-> rT}) :
+
cyclic H → cyclic (
f @* H).
-
Lemma quotient_cycle x H :
x \in 'N(H) → <[x]> / H = <[coset H x]>.
+
Lemma quotient_cycle x H :
x \in 'N(H) → <[x]> / H = <[coset H x]>.
-
Lemma quotient_cyclic G H :
cyclic G → cyclic (
G / H).
+
Lemma quotient_cyclic G H :
cyclic G → cyclic (
G / H).
Lemma quotient_generator x G H :
-
x \in 'N(H) → generator G x → generator (
G / H) (
coset H x).
+
x \in 'N(H) → generator G x → generator (
G / H) (
coset H x).
-
Lemma prime_cyclic G :
prime #|G| → cyclic G.
+
Lemma prime_cyclic G :
prime #|G| → cyclic G.
-
Lemma dvdn_prime_cyclic G p :
prime p → #|G| %| p → cyclic G.
+
Lemma dvdn_prime_cyclic G p :
prime p → #|G| %| p → cyclic G.
-
Lemma cyclic_small G :
#|G| ≤ 3
→ cyclic G.
+
Lemma cyclic_small G :
#|G| ≤ 3
→ cyclic G.
End CyclicProps.
@@ -400,22 +399,22 @@
Variables gT rT :
finGroupType.
-
Implicit Types (
G H :
{group gT}) (
M :
{group rT}).
+
Implicit Types (
G H :
{group gT}) (
M :
{group rT}).
-
Lemma injm_cyclic G H (
f :
{morphism G >-> rT}) :
-
'injm f → H \subset G → cyclic (
f @* H)
= cyclic H.
+
Lemma injm_cyclic G H (
f :
{morphism G >-> rT}) :
+
'injm f → H \subset G → cyclic (
f @* H)
= cyclic H.
-
Lemma isog_cyclic G M :
G \isog M → cyclic G = cyclic M.
+
Lemma isog_cyclic G M :
G \isog M → cyclic G = cyclic M.
-
Lemma isog_cyclic_card G M :
cyclic G → isog G M = cyclic M && (#|M| == #|G|).
+
Lemma isog_cyclic_card G M :
cyclic G → isog G M = cyclic M && (#|M| == #|G|).
-
Lemma injm_generator G H (
f :
{morphism G >-> rT})
x :
-
'injm f → x \in G → H \subset G →
-
generator (
f @* H) (
f x)
= generator H x.
+
Lemma injm_generator G H (
f :
{morphism G >-> rT})
x :
+
'injm f → x \in G → H \subset G →
+
generator (
f @* H) (
f x)
= generator H x.
End IsoCyclic.
@@ -431,25 +430,25 @@
Variable gT :
finGroupType.
-
Implicit Types (
A :
{set gT}) (
G H :
{group gT}).
+
Implicit Types (
A :
{set gT}) (
G H :
{group gT}).
Definition metacyclic A :=
-
[∃ H : {group gT}, [&& cyclic H, H <| A & cyclic (
A / H)
]].
+
[∃ H : {group gT}, [&& cyclic H, H <| A & cyclic (
A / H)
]].
Lemma metacyclicP A :
-
reflect (
∃ H :
{group gT}, [/\ cyclic H, H <| A & cyclic (
A / H)
])
+
reflect (
∃ H :
{group gT}, [/\ cyclic H, H <| A & cyclic (
A / H)
])
(
metacyclic A).
Lemma metacyclic1 :
metacyclic 1.
-
Lemma cyclic_metacyclic A :
cyclic A → metacyclic A.
+
Lemma cyclic_metacyclic A :
cyclic A → metacyclic A.
-
Lemma metacyclicS G H :
H \subset G → metacyclic G → metacyclic H.
+
Lemma metacyclicS G H :
H \subset G → metacyclic G → metacyclic H.
End Metacyclic.
@@ -478,13 +477,13 @@
Section CycleMorphism.
-
Variable n :
nat.
+
Variable n :
nat.
-
Definition cyclem of gT :=
fun x :
gT ⇒
x ^+ n.
+
Definition cyclem of gT :=
fun x :
gT ⇒
x ^+ n.
-
Lemma cyclemM :
{in <[a]> & , {morph cyclem a : x y / x × y}}.
+
Lemma cyclemM :
{in <[a]> & , {morph cyclem a : x y / x × y}}.
Canonical cyclem_morphism :=
Morphism cyclemM.
@@ -496,13 +495,13 @@
Section ZpUnitMorphism.
-
Variable u :
{unit 'Z_#[a]}.
+
Variable u :
{unit 'Z_#[a]}.
-
Lemma injm_cyclem :
'injm (cyclem (
val u)
a).
+
Lemma injm_cyclem :
'injm (cyclem (
val u)
a).
-
Lemma im_cyclem :
cyclem (
val u)
a @* <[a]> = <[a]>.
+
Lemma im_cyclem :
cyclem (
val u)
a @* <[a]> = <[a]>.
Definition Zp_unitm :=
aut injm_cyclem im_cyclem.
@@ -511,56 +510,56 @@
End ZpUnitMorphism.
-
Lemma Zp_unitmM :
{in units_Zp #[a] &, {morph Zp_unitm : u v / u × v}}.
+
Lemma Zp_unitmM :
{in units_Zp #[a] &, {morph Zp_unitm : u v / u × v}}.
Canonical Zp_unit_morphism :=
Morphism Zp_unitmM.
-
Lemma injm_Zp_unitm :
'injm Zp_unitm.
+
Lemma injm_Zp_unitm :
'injm Zp_unitm.
-
Lemma generator_coprime m :
generator <[a]> (
a ^+ m)
= coprime #[a] m.
+
Lemma generator_coprime m :
generator <[a]> (
a ^+ m)
= coprime #[a] m.
-
Lemma im_Zp_unitm :
Zp_unitm @* units_Zp #[a] = Aut <[a]>.
+
Lemma im_Zp_unitm :
Zp_unitm @* units_Zp #[a] = Aut <[a]>.
-
Lemma Zp_unit_isom :
isom (
units_Zp #[a]) (
Aut <[a]>)
Zp_unitm.
+
Lemma Zp_unit_isom :
isom (
units_Zp #[a]) (
Aut <[a]>)
Zp_unitm.
-
Lemma Zp_unit_isog :
isog (
units_Zp #[a]) (
Aut <[a]>).
+
Lemma Zp_unit_isog :
isog (
units_Zp #[a]) (
Aut <[a]>).
-
Lemma card_Aut_cycle :
#|Aut <[a]>| = totient #[a].
+
Lemma card_Aut_cycle :
#|Aut <[a]>| = totient #[a].
-
Lemma totient_gen :
totient #[a] = #|[set x | generator <[a]> x]|.
+
Lemma totient_gen :
totient #[a] = #|[set x | generator <[a]> x]|.
-
Lemma Aut_cycle_abelian :
abelian (
Aut <[a]>).
+
Lemma Aut_cycle_abelian :
abelian (
Aut <[a]>).
End CycleAutomorphism.
-
Variable G :
{group gT}.
+
Variable G :
{group gT}.
-
Lemma Aut_cyclic_abelian :
cyclic G → abelian (
Aut G).
+
Lemma Aut_cyclic_abelian :
cyclic G → abelian (
Aut G).
-
Lemma card_Aut_cyclic :
cyclic G → #|Aut G| = totient #|G|.
+
Lemma card_Aut_cyclic :
cyclic G → #|Aut G| = totient #|G|.
Lemma sum_ncycle_totient :
-
\sum_(d < #|G|.+1) #|[set <[x]> | x in G & #[x] == d]| × totient d = #|G|.
+
\sum_(d < #|G|.+1) #|[set <[x]> | x in G & #[x] == d]| × totient d = #|G|.
End CyclicAutomorphism.
-
Lemma sum_totient_dvd n :
\sum_(d < n.+1 | d %| n) totient d = n.
+
Lemma sum_totient_dvd n :
\sum_(d < n.+1 | d %| n) totient d = n.
Section FieldMulCyclic.
@@ -577,29 +576,29 @@
Import GRing.Theory.
-
Variables (
gT :
finGroupType) (
G :
{group gT}).
+
Variables (
gT :
finGroupType) (
G :
{group gT}).
Lemma order_inj_cyclic :
-
{in G &, ∀ x y,
#[x] = #[y] → <[x]> = <[y]>} → cyclic G.
+
{in G &, ∀ x y,
#[x] = #[y] → <[x]> = <[y]>} → cyclic G.
-
Lemma div_ring_mul_group_cyclic (
R :
unitRingType) (
f :
gT → R) :
-
f 1
= 1%
R → {in G &, {morph f : u v / u × v >-> (
u × v)%
R}} →
-
{in G^#, ∀ x,
f x - 1
\in GRing.unit}%
R →
-
abelian G → cyclic G.
+
Lemma div_ring_mul_group_cyclic (
R :
unitRingType) (
f :
gT → R) :
+
f 1
= 1%
R → {in G &, {morph f : u v / u × v >-> (
u × v)%
R}} →
+
{in G^#, ∀ x,
f x - 1
\in GRing.unit}%
R →
+
abelian G → cyclic G.
-
Lemma field_mul_group_cyclic (
F :
fieldType) (
f :
gT → F) :
-
{in G &, {morph f : u v / u × v >-> (
u × v)%
R}} →
-
{in G, ∀ x,
f x = 1%
R ↔ x = 1
} →
+
Lemma field_mul_group_cyclic (
F :
fieldType) (
f :
gT → F) :
+
{in G &, {morph f : u v / u × v >-> (
u × v)%
R}} →
+
{in G, ∀ x,
f x = 1%
R ↔ x = 1
} →
cyclic G.
End FieldMulCyclic.
-
Lemma field_unit_group_cyclic (
F :
finFieldType) (
G :
{group {unit F}}) :
+
Lemma field_unit_group_cyclic (
F :
finFieldType) (
G :
{group {unit F}}) :
cyclic G.
@@ -610,9 +609,9 @@
Import GRing.Theory.
-
Lemma has_prim_root (
F :
fieldType) (
n :
nat) (
rs :
seq F) :
-
n > 0
→ all n.-unity_root rs → uniq rs → size rs ≥ n →
-
has n.-primitive_root rs.
+
Lemma has_prim_root (
F :
fieldType) (
n :
nat) (
rs :
seq F) :
+
n > 0
→ all n.-unity_root rs → uniq rs → size rs ≥ n →
+
has n.-primitive_root rs.
End PrimitiveRoots.
@@ -632,10 +631,10 @@
Variable gT :
finGroupType.
-
Lemma Aut_prime_cycle_cyclic (
a :
gT) :
prime #[a] → cyclic (
Aut <[a]>).
+
Lemma Aut_prime_cycle_cyclic (
a :
gT) :
prime #[a] → cyclic (
Aut <[a]>).
-
Lemma Aut_prime_cyclic (
G :
{group gT}) :
prime #|G| → cyclic (
Aut G).
+
Lemma Aut_prime_cyclic (
G :
{group gT}) :
prime #|G| → cyclic (
Aut G).
End AutPrime.
--
cgit v1.2.3