Library mathcomp.solvable.cyclic
- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.
- Distributed under the terms of CeCILL-B. *)
- -
-
-
-- Distributed under the terms of CeCILL-B. *)
- -
-
- Properties of cyclic groups.
- Definitions:
- Defined in fingroup.v:
- < [x]> == the cycle (cyclic group) generated by x.
- # [x] == the order of x, i.e., the cardinal of < [x]>.
- Defined in prime.v:
- totient n == Euler's totient function
- Definitions in this file:
- cyclic G <=> G is a cyclic group.
- metacyclic G <=> G is a metacyclic group (i.e., a cyclic extension of a
- cyclic group).
- generator G x <=> x is a generator of the (cyclic) group G.
- Zpm x == the isomorphism mapping the additive group of integers
- mod # [x] to the cyclic group < [x]>.
- cyclem x n == the endomorphism y |-> y ^+ n of < [x]>.
- Zp_unitm x == the isomorphism mapping the multiplicative group of the
- units of the ring of integers mod # [x] to the group of
- automorphisms of < [x]> (i.e., Aut < [x]>).
- Zp_unitm x maps u to cyclem x u.
- eltm dvd_y_x == the smallest morphism (with domain < [x]>) mapping x to
- y, given a proof dvd_y_x : # [y] %| # [x].
- expg_invn G k == if coprime #|G| k, the inverse of exponent k in G.
- Basic results for these notions, plus the classical result that any finite
- group isomorphic to a subgroup of a field is cyclic, hence that Aut G is
- cyclic when G is of prime order.
-
-
-
-
-Set Implicit Arguments.
- -
-Import GroupScope GRing.Theory.
- -
-
-
--Set Implicit Arguments.
- -
-Import GroupScope GRing.Theory.
- -
-
- Cyclic groups.
-
-
-
-
-Section Cyclic.
- -
-Variable gT : finGroupType.
-Implicit Types (a x y : gT) (A B : {set gT}) (G K H : {group gT}).
- -
-Definition cyclic A := [∃ x, A == <[x]>].
- -
-Lemma cyclicP A : reflect (∃ x, A = <[x]>) (cyclic A).
- -
-Lemma cycle_cyclic x : cyclic <[x]>.
- -
-Lemma cyclic1 : cyclic [1 gT].
- -
-
-
--Section Cyclic.
- -
-Variable gT : finGroupType.
-Implicit Types (a x y : gT) (A B : {set gT}) (G K H : {group gT}).
- -
-Definition cyclic A := [∃ x, A == <[x]>].
- -
-Lemma cyclicP A : reflect (∃ x, A = <[x]>) (cyclic A).
- -
-Lemma cycle_cyclic x : cyclic <[x]>.
- -
-Lemma cyclic1 : cyclic [1 gT].
- -
-
- Isomorphism with the additive group
-
-
-
-
-Section Zpm.
- -
-Variable a : gT.
- -
-Definition Zpm (i : 'Z_#[a]) := a ^+ i.
- -
-Lemma ZpmM : {in Zp #[a] &, {morph Zpm : x y / x × y}}.
- -
-Canonical Zpm_morphism := Morphism ZpmM.
- -
-Lemma im_Zpm : Zpm @* Zp #[a] = <[a]>.
- -
-Lemma injm_Zpm : 'injm Zpm.
- -
-Lemma eq_expg_mod_order m n : (a ^+ m == a ^+ n) = (m == n %[mod #[a]]).
- -
-Lemma Zp_isom : isom (Zp #[a]) <[a]> Zpm.
- -
-Lemma Zp_isog : isog (Zp #[a]) <[a]>.
- -
-End Zpm.
- -
-
-
--Section Zpm.
- -
-Variable a : gT.
- -
-Definition Zpm (i : 'Z_#[a]) := a ^+ i.
- -
-Lemma ZpmM : {in Zp #[a] &, {morph Zpm : x y / x × y}}.
- -
-Canonical Zpm_morphism := Morphism ZpmM.
- -
-Lemma im_Zpm : Zpm @* Zp #[a] = <[a]>.
- -
-Lemma injm_Zpm : 'injm Zpm.
- -
-Lemma eq_expg_mod_order m n : (a ^+ m == a ^+ n) = (m == n %[mod #[a]]).
- -
-Lemma Zp_isom : isom (Zp #[a]) <[a]> Zpm.
- -
-Lemma Zp_isog : isog (Zp #[a]) <[a]>.
- -
-End Zpm.
- -
-
- Central and direct product of cycles
-
-
-
-
-Lemma cyclic_abelian A : cyclic A → abelian A.
- -
-Lemma cycleMsub a b :
- commute a b → coprime #[a] #[b] → <[a]> \subset <[a × b]>.
- -
-Lemma cycleM a b :
- commute a b → coprime #[a] #[b] → <[a × b]> = <[a]> × <[b]>.
- -
-Lemma cyclicM A B :
- cyclic A → cyclic B → B \subset 'C(A) → coprime #|A| #|B| →
- cyclic (A × B).
- -
-Lemma cyclicY K H :
- cyclic K → cyclic H → H \subset 'C(K) → coprime #|K| #|H| →
- cyclic (K <*> H).
- -
-
-
--Lemma cyclic_abelian A : cyclic A → abelian A.
- -
-Lemma cycleMsub a b :
- commute a b → coprime #[a] #[b] → <[a]> \subset <[a × b]>.
- -
-Lemma cycleM a b :
- commute a b → coprime #[a] #[b] → <[a × b]> = <[a]> × <[b]>.
- -
-Lemma cyclicM A B :
- cyclic A → cyclic B → B \subset 'C(A) → coprime #|A| #|B| →
- cyclic (A × B).
- -
-Lemma cyclicY K H :
- cyclic K → cyclic H → H \subset 'C(K) → coprime #|K| #|H| →
- cyclic (K <*> H).
- -
-
- Order properties
-
-
-
-
-Lemma order_dvdn a n : #[a] %| n = (a ^+ n == 1).
- -
-Lemma order_inf a n : a ^+ n.+1 == 1 → #[a] ≤ n.+1.
- -
-Lemma order_dvdG G a : a \in G → #[a] %| #|G|.
- -
-Lemma expg_cardG G a : a \in G → a ^+ #|G| = 1.
- -
-Lemma expg_znat G x k : x \in G → x ^+ (k%:R : 'Z_(#|G|))%R = x ^+ k.
- -
-Lemma expg_zneg G x (k : 'Z_(#|G|)) : x \in G → x ^+ (- k)%R = x ^- k.
- -
-Lemma nt_gen_prime G x : prime #|G| → x \in G^# → G :=: <[x]>.
- -
-Lemma nt_prime_order p x : prime p → x ^+ p = 1 → x != 1 → #[x] = p.
- -
-Lemma orderXdvd a n : #[a ^+ n] %| #[a].
- -
-Lemma orderXgcd a n : #[a ^+ n] = #[a] %/ gcdn #[a] n.
- -
-Lemma orderXdiv a n : n %| #[a] → #[a ^+ n] = #[a] %/ n.
- -
-Lemma orderXexp p m n x : #[x] = (p ^ n)%N → #[x ^+ (p ^ m)] = (p ^ (n - m))%N.
- -
-Lemma orderXpfactor p k n x :
- #[x ^+ (p ^ k)] = n → prime p → p %| n → #[x] = (p ^ k × n)%N.
- -
-Lemma orderXprime p n x :
- #[x ^+ p] = n → prime p → p %| n → #[x] = (p × n)%N.
- -
-Lemma orderXpnat m n x : #[x ^+ m] = n → \pi(n).-nat m → #[x] = (m × n)%N.
- -
-Lemma orderM a b :
- commute a b → coprime #[a] #[b] → #[a × b] = (#[a] × #[b])%N.
- -
-Definition expg_invn A k := (egcdn k #|A|).1.
- -
-Lemma expgK G k :
- coprime #|G| k → {in G, cancel (expgn^~ k) (expgn^~ (expg_invn G k))}.
- -
-Lemma cyclic_dprod K H G :
- K \x H = G → cyclic K → cyclic H → cyclic G = coprime #|K| #|H| .
- -
-
-
--Lemma order_dvdn a n : #[a] %| n = (a ^+ n == 1).
- -
-Lemma order_inf a n : a ^+ n.+1 == 1 → #[a] ≤ n.+1.
- -
-Lemma order_dvdG G a : a \in G → #[a] %| #|G|.
- -
-Lemma expg_cardG G a : a \in G → a ^+ #|G| = 1.
- -
-Lemma expg_znat G x k : x \in G → x ^+ (k%:R : 'Z_(#|G|))%R = x ^+ k.
- -
-Lemma expg_zneg G x (k : 'Z_(#|G|)) : x \in G → x ^+ (- k)%R = x ^- k.
- -
-Lemma nt_gen_prime G x : prime #|G| → x \in G^# → G :=: <[x]>.
- -
-Lemma nt_prime_order p x : prime p → x ^+ p = 1 → x != 1 → #[x] = p.
- -
-Lemma orderXdvd a n : #[a ^+ n] %| #[a].
- -
-Lemma orderXgcd a n : #[a ^+ n] = #[a] %/ gcdn #[a] n.
- -
-Lemma orderXdiv a n : n %| #[a] → #[a ^+ n] = #[a] %/ n.
- -
-Lemma orderXexp p m n x : #[x] = (p ^ n)%N → #[x ^+ (p ^ m)] = (p ^ (n - m))%N.
- -
-Lemma orderXpfactor p k n x :
- #[x ^+ (p ^ k)] = n → prime p → p %| n → #[x] = (p ^ k × n)%N.
- -
-Lemma orderXprime p n x :
- #[x ^+ p] = n → prime p → p %| n → #[x] = (p × n)%N.
- -
-Lemma orderXpnat m n x : #[x ^+ m] = n → \pi(n).-nat m → #[x] = (m × n)%N.
- -
-Lemma orderM a b :
- commute a b → coprime #[a] #[b] → #[a × b] = (#[a] × #[b])%N.
- -
-Definition expg_invn A k := (egcdn k #|A|).1.
- -
-Lemma expgK G k :
- coprime #|G| k → {in G, cancel (expgn^~ k) (expgn^~ (expg_invn G k))}.
- -
-Lemma cyclic_dprod K H G :
- K \x H = G → cyclic K → cyclic H → cyclic G = coprime #|K| #|H| .
- -
-
- Generator
-
-
-
-
-Definition generator (A : {set gT}) a := A == <[a]>.
- -
-Lemma generator_cycle a : generator <[a]> a.
- -
-Lemma cycle_generator a x : generator <[a]> x → x \in <[a]>.
- -
-Lemma generator_order a b : generator <[a]> b → #[a] = #[b].
- -
-End Cyclic.
- -
- -
-
-
--Definition generator (A : {set gT}) a := A == <[a]>.
- -
-Lemma generator_cycle a : generator <[a]> a.
- -
-Lemma cycle_generator a x : generator <[a]> x → x \in <[a]>.
- -
-Lemma generator_order a b : generator <[a]> b → #[a] = #[b].
- -
-End Cyclic.
- -
- -
-
- Euler's theorem
-
-
-Theorem Euler_exp_totient a n : coprime a n → a ^ totient n = 1 %[mod n].
- -
-Section Eltm.
- -
-Variables (aT rT : finGroupType) (x : aT) (y : rT).
- -
-Definition eltm of #[y] %| #[x] := fun x_i ⇒ y ^+ invm (injm_Zpm x) x_i.
- -
-Hypothesis dvd_y_x : #[y] %| #[x].
- -
-Lemma eltmE i : eltm dvd_y_x (x ^+ i) = y ^+ i.
- -
-Lemma eltm_id : eltm dvd_y_x x = y.
- -
-Lemma eltmM : {in <[x]> &, {morph eltm dvd_y_x : x_i x_j / x_i × x_j}}.
-Canonical eltm_morphism := Morphism eltmM.
- -
-Lemma im_eltm : eltm dvd_y_x @* <[x]> = <[y]>.
- -
-Lemma ker_eltm : 'ker (eltm dvd_y_x) = <[x ^+ #[y]]>.
- -
-Lemma injm_eltm : 'injm (eltm dvd_y_x) = (#[x] %| #[y]).
- -
-End Eltm.
- -
-Section CycleSubGroup.
- -
-Variable gT : finGroupType.
- -
-
-
-- -
-Section Eltm.
- -
-Variables (aT rT : finGroupType) (x : aT) (y : rT).
- -
-Definition eltm of #[y] %| #[x] := fun x_i ⇒ y ^+ invm (injm_Zpm x) x_i.
- -
-Hypothesis dvd_y_x : #[y] %| #[x].
- -
-Lemma eltmE i : eltm dvd_y_x (x ^+ i) = y ^+ i.
- -
-Lemma eltm_id : eltm dvd_y_x x = y.
- -
-Lemma eltmM : {in <[x]> &, {morph eltm dvd_y_x : x_i x_j / x_i × x_j}}.
-Canonical eltm_morphism := Morphism eltmM.
- -
-Lemma im_eltm : eltm dvd_y_x @* <[x]> = <[y]>.
- -
-Lemma ker_eltm : 'ker (eltm dvd_y_x) = <[x ^+ #[y]]>.
- -
-Lemma injm_eltm : 'injm (eltm dvd_y_x) = (#[x] %| #[y]).
- -
-End Eltm.
- -
-Section CycleSubGroup.
- -
-Variable gT : finGroupType.
- -
-
- Gorenstein, 1.3.1 (i)
-
-
-Lemma cycle_sub_group (a : gT) m :
- m %| #[a] →
- [set H : {group gT} | H \subset <[a]> & #|H| == m]
- = [set <[a ^+ (#[a] %/ m)]>%G].
- -
-Lemma cycle_subgroup_char a (H : {group gT}) : H \subset <[a]> → H \char <[a]>.
- -
-End CycleSubGroup.
- -
-
-
-- m %| #[a] →
- [set H : {group gT} | H \subset <[a]> & #|H| == m]
- = [set <[a ^+ (#[a] %/ m)]>%G].
- -
-Lemma cycle_subgroup_char a (H : {group gT}) : H \subset <[a]> → H \char <[a]>.
- -
-End CycleSubGroup.
- -
-
- Reflected boolean property and morphic image, injection, bijection
-
-
-
-
-Section MorphicImage.
- -
-Variables aT rT : finGroupType.
-Variables (D : {group aT}) (f : {morphism D >-> rT}) (x : aT).
-Hypothesis Dx : x \in D.
- -
-Lemma morph_order : #[f x] %| #[x].
- -
-Lemma morph_generator A : generator A x → generator (f @* A) (f x).
- -
-End MorphicImage.
- -
-Section CyclicProps.
- -
-Variables gT : finGroupType.
-Implicit Types (aT rT : finGroupType) (G H K : {group gT}).
- -
-Lemma cyclicS G H : H \subset G → cyclic G → cyclic H.
- -
-Lemma cyclicJ G x : cyclic (G :^ x) = cyclic G.
- -
-Lemma eq_subG_cyclic G H K :
- cyclic G → H \subset G → K \subset G → (H :==: K) = (#|H| == #|K|).
- -
-Lemma cardSg_cyclic G H K :
- cyclic G → H \subset G → K \subset G → (#|H| %| #|K|) = (H \subset K).
- -
-Lemma sub_cyclic_char G H : cyclic G → (H \char G) = (H \subset G).
- -
-Lemma morphim_cyclic rT G H (f : {morphism G >-> rT}) :
- cyclic H → cyclic (f @* H).
- -
-Lemma quotient_cycle x H : x \in 'N(H) → <[x]> / H = <[coset H x]>.
- -
-Lemma quotient_cyclic G H : cyclic G → cyclic (G / H).
- -
-Lemma quotient_generator x G H :
- x \in 'N(H) → generator G x → generator (G / H) (coset H x).
- -
-Lemma prime_cyclic G : prime #|G| → cyclic G.
- -
-Lemma dvdn_prime_cyclic G p : prime p → #|G| %| p → cyclic G.
- -
-Lemma cyclic_small G : #|G| ≤ 3 → cyclic G.
- -
-End CyclicProps.
- -
-Section IsoCyclic.
- -
-Variables gT rT : finGroupType.
-Implicit Types (G H : {group gT}) (M : {group rT}).
- -
-Lemma injm_cyclic G H (f : {morphism G >-> rT}) :
- 'injm f → H \subset G → cyclic (f @* H) = cyclic H.
- -
-Lemma isog_cyclic G M : G \isog M → cyclic G = cyclic M.
- -
-Lemma isog_cyclic_card G M : cyclic G → isog G M = cyclic M && (#|M| == #|G|).
- -
-Lemma injm_generator G H (f : {morphism G >-> rT}) x :
- 'injm f → x \in G → H \subset G →
- generator (f @* H) (f x) = generator H x.
- -
-End IsoCyclic.
- -
-
-
--Section MorphicImage.
- -
-Variables aT rT : finGroupType.
-Variables (D : {group aT}) (f : {morphism D >-> rT}) (x : aT).
-Hypothesis Dx : x \in D.
- -
-Lemma morph_order : #[f x] %| #[x].
- -
-Lemma morph_generator A : generator A x → generator (f @* A) (f x).
- -
-End MorphicImage.
- -
-Section CyclicProps.
- -
-Variables gT : finGroupType.
-Implicit Types (aT rT : finGroupType) (G H K : {group gT}).
- -
-Lemma cyclicS G H : H \subset G → cyclic G → cyclic H.
- -
-Lemma cyclicJ G x : cyclic (G :^ x) = cyclic G.
- -
-Lemma eq_subG_cyclic G H K :
- cyclic G → H \subset G → K \subset G → (H :==: K) = (#|H| == #|K|).
- -
-Lemma cardSg_cyclic G H K :
- cyclic G → H \subset G → K \subset G → (#|H| %| #|K|) = (H \subset K).
- -
-Lemma sub_cyclic_char G H : cyclic G → (H \char G) = (H \subset G).
- -
-Lemma morphim_cyclic rT G H (f : {morphism G >-> rT}) :
- cyclic H → cyclic (f @* H).
- -
-Lemma quotient_cycle x H : x \in 'N(H) → <[x]> / H = <[coset H x]>.
- -
-Lemma quotient_cyclic G H : cyclic G → cyclic (G / H).
- -
-Lemma quotient_generator x G H :
- x \in 'N(H) → generator G x → generator (G / H) (coset H x).
- -
-Lemma prime_cyclic G : prime #|G| → cyclic G.
- -
-Lemma dvdn_prime_cyclic G p : prime p → #|G| %| p → cyclic G.
- -
-Lemma cyclic_small G : #|G| ≤ 3 → cyclic G.
- -
-End CyclicProps.
- -
-Section IsoCyclic.
- -
-Variables gT rT : finGroupType.
-Implicit Types (G H : {group gT}) (M : {group rT}).
- -
-Lemma injm_cyclic G H (f : {morphism G >-> rT}) :
- 'injm f → H \subset G → cyclic (f @* H) = cyclic H.
- -
-Lemma isog_cyclic G M : G \isog M → cyclic G = cyclic M.
- -
-Lemma isog_cyclic_card G M : cyclic G → isog G M = cyclic M && (#|M| == #|G|).
- -
-Lemma injm_generator G H (f : {morphism G >-> rT}) x :
- 'injm f → x \in G → H \subset G →
- generator (f @* H) (f x) = generator H x.
- -
-End IsoCyclic.
- -
-
- Metacyclic groups.
-
-
-Section Metacyclic.
- -
-Variable gT : finGroupType.
-Implicit Types (A : {set gT}) (G H : {group gT}).
- -
-Definition metacyclic A :=
- [∃ H : {group gT}, [&& cyclic H, H <| A & cyclic (A / H)]].
- -
-Lemma metacyclicP A :
- reflect (∃ H : {group gT}, [/\ cyclic H, H <| A & cyclic (A / H)])
- (metacyclic A).
- -
-Lemma metacyclic1 : metacyclic 1.
- -
-Lemma cyclic_metacyclic A : cyclic A → metacyclic A.
- -
-Lemma metacyclicS G H : H \subset G → metacyclic G → metacyclic H.
- -
-End Metacyclic.
- -
- -
-
-
-- -
-Variable gT : finGroupType.
-Implicit Types (A : {set gT}) (G H : {group gT}).
- -
-Definition metacyclic A :=
- [∃ H : {group gT}, [&& cyclic H, H <| A & cyclic (A / H)]].
- -
-Lemma metacyclicP A :
- reflect (∃ H : {group gT}, [/\ cyclic H, H <| A & cyclic (A / H)])
- (metacyclic A).
- -
-Lemma metacyclic1 : metacyclic 1.
- -
-Lemma cyclic_metacyclic A : cyclic A → metacyclic A.
- -
-Lemma metacyclicS G H : H \subset G → metacyclic G → metacyclic H.
- -
-End Metacyclic.
- -
- -
-
- Automorphisms of cyclic groups.
-
-
-Section CyclicAutomorphism.
- -
-Variable gT : finGroupType.
- -
-Section CycleAutomorphism.
- -
-Variable a : gT.
- -
-Section CycleMorphism.
- -
-Variable n : nat.
- -
-Definition cyclem of gT := fun x : gT ⇒ x ^+ n.
- -
-Lemma cyclemM : {in <[a]> & , {morph cyclem a : x y / x × y}}.
- -
-Canonical cyclem_morphism := Morphism cyclemM.
- -
-End CycleMorphism.
- -
-Section ZpUnitMorphism.
- -
-Variable u : {unit 'Z_#[a]}.
- -
-Lemma injm_cyclem : 'injm (cyclem (val u) a).
- -
-Lemma im_cyclem : cyclem (val u) a @* <[a]> = <[a]>.
- -
-Definition Zp_unitm := aut injm_cyclem im_cyclem.
- -
-End ZpUnitMorphism.
- -
-Lemma Zp_unitmM : {in units_Zp #[a] &, {morph Zp_unitm : u v / u × v}}.
- -
-Canonical Zp_unit_morphism := Morphism Zp_unitmM.
- -
-Lemma injm_Zp_unitm : 'injm Zp_unitm.
- -
-Lemma generator_coprime m : generator <[a]> (a ^+ m) = coprime #[a] m.
- -
-Lemma im_Zp_unitm : Zp_unitm @* units_Zp #[a] = Aut <[a]>.
- -
-Lemma Zp_unit_isom : isom (units_Zp #[a]) (Aut <[a]>) Zp_unitm.
- -
-Lemma Zp_unit_isog : isog (units_Zp #[a]) (Aut <[a]>).
- -
-Lemma card_Aut_cycle : #|Aut <[a]>| = totient #[a].
- -
-Lemma totient_gen : totient #[a] = #|[set x | generator <[a]> x]|.
- -
-Lemma Aut_cycle_abelian : abelian (Aut <[a]>).
- -
-End CycleAutomorphism.
- -
-Variable G : {group gT}.
- -
-Lemma Aut_cyclic_abelian : cyclic G → abelian (Aut G).
- -
-Lemma card_Aut_cyclic : cyclic G → #|Aut G| = totient #|G|.
- -
-Lemma sum_ncycle_totient :
- \sum_(d < #|G|.+1) #|[set <[x]> | x in G & #[x] == d]| × totient d = #|G|.
- -
-End CyclicAutomorphism.
- -
-Lemma sum_totient_dvd n : \sum_(d < n.+1 | d %| n) totient d = n.
- -
-Section FieldMulCyclic.
- -
-
-
-- -
-Variable gT : finGroupType.
- -
-Section CycleAutomorphism.
- -
-Variable a : gT.
- -
-Section CycleMorphism.
- -
-Variable n : nat.
- -
-Definition cyclem of gT := fun x : gT ⇒ x ^+ n.
- -
-Lemma cyclemM : {in <[a]> & , {morph cyclem a : x y / x × y}}.
- -
-Canonical cyclem_morphism := Morphism cyclemM.
- -
-End CycleMorphism.
- -
-Section ZpUnitMorphism.
- -
-Variable u : {unit 'Z_#[a]}.
- -
-Lemma injm_cyclem : 'injm (cyclem (val u) a).
- -
-Lemma im_cyclem : cyclem (val u) a @* <[a]> = <[a]>.
- -
-Definition Zp_unitm := aut injm_cyclem im_cyclem.
- -
-End ZpUnitMorphism.
- -
-Lemma Zp_unitmM : {in units_Zp #[a] &, {morph Zp_unitm : u v / u × v}}.
- -
-Canonical Zp_unit_morphism := Morphism Zp_unitmM.
- -
-Lemma injm_Zp_unitm : 'injm Zp_unitm.
- -
-Lemma generator_coprime m : generator <[a]> (a ^+ m) = coprime #[a] m.
- -
-Lemma im_Zp_unitm : Zp_unitm @* units_Zp #[a] = Aut <[a]>.
- -
-Lemma Zp_unit_isom : isom (units_Zp #[a]) (Aut <[a]>) Zp_unitm.
- -
-Lemma Zp_unit_isog : isog (units_Zp #[a]) (Aut <[a]>).
- -
-Lemma card_Aut_cycle : #|Aut <[a]>| = totient #[a].
- -
-Lemma totient_gen : totient #[a] = #|[set x | generator <[a]> x]|.
- -
-Lemma Aut_cycle_abelian : abelian (Aut <[a]>).
- -
-End CycleAutomorphism.
- -
-Variable G : {group gT}.
- -
-Lemma Aut_cyclic_abelian : cyclic G → abelian (Aut G).
- -
-Lemma card_Aut_cyclic : cyclic G → #|Aut G| = totient #|G|.
- -
-Lemma sum_ncycle_totient :
- \sum_(d < #|G|.+1) #|[set <[x]> | x in G & #[x] == d]| × totient d = #|G|.
- -
-End CyclicAutomorphism.
- -
-Lemma sum_totient_dvd n : \sum_(d < n.+1 | d %| n) totient d = n.
- -
-Section FieldMulCyclic.
- -
-
- A classic application to finite multiplicative subgroups of fields.
-
-
-
-
-Import GRing.Theory.
- -
-Variables (gT : finGroupType) (G : {group gT}).
- -
-Lemma order_inj_cyclic :
- {in G &, ∀ x y, #[x] = #[y] → <[x]> = <[y]>} → cyclic G.
- -
-Lemma div_ring_mul_group_cyclic (R : unitRingType) (f : gT → R) :
- f 1 = 1%R → {in G &, {morph f : u v / u × v >-> (u × v)%R}} →
- {in G^#, ∀ x, f x - 1 \in GRing.unit}%R →
- abelian G → cyclic G.
- -
-Lemma field_mul_group_cyclic (F : fieldType) (f : gT → F) :
- {in G &, {morph f : u v / u × v >-> (u × v)%R}} →
- {in G, ∀ x, f x = 1%R ↔ x = 1} →
- cyclic G.
- -
-End FieldMulCyclic.
- -
-Lemma field_unit_group_cyclic (F : finFieldType) (G : {group {unit F}}) :
- cyclic G.
- -
-Section PrimitiveRoots.
- -
-Open Scope ring_scope.
-Import GRing.Theory.
- -
-Lemma has_prim_root (F : fieldType) (n : nat) (rs : seq F) :
- n > 0 → all n.-unity_root rs → uniq rs → size rs ≥ n →
- has n.-primitive_root rs.
- -
-End PrimitiveRoots.
- -
-
-
--Import GRing.Theory.
- -
-Variables (gT : finGroupType) (G : {group gT}).
- -
-Lemma order_inj_cyclic :
- {in G &, ∀ x y, #[x] = #[y] → <[x]> = <[y]>} → cyclic G.
- -
-Lemma div_ring_mul_group_cyclic (R : unitRingType) (f : gT → R) :
- f 1 = 1%R → {in G &, {morph f : u v / u × v >-> (u × v)%R}} →
- {in G^#, ∀ x, f x - 1 \in GRing.unit}%R →
- abelian G → cyclic G.
- -
-Lemma field_mul_group_cyclic (F : fieldType) (f : gT → F) :
- {in G &, {morph f : u v / u × v >-> (u × v)%R}} →
- {in G, ∀ x, f x = 1%R ↔ x = 1} →
- cyclic G.
- -
-End FieldMulCyclic.
- -
-Lemma field_unit_group_cyclic (F : finFieldType) (G : {group {unit F}}) :
- cyclic G.
- -
-Section PrimitiveRoots.
- -
-Open Scope ring_scope.
-Import GRing.Theory.
- -
-Lemma has_prim_root (F : fieldType) (n : nat) (rs : seq F) :
- n > 0 → all n.-unity_root rs → uniq rs → size rs ≥ n →
- has n.-primitive_root rs.
- -
-End PrimitiveRoots.
- -
-
- Cycles of prime order
-
-
-