From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Wed, 22 May 2019 13:43:08 +0200 Subject: htmldoc regenerated --- docs/htmldoc/mathcomp.solvable.commutator.html | 165 ++++++++++++------------- 1 file changed, 82 insertions(+), 83 deletions(-) (limited to 'docs/htmldoc/mathcomp.solvable.commutator.html') diff --git a/docs/htmldoc/mathcomp.solvable.commutator.html b/docs/htmldoc/mathcomp.solvable.commutator.html index 9da2584..b159af9 100644 --- a/docs/htmldoc/mathcomp.solvable.commutator.html +++ b/docs/htmldoc/mathcomp.solvable.commutator.html @@ -21,7 +21,6 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
 Distributed under the terms of CeCILL-B.                                  *)

-Require Import mathcomp.ssreflect.ssreflect.

@@ -48,8 +47,8 @@ Import GroupScope.

-Definition derived_at_rec n (gT : finGroupType) (A : {set gT}) :=
-  iter n (fun B[~: B, B]) A.
+Definition derived_at_rec n (gT : finGroupType) (A : {set gT}) :=
+  iter n (fun B[~: B, B]) A.

@@ -59,26 +58,26 @@ "cooking" destroys it.
-Definition derived_at := nosimpl derived_at_rec.
+Definition derived_at := nosimpl derived_at_rec.

-Notation "G ^` ( n )" := (derived_at n G) : group_scope.
+Notation "G ^` ( n )" := (derived_at n G) : group_scope.

Section DerivedBasics.

Variables gT : finGroupType.
-Implicit Type A : {set gT}.
-Implicit Types G : {group gT}.
+Implicit Type A : {set gT}.
+Implicit Types G : {group gT}.

-Lemma derg0 A : A^`(0) = A.
-Lemma derg1 A : A^`(1) = [~: A, A].
-Lemma dergSn n A : A^`(n.+1) = [~: A^`(n), A^`(n)].
+Lemma derg0 A : A^`(0) = A.
+Lemma derg1 A : A^`(1) = [~: A, A].
+Lemma dergSn n A : A^`(n.+1) = [~: A^`(n), A^`(n)].

-Lemma der_group_set G n : group_set G^`(n).
+Lemma der_group_set G n : group_set G^`(n).

Canonical derived_at_group G n := Group (der_group_set G n).
@@ -87,7 +86,7 @@ End DerivedBasics.

-Notation "G ^` ( n )" := (derived_at_group G n) : Group_scope.
+Notation "G ^` ( n )" := (derived_at_group G n) : Group_scope.

Section Basic_commutator_properties.
@@ -97,26 +96,26 @@ Implicit Types x y z : gT.

-Lemma conjg_mulR x y : x ^ y = x × [~ x, y].
+Lemma conjg_mulR x y : x ^ y = x × [~ x, y].

-Lemma conjg_Rmul x y : x ^ y = [~ y, x^-1] × x.
+Lemma conjg_Rmul x y : x ^ y = [~ y, x^-1] × x.

-Lemma commMgJ x y z : [~ x × y, z] = [~ x, z] ^ y × [~ y, z].
+Lemma commMgJ x y z : [~ x × y, z] = [~ x, z] ^ y × [~ y, z].

-Lemma commgMJ x y z : [~ x, y × z] = [~ x, z] × [~ x, y] ^ z.
+Lemma commgMJ x y z : [~ x, y × z] = [~ x, z] × [~ x, y] ^ z.

-Lemma commMgR x y z : [~ x × y, z] = [~ x, z] × [~ x, z, y] × [~ y, z].
+Lemma commMgR x y z : [~ x × y, z] = [~ x, z] × [~ x, z, y] × [~ y, z].

-Lemma commgMR x y z : [~ x, y × z] = [~ x, z] × [~ x, y] × [~ x, y, z].
+Lemma commgMR x y z : [~ x, y × z] = [~ x, z] × [~ x, y] × [~ x, y, z].

Lemma Hall_Witt_identity x y z :
-  [~ x, y^-1, z] ^ y × [~ y, z^-1, x] ^ z × [~ z, x^-1, y] ^ x = 1.
+  [~ x, y^-1, z] ^ y × [~ y, z^-1, x] ^ z × [~ z, x^-1, y] ^ x = 1.

@@ -130,14 +129,14 @@ Section LeftComm.

-Variables (i : nat) (x y : gT).
-Hypothesis cxz : commute x [~ x, y].
+Variables (i : nat) (x y : gT).
+Hypothesis cxz : commute x [~ x, y].

-Lemma commVg : [~ x^-1, y] = [~ x, y]^-1.
+Lemma commVg : [~ x^-1, y] = [~ x, y]^-1.

-Lemma commXg : [~ x ^+ i, y] = [~ x, y] ^+ i.
+Lemma commXg : [~ x ^+ i, y] = [~ x, y] ^+ i.

End LeftComm.
@@ -146,15 +145,15 @@ Section RightComm.

-Variables (i : nat) (x y : gT).
-Hypothesis cyz : commute y [~ x, y].
+Variables (i : nat) (x y : gT).
+Hypothesis cyz : commute y [~ x, y].
Let cyz' := commuteV cyz.

-Lemma commgV : [~ x, y^-1] = [~ x, y]^-1.
+Lemma commgV : [~ x, y^-1] = [~ x, y]^-1.

-Lemma commgX : [~ x, y ^+ i] = [~ x, y] ^+ i.
+Lemma commgX : [~ x, y ^+ i] = [~ x, y] ^+ i.

End RightComm.
@@ -163,14 +162,14 @@ Section LeftRightComm.

-Variables (i j : nat) (x y : gT).
-Hypotheses (cxz : commute x [~ x, y]) (cyz : commute y [~ x, y]).
+Variables (i j : nat) (x y : gT).
+Hypotheses (cxz : commute x [~ x, y]) (cyz : commute y [~ x, y]).

-Lemma commXXg : [~ x ^+ i, y ^+ j] = [~ x, y] ^+ (i × j).
+Lemma commXXg : [~ x ^+ i, y ^+ j] = [~ x, y] ^+ (i × j).

-Lemma expMg_Rmul : (y × x) ^+ i = y ^+ i × x ^+ i × [~ x, y] ^+ 'C(i, 2).
+Lemma expMg_Rmul : (y × x) ^+ i = y ^+ i × x ^+ i × [~ x, y] ^+ 'C(i, 2).

End LeftRightComm.
@@ -189,98 +188,98 @@
Variable gT : finGroupType.
-Implicit Type (rT : finGroupType) (A B C : {set gT}) (D G H K : {group gT}).
+Implicit Type (rT : finGroupType) (A B C : {set gT}) (D G H K : {group gT}).

-Lemma commG1 A : [~: A, 1] = 1.
+Lemma commG1 A : [~: A, 1] = 1.

-Lemma comm1G A : [~: 1, A] = 1.
+Lemma comm1G A : [~: 1, A] = 1.

-Lemma commg_sub A B : [~: A, B] \subset A <*> B.
+Lemma commg_sub A B : [~: A, B] \subset A <*> B.

-Lemma commg_norml G A : G \subset 'N([~: G, A]).
+Lemma commg_norml G A : G \subset 'N([~: G, A]).

-Lemma commg_normr G A : G \subset 'N([~: A, G]).
+Lemma commg_normr G A : G \subset 'N([~: A, G]).

-Lemma commg_norm G H : G <*> H \subset 'N([~: G, H]).
+Lemma commg_norm G H : G <*> H \subset 'N([~: G, H]).

-Lemma commg_normal G H : [~: G, H] <| G <*> H.
+Lemma commg_normal G H : [~: G, H] <| G <*> H.

-Lemma normsRl A G B : A \subset G A \subset 'N([~: G, B]).
+Lemma normsRl A G B : A \subset G A \subset 'N([~: G, B]).

-Lemma normsRr A G B : A \subset G A \subset 'N([~: B, G]).
+Lemma normsRr A G B : A \subset G A \subset 'N([~: B, G]).

-Lemma commg_subr G H : ([~: G, H] \subset H) = (G \subset 'N(H)).
+Lemma commg_subr G H : ([~: G, H] \subset H) = (G \subset 'N(H)).

-Lemma commg_subl G H : ([~: G, H] \subset G) = (H \subset 'N(G)).
+Lemma commg_subl G H : ([~: G, H] \subset G) = (H \subset 'N(G)).

Lemma commg_subI A B G H :
-  A \subset 'N_G(H) B \subset 'N_H(G) [~: A, B] \subset G :&: H.
+  A \subset 'N_G(H) B \subset 'N_H(G) [~: A, B] \subset G :&: H.

Lemma quotient_cents2 A B K :
-    A \subset 'N(K) B \subset 'N(K)
-  (A / K \subset 'C(B / K)) = ([~: A, B] \subset K).
+    A \subset 'N(K) B \subset 'N(K)
+  (A / K \subset 'C(B / K)) = ([~: A, B] \subset K).

Lemma quotient_cents2r A B K :
-  [~: A, B] \subset K (A / K) \subset 'C(B / K).
+  [~: A, B] \subset K (A / K) \subset 'C(B / K).

-Lemma sub_der1_norm G H : G^`(1) \subset H H \subset G G \subset 'N(H).
+Lemma sub_der1_norm G H : G^`(1) \subset H H \subset G G \subset 'N(H).

-Lemma sub_der1_normal G H : G^`(1) \subset H H \subset G H <| G.
+Lemma sub_der1_normal G H : G^`(1) \subset H H \subset G H <| G.

-Lemma sub_der1_abelian G H : G^`(1) \subset H abelian (G / H).
+Lemma sub_der1_abelian G H : G^`(1) \subset H abelian (G / H).

-Lemma der1_min G H : G \subset 'N(H) abelian (G / H) G^`(1) \subset H.
+Lemma der1_min G H : G \subset 'N(H) abelian (G / H) G^`(1) \subset H.

-Lemma der_abelian n G : abelian (G^`(n) / G^`(n.+1)).
+Lemma der_abelian n G : abelian (G^`(n) / G^`(n.+1)).

-Lemma commg_normSl G H K : G \subset 'N(H) [~: G, H] \subset 'N([~: K, H]).
+Lemma commg_normSl G H K : G \subset 'N(H) [~: G, H] \subset 'N([~: K, H]).

-Lemma commg_normSr G H K : G \subset 'N(H) [~: H, G] \subset 'N([~: H, K]).
+Lemma commg_normSr G H K : G \subset 'N(H) [~: H, G] \subset 'N([~: H, K]).

-Lemma commMGr G H K : [~: G, K] × [~: H, K] \subset [~: G × H , K].
+Lemma commMGr G H K : [~: G, K] × [~: H, K] \subset [~: G × H , K].

Lemma commMG G H K :
-  H \subset 'N([~: G, K]) [~: G × H , K] = [~: G, K] × [~: H, K].
+  H \subset 'N([~: G, K]) [~: G × H , K] = [~: G, K] × [~: H, K].

Lemma comm3G1P A B C :
-  reflect {in A & B & C, h k l, [~ h, k, l] = 1} ([~: A, B, C] :==: 1).
+  reflect {in A & B & C, h k l, [~ h, k, l] = 1} ([~: A, B, C] :==: 1).

Lemma three_subgroup G H K :
-  [~: G, H, K] :=: 1 [~: H, K, G] :=: 1 [~: K, G, H] :=: 1.
+  [~: G, H, K] :=: 1 [~: H, K, G] :=: 1 [~: K, G, H] :=: 1.

Lemma der1_joing_cycles (x y : gT) :
-  let XY := <[x]> <*> <[y]> in let xy := [~ x, y] in
-  xy \in 'C(XY) XY^`(1) = <[xy]>.
+  let XY := <[x]> <*> <[y]> in let xy := [~ x, y] in
+  xy \in 'C(XY) XY^`(1) = <[xy]>.

-Lemma commgAC G x y z : x \in G y \in G z \in G
-  commute y z abelian [~: [set x], G] [~ x, y, z] = [~ x, z, y].
+Lemma commgAC G x y z : x \in G y \in G z \in G
+  commute y z abelian [~: [set x], G] [~ x, y, z] = [~ x, z, y].

@@ -290,45 +289,45 @@
Lemma comm_norm_cent_cent H G K :
-    H \subset 'N(G) H \subset 'C(K) G \subset 'N(K)
-  [~: G, H] \subset 'C(K).
+    H \subset 'N(G) H \subset 'C(K) G \subset 'N(K)
+  [~: G, H] \subset 'C(K).

-Lemma charR H K G : H \char G K \char G [~: H, K] \char G.
+Lemma charR H K G : H \char G K \char G [~: H, K] \char G.

-Lemma der_char n G : G^`(n) \char G.
+Lemma der_char n G : G^`(n) \char G.

-Lemma der_sub n G : G^`(n) \subset G.
+Lemma der_sub n G : G^`(n) \subset G.

-Lemma der_norm n G : G \subset 'N(G^`(n)).
+Lemma der_norm n G : G \subset 'N(G^`(n)).

-Lemma der_normal n G : G^`(n) <| G.
+Lemma der_normal n G : G^`(n) <| G.

-Lemma der_subS n G : G^`(n.+1) \subset G^`(n).
+Lemma der_subS n G : G^`(n.+1) \subset G^`(n).

-Lemma der_normalS n G : G^`(n.+1) <| G^`(n).
+Lemma der_normalS n G : G^`(n.+1) <| G^`(n).

-Lemma morphim_der rT D (f : {morphism D >-> rT}) n G :
-   G \subset D f @* G^`(n) = (f @* G)^`(n).
+Lemma morphim_der rT D (f : {morphism D >-> rT}) n G :
+   G \subset D f @* G^`(n) = (f @* G)^`(n).

-Lemma dergS n G H : G \subset H G^`(n) \subset H^`(n).
+Lemma dergS n G H : G \subset H G^`(n) \subset H^`(n).

-Lemma quotient_der n G H : G \subset 'N(H) G^`(n) / H = (G / H)^`(n).
+Lemma quotient_der n G H : G \subset 'N(H) G^`(n) / H = (G / H)^`(n).

-Lemma derJ G n x : (G :^ x)^`(n) = G^`(n) :^ x.
+Lemma derJ G n x : (G :^ x)^`(n) = G^`(n) :^ x.

-Lemma derG1P G : reflect (G^`(1) = 1) (abelian G).
+Lemma derG1P G : reflect (G^`(1) = 1) (abelian G).

End Commutator_properties.
@@ -336,16 +335,16 @@

-Lemma der_cont n : GFunctor.continuous (derived_at n).
+Lemma der_cont n : GFunctor.continuous (@derived_at n).

-Canonical der_igFun n := [igFun by der_sub^~ n & der_cont n].
-Canonical der_gFun n := [gFun by der_cont n].
-Canonical der_mgFun n := [mgFun by dergS^~ n].
+Canonical der_igFun n := [igFun by der_sub^~ n & der_cont n].
+Canonical der_gFun n := [gFun by der_cont n].
+Canonical der_mgFun n := [mgFun by dergS^~ n].

-Lemma isog_der (aT rT : finGroupType) n (G : {group aT}) (H : {group rT}) :
-  G \isog H G^`(n) \isog H^`(n).
+Lemma isog_der (aT rT : finGroupType) n (G : {group aT}) (H : {group rT}) :
+  G \isog H G^`(n) \isog H^`(n).
-- cgit v1.2.3