From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Wed, 22 May 2019 13:43:08 +0200 Subject: htmldoc regenerated --- docs/htmldoc/mathcomp.solvable.center.html | 269 ++++++++++++++--------------- 1 file changed, 134 insertions(+), 135 deletions(-) (limited to 'docs/htmldoc/mathcomp.solvable.center.html') diff --git a/docs/htmldoc/mathcomp.solvable.center.html b/docs/htmldoc/mathcomp.solvable.center.html index 7d9adbd..1a276f1 100644 --- a/docs/htmldoc/mathcomp.solvable.center.html +++ b/docs/htmldoc/mathcomp.solvable.center.html @@ -21,7 +21,6 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
 Distributed under the terms of CeCILL-B.                                  *)

-Require Import mathcomp.ssreflect.ssreflect.

@@ -71,26 +70,26 @@ Variable gT : finGroupType.

-Definition center (A : {set gT}) := 'C_A(A).
+Definition center (A : {set gT}) := 'C_A(A).

-Canonical center_group (G : {group gT}) : {group gT} :=
-  Eval hnf in [group of center G].
+Canonical center_group (G : {group gT}) : {group gT} :=
+  Eval hnf in [group of center G].

End Defs.

-Notation "''Z' ( A )" := (center A) : group_scope.
-Notation "''Z' ( H )" := (center_group H) : Group_scope.
+Notation "''Z' ( A )" := (center A) : group_scope.
+Notation "''Z' ( H )" := (center_group H) : Group_scope.

-Lemma morphim_center : GFunctor.pcontinuous center.
+Lemma morphim_center : GFunctor.pcontinuous (@center).

-Canonical center_igFun := [igFun by fun _ _subsetIl _ _ & morphim_center].
-Canonical center_gFun := [gFun by morphim_center].
-Canonical center_pgFun := [pgFun by morphim_center].
+Canonical center_igFun := [igFun by fun _ _subsetIl _ _ & morphim_center].
+Canonical center_gFun := [gFun by morphim_center].
+Canonical center_pgFun := [pgFun by morphim_center].

Section Center.
@@ -98,74 +97,74 @@
Variables gT : finGroupType.
Implicit Type rT : finGroupType.
-Implicit Types (x y : gT) (A B : {set gT}) (G H K D : {group gT}).
+Implicit Types (x y : gT) (A B : {set gT}) (G H K D : {group gT}).

-Lemma subcentP A B x : reflect (x \in A centralises x B) (x \in 'C_A(B)).
+Lemma subcentP A B x : reflect (x \in A centralises x B) (x \in 'C_A(B)).

-Lemma subcent_sub A B : 'C_A(B) \subset 'N_A(B).
+Lemma subcent_sub A B : 'C_A(B) \subset 'N_A(B).

-Lemma subcent_norm G B : 'N_G(B) \subset 'N('C_G(B)).
+Lemma subcent_norm G B : 'N_G(B) \subset 'N('C_G(B)).

-Lemma subcent_normal G B : 'C_G(B) <| 'N_G(B).
+Lemma subcent_normal G B : 'C_G(B) <| 'N_G(B).

-Lemma subcent_char G H K : H \char G K \char G 'C_H(K) \char G.
+Lemma subcent_char G H K : H \char G K \char G 'C_H(K) \char G.

-Lemma centerP A x : reflect (x \in A centralises x A) (x \in 'Z(A)).
+Lemma centerP A x : reflect (x \in A centralises x A) (x \in 'Z(A)).

-Lemma center_sub A : 'Z(A) \subset A.
+Lemma center_sub A : 'Z(A) \subset A.

-Lemma center1 : 'Z(1) = 1 :> {set gT}.
+Lemma center1 : 'Z(1) = 1 :> {set gT}.

-Lemma centerC A : {in A, centralised 'Z(A)}.
+Lemma centerC A : {in A, centralised 'Z(A)}.

-Lemma center_normal G : 'Z(G) <| G.
+Lemma center_normal G : 'Z(G) <| G.

-Lemma sub_center_normal H G : H \subset 'Z(G) H <| G.
+Lemma sub_center_normal H G : H \subset 'Z(G) H <| G.

-Lemma center_abelian G : abelian 'Z(G).
+Lemma center_abelian G : abelian 'Z(G).

-Lemma center_char G : 'Z(G) \char G.
+Lemma center_char G : 'Z(G) \char G.

-Lemma center_idP A : reflect ('Z(A) = A) (abelian A).
+Lemma center_idP A : reflect ('Z(A) = A) (abelian A).

Lemma center_class_formula G :
-  #|G| = #|'Z(G)| + \sum_(xG in [set x ^: G | x in G :\: 'C(G)]) #|xG|.
+  #|G| = #|'Z(G)| + \sum_(xG in [set x ^: G | x in G :\: 'C(G)]) #|xG|.

-Lemma subcent1P A x y : reflect (y \in A commute x y) (y \in 'C_A[x]).
+Lemma subcent1P A x y : reflect (y \in A commute x y) (y \in 'C_A[x]).

-Lemma subcent1_id x G : x \in G x \in 'C_G[x].
+Lemma subcent1_id x G : x \in G x \in 'C_G[x].

-Lemma subcent1_sub x G : 'C_G[x] \subset G.
+Lemma subcent1_sub x G : 'C_G[x] \subset G.

-Lemma subcent1C x y G : x \in G y \in 'C_G[x] x \in 'C_G[y].
+Lemma subcent1C x y G : x \in G y \in 'C_G[x] x \in 'C_G[y].

-Lemma subcent1_cycle_sub x G : x \in G <[x]> \subset 'C_G[x].
+Lemma subcent1_cycle_sub x G : x \in G <[x]> \subset 'C_G[x].

-Lemma subcent1_cycle_norm x G : 'C_G[x] \subset 'N(<[x]>).
+Lemma subcent1_cycle_norm x G : 'C_G[x] \subset 'N(<[x]>).

-Lemma subcent1_cycle_normal x G : x \in G <[x]> <| 'C_G[x].
+Lemma subcent1_cycle_normal x G : x \in G <[x]> <| 'C_G[x].

@@ -174,23 +173,23 @@ Gorenstein. 1.3.4
-Lemma cyclic_center_factor_abelian G : cyclic (G / 'Z(G)) abelian G.
+Lemma cyclic_center_factor_abelian G : cyclic (G / 'Z(G)) abelian G.

Lemma cyclic_factor_abelian H G :
-  H \subset 'Z(G) cyclic (G / H) abelian G.
+  H \subset 'Z(G) cyclic (G / H) abelian G.

Section Injm.

-Variables (rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
+Variables (rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).

-Hypothesis injf : 'injm f.
+Hypothesis injf : 'injm f.

-Lemma injm_center G : G \subset D f @* 'Z(G) = 'Z(f @* G).
+Lemma injm_center G : G \subset D f @* 'Z(G) = 'Z(f @* G).

End Injm.
@@ -201,44 +200,44 @@

-Lemma isog_center (aT rT : finGroupType) (G : {group aT}) (H : {group rT}) :
-  G \isog H 'Z(G) \isog 'Z(H).
+Lemma isog_center (aT rT : finGroupType) (G : {group aT}) (H : {group rT}) :
+  G \isog H 'Z(G) \isog 'Z(H).

Section Product.

Variable gT : finGroupType.
-Implicit Types (A B C : {set gT}) (G H K : {group gT}).
+Implicit Types (A B C : {set gT}) (G H K : {group gT}).

-Lemma center_prod H K : K \subset 'C(H) 'Z(H) × 'Z(K) = 'Z(H × K).
+Lemma center_prod H K : K \subset 'C(H) 'Z(H) × 'Z(K) = 'Z(H × K).

-Lemma center_cprod A B G : A \* B = G 'Z(A) \* 'Z(B) = 'Z(G).
+Lemma center_cprod A B G : A \* B = G 'Z(A) \* 'Z(B) = 'Z(G).

-Lemma center_bigcprod I r P (F : I {set gT}) G :
-    \big[cprod/1]_(i <- r | P i) F i = G
-  \big[cprod/1]_(i <- r | P i) 'Z(F i) = 'Z(G).
+Lemma center_bigcprod I r P (F : I {set gT}) G :
+    \big[cprod/1]_(i <- r | P i) F i = G
+  \big[cprod/1]_(i <- r | P i) 'Z(F i) = 'Z(G).

-Lemma cprod_center_id G : G \* 'Z(G) = G.
+Lemma cprod_center_id G : G \* 'Z(G) = G.

-Lemma center_dprod A B G : A \x B = G 'Z(A) \x 'Z(B) = 'Z(G).
+Lemma center_dprod A B G : A \x B = G 'Z(A) \x 'Z(B) = 'Z(G).

-Lemma center_bigdprod I r P (F: I {set gT}) G :
-    \big[dprod/1]_(i <- r | P i) F i = G
-  \big[dprod/1]_(i <- r | P i) 'Z(F i) = 'Z(G).
+Lemma center_bigdprod I r P (F: I {set gT}) G :
+    \big[dprod/1]_(i <- r | P i) F i = G
+  \big[dprod/1]_(i <- r | P i) 'Z(F i) = 'Z(G).

Lemma Aut_cprod_full G H K :
-    H \* K = G 'Z(H) = 'Z(K)
-    Aut_in (Aut H) 'Z(H) \isog Aut 'Z(H)
-    Aut_in (Aut K) 'Z(K) \isog Aut 'Z(K)
-  Aut_in (Aut G) 'Z(G) \isog Aut 'Z(G).
+    H \* K = G 'Z(H) = 'Z(K)
+    Aut_in (Aut H) 'Z(H) \isog Aut 'Z(H)
+    Aut_in (Aut K) 'Z(K) \isog Aut 'Z(K)
+  Aut_in (Aut G) 'Z(G) \isog Aut 'Z(G).

End Product.
@@ -248,87 +247,87 @@
Variables gTH gTK : finGroupType.
-Variables (H : {group gTH}) (K : {group gTK}) (gz : {morphism 'Z(H) >-> gTK}).
+Variables (H : {group gTH}) (K : {group gTK}) (gz : {morphism 'Z(H) >-> gTK}).

-Definition ker_cprod_by of isom 'Z(H) 'Z(K) gz :=
-  [set xy | let: (x, y) := xy in (x \in 'Z(H)) && (y == (gz x)^-1)].
+Definition ker_cprod_by of isom 'Z(H) 'Z(K) gz :=
+  [set xy | let: (x, y) := xy in (x \in 'Z(H)) && (y == (gz x)^-1)].

-Hypothesis isoZ : isom 'Z(H) 'Z(K) gz.
+Hypothesis isoZ : isom 'Z(H) 'Z(K) gz.
Let kerHK := ker_cprod_by isoZ.

-Let injgz : 'injm gz.
-Let gzZ : gz @* 'Z(H) = 'Z(K).
-Let gzZchar : gz @* 'Z(H) \char 'Z(K).
-Let sgzZZ : gz @* 'Z(H) \subset 'Z(K) := char_sub gzZchar.
+Let injgz : 'injm gz.
+Let gzZ : gz @* 'Z(H) = 'Z(K).
+Let gzZchar : gz @* 'Z(H) \char 'Z(K).
+Let sgzZZ : gz @* 'Z(H) \subset 'Z(K) := char_sub gzZchar.
Let sZH := center_sub H.
Let sZK := center_sub K.
-Let sgzZG : gz @* 'Z(H) \subset K := subset_trans sgzZZ sZK.
+Let sgzZG : gz @* 'Z(H) \subset K := subset_trans sgzZZ sZK.

Lemma ker_cprod_by_is_group : group_set kerHK.
Canonical ker_cprod_by_group := Group ker_cprod_by_is_group.

-Lemma ker_cprod_by_central : kerHK \subset 'Z(setX H K).
+Lemma ker_cprod_by_central : kerHK \subset 'Z(setX H K).

-Fact cprod_by_key : unit.
-Definition cprod_by_def := subFinGroupType [group of setX H K / kerHK].
-Definition cprod_by := locked_with cprod_by_key cprod_by_def.
+Fact cprod_by_key : unit.
+Definition cprod_by_def := subFinGroupType [group of setX H K / kerHK].
+Definition cprod_by := locked_with cprod_by_key cprod_by_def.

-Definition in_cprod : gTH × gTK cprod_by :=
-  let: tt as k := cprod_by_key return _ locked_with k cprod_by_def in
-  subg _ \o coset kerHK.
+Definition in_cprod : gTH × gTK cprod_by :=
+  let: tt as k := cprod_by_key return _ locked_with k cprod_by_def in
+  subg _ \o coset kerHK.

-Lemma in_cprodM : {in setX H K &, {morph in_cprod : u v / u × v}}.
+Lemma in_cprodM : {in setX H K &, {morph in_cprod : u v / u × v}}.
Canonical in_cprod_morphism := Morphism in_cprodM.

-Lemma ker_in_cprod : 'ker in_cprod = kerHK.
+Lemma ker_in_cprod : 'ker in_cprod = kerHK.

-Lemma cpairg1_dom : H \subset 'dom (in_cprod \o @pairg1 gTH gTK).
+Lemma cpairg1_dom : H \subset 'dom (in_cprod \o @pairg1 gTH gTK).

-Lemma cpair1g_dom : K \subset 'dom (in_cprod \o @pair1g gTH gTK).
+Lemma cpair1g_dom : K \subset 'dom (in_cprod \o @pair1g gTH gTK).

-Definition cpairg1 := tag (restrmP _ cpairg1_dom).
-Definition cpair1g := tag (restrmP _ cpair1g_dom).
+Definition cpairg1 := tag (restrmP _ cpairg1_dom).
+Definition cpair1g := tag (restrmP _ cpair1g_dom).


-Lemma injm_cpairg1 : 'injm cpairg1.
+Lemma injm_cpairg1 : 'injm cpairg1.
Let injH := injm_cpairg1.

-Lemma injm_cpair1g : 'injm cpair1g.
+Lemma injm_cpair1g : 'injm cpair1g.
Let injK := injm_cpair1g.

-Lemma im_cpair_cent : CK \subset 'C(CH).
-Hint Resolve im_cpair_cent.
+Lemma im_cpair_cent : CK \subset 'C(CH).
+Hint Resolve im_cpair_cent : core.

-Lemma im_cpair : CH × CK = C.
+Lemma im_cpair : CH × CK = C.

-Lemma im_cpair_cprod : CH \* CK = C.
+Lemma im_cpair_cprod : CH \* CK = C.

-Lemma eq_cpairZ : {in 'Z(H), cpairg1 =1 cpair1g \o gz}.
+Lemma eq_cpairZ : {in 'Z(H), cpairg1 =1 cpair1g \o gz}.

-Lemma setI_im_cpair : CH :&: CK = 'Z(CH).
+Lemma setI_im_cpair : CH :&: CK = 'Z(CH).

-Lemma cpair1g_center : cpair1g @* 'Z(K) = 'Z(C).
+Lemma cpair1g_center : cpair1g @* 'Z(K) = 'Z(C).

@@ -337,7 +336,7 @@ Uses gzZ.
-Lemma cpair_center_id : 'Z(CH) = 'Z(CK).
+Lemma cpair_center_id : 'Z(CH) = 'Z(CK).

@@ -346,52 +345,52 @@ Uses gzZ.
-Lemma cpairg1_center : cpairg1 @* 'Z(H) = 'Z(C).
+Lemma cpairg1_center : cpairg1 @* 'Z(H) = 'Z(C).

Section ExtCprodm.

Variable rT : finGroupType.
-Variables (fH : {morphism H >-> rT}) (fK : {morphism K >-> rT}).
-Hypothesis cfHK : fK @* K \subset 'C(fH @* H).
-Hypothesis eq_fHK : {in 'Z(H), fH =1 fK \o gz}.
+Variables (fH : {morphism H >-> rT}) (fK : {morphism K >-> rT}).
+Hypothesis cfHK : fK @* K \subset 'C(fH @* H).
+Hypothesis eq_fHK : {in 'Z(H), fH =1 fK \o gz}.

Let gH := ifactm fH injm_cpairg1.
Let gK := ifactm fK injm_cpair1g.

-Lemma xcprodm_cent : gK @* CK \subset 'C(gH @* CH).
+Lemma xcprodm_cent : gK @* CK \subset 'C(gH @* CH).

-Lemma xcprodmI : {in CH :&: CK, gH =1 gK}.
+Lemma xcprodmI : {in CH :&: CK, gH =1 gK}.

Definition xcprodm := cprodm im_cpair_cprod xcprodm_cent xcprodmI.
-Canonical xcprod_morphism := [morphism of xcprodm].
+Canonical xcprod_morphism := [morphism of xcprodm].

-Lemma xcprodmEl : {in H, x, xcprodm (cpairg1 x) = fH x}.
+Lemma xcprodmEl : {in H, x, xcprodm (cpairg1 x) = fH x}.

-Lemma xcprodmEr : {in K, y, xcprodm (cpair1g y) = fK y}.
+Lemma xcprodmEr : {in K, y, xcprodm (cpair1g y) = fK y}.

Lemma xcprodmE :
-  {in H & K, x y, xcprodm (cpairg1 x × cpair1g y) = fH x × fK y}.
+  {in H & K, x y, xcprodm (cpairg1 x × cpair1g y) = fH x × fK y}.

-Lemma im_xcprodm : xcprodm @* C = fH @* H × fK @* K.
+Lemma im_xcprodm : xcprodm @* C = fH @* H × fK @* K.

-Lemma im_xcprodml A : xcprodm @* (cpairg1 @* A) = fH @* A.
+Lemma im_xcprodml A : xcprodm @* (cpairg1 @* A) = fH @* A.

-Lemma im_xcprodmr A : xcprodm @* (cpair1g @* A) = fK @* A.
+Lemma im_xcprodmr A : xcprodm @* (cpair1g @* A) = fK @* A.

-Lemma injm_xcprodm : 'injm xcprodm = 'injm fH && 'injm fK.
+Lemma injm_xcprodm : 'injm xcprodm = 'injm fH && 'injm fK.

End ExtCprodm.
@@ -404,22 +403,22 @@
Lemma Aut_cprod_by_full :
-    Aut_in (Aut H) 'Z(H) \isog Aut 'Z(H)
-    Aut_in (Aut K) 'Z(K) \isog Aut 'Z(K)
-  Aut_in (Aut C) 'Z(C) \isog Aut 'Z(C).
+    Aut_in (Aut H) 'Z(H) \isog Aut 'Z(H)
+    Aut_in (Aut K) 'Z(K) \isog Aut 'Z(K)
+  Aut_in (Aut C) 'Z(C) \isog Aut 'Z(C).

Section Isomorphism.

-Let gzZ_lone (Y : {group gTK}) :
-  Y \subset 'Z(K) gz @* 'Z(H) \isog Y gz @* 'Z(H) = Y.
+Let gzZ_lone (Y : {group gTK}) :
+  Y \subset 'Z(K) gz @* 'Z(H) \isog Y gz @* 'Z(H) = Y.

-Variables (rT : finGroupType) (GH GK G : {group rT}).
-Hypotheses (defG : GH \* GK = G) (ziGHK : GH :&: GK = 'Z(GH)).
-Hypothesis AutZHfull : Aut_in (Aut H) 'Z(H) \isog Aut 'Z(H).
-Hypotheses (isoGH : GH \isog H) (isoGK : GK \isog K).
+Variables (rT : finGroupType) (GH GK G : {group rT}).
+Hypotheses (defG : GH \* GK = G) (ziGHK : GH :&: GK = 'Z(GH)).
+Hypothesis AutZHfull : Aut_in (Aut H) 'Z(H) \isog Aut 'Z(H).
+Hypotheses (isoGH : GH \isog H) (isoGK : GK \isog K).

@@ -429,11 +428,11 @@
Lemma cprod_by_uniq :
-   f : {morphism G >-> cprod_by},
-    [/\ isom G C f, f @* GH = CH & f @* GK = CK].
+   f : {morphism G >-> cprod_by},
+    [/\ isom G C f, f @* GH = CH & f @* GK = CK].

-Lemma isog_cprod_by : G \isog C.
+Lemma isog_cprod_by : G \isog C.

End Isomorphism.
@@ -447,31 +446,31 @@
Variables gTH gTK : finGroupType.
-Variables (H : {group gTH}) (K : {group gTK}).
+Variables (H : {group gTH}) (K : {group gTK}).

-Let gt_ b := if b then gTK else gTH.
-Let G_ b := if b as b' return {group gt_ b'} then K else H.
+Let gt_ b := if b then gTK else gTH.
+Let G_ b := if b as b' return {group gt_ b'} then K else H.

Lemma xcprod_subproof :
-  {gz : {morphism 'Z(H) >-> gt_ isob} | isom 'Z(H) 'Z(G_ isob) gz}.
+  {gz : {morphism 'Z(H) >-> gt_ isob} | isom 'Z(H) 'Z(G_ isob) gz}.

Definition xcprod := cprod_by (svalP xcprod_subproof).

-Inductive xcprod_spec : finGroupType Prop :=
+Inductive xcprod_spec : finGroupType Prop :=
  XcprodSpec gz isoZ : xcprod_spec (@cprod_by gTH gTK H K gz isoZ).

-Lemma xcprodP : 'Z(H) \isog 'Z(K) xcprod_spec xcprod.
+Lemma xcprodP : 'Z(H) \isog 'Z(K) xcprod_spec xcprod.

-Lemma isog_xcprod (rT : finGroupType) (GH GK G : {group rT}) :
-    Aut_in (Aut H) 'Z(H) \isog Aut 'Z(H)
-    GH \isog H GK \isog K GH \* GK = G 'Z(GH) = 'Z(GK)
-  G \isog [set: xcprod].
+Lemma isog_xcprod (rT : finGroupType) (GH GK G : {group rT}) :
+    Aut_in (Aut H) 'Z(H) \isog Aut 'Z(H)
+    GH \isog H GK \isog K GH \* GK = G 'Z(GH) = 'Z(GK)
+  G \isog [set: xcprod].

End ExtCprod.
@@ -480,36 +479,36 @@ Section IterCprod.

-Variables (gT : finGroupType) (G : {group gT}).
+Variables (gT : finGroupType) (G : {group gT}).

Fixpoint ncprod_def n : finGroupType :=
-  if n is n'.+1 then xcprod G [set: ncprod_def n']
-  else [finGroupType of subg_of 'Z(G)].
-Fact ncprod_key : unit.
-Definition ncprod := locked_with ncprod_key ncprod_def.
+  if n is n'.+1 then xcprod G [set: ncprod_def n']
+  else [finGroupType of subg_of 'Z(G)].
+Fact ncprod_key : unit.
+Definition ncprod := locked_with ncprod_key ncprod_def.


-Lemma ncprod0 : G_ 0 \isog 'Z(G).
+Lemma ncprod0 : G_ 0 \isog 'Z(G).

-Lemma center_ncprod0 : 'Z(G_ 0) = G_ 0.
+Lemma center_ncprod0 : 'Z(G_ 0) = G_ 0.

-Lemma center_ncprod n : 'Z(G_ n) \isog 'Z(G).
+Lemma center_ncprod n : 'Z(G_ n) \isog 'Z(G).

-Lemma ncprodS n : xcprod_spec G [set: ncprod n] (ncprod n.+1).
+Lemma ncprodS n : xcprod_spec G [set: ncprod n] (ncprod n.+1).

-Lemma ncprod1 : G_ 1 \isog G.
+Lemma ncprod1 : G_ 1 \isog G.

Lemma Aut_ncprod_full n :
-    Aut_in (Aut G) 'Z(G) \isog Aut 'Z(G)
-  Aut_in (Aut (G_ n)) 'Z(G_ n) \isog Aut 'Z(G_ n).
+    Aut_in (Aut G) 'Z(G) \isog Aut 'Z(G)
+  Aut_in (Aut (G_ n)) 'Z(G_ n) \isog Aut 'Z(G_ n).

End IterCprod.
-- cgit v1.2.3