From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.solvable.alt.html | 199 ++++++++++++++++++++++++++++++++ 1 file changed, 199 insertions(+) create mode 100644 docs/htmldoc/mathcomp.solvable.alt.html (limited to 'docs/htmldoc/mathcomp.solvable.alt.html') diff --git a/docs/htmldoc/mathcomp.solvable.alt.html b/docs/htmldoc/mathcomp.solvable.alt.html new file mode 100644 index 0000000..dd87d49 --- /dev/null +++ b/docs/htmldoc/mathcomp.solvable.alt.html @@ -0,0 +1,199 @@ + + + + + +mathcomp.solvable.alt + + + + +
+ + + +
+ +

Library mathcomp.solvable.alt

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ +
+ Definitions of the symmetric and alternate groups, and some properties. + 'Sym_T == The symmetric group over type T (which must have a finType + structure). + := [set: {perm T} ] + 'Alt_T == The alternating group over type T. +
+
+ +
+Set Implicit Arguments.
+ +
+Import GroupScope.
+ +
+Definition bool_groupMixin := FinGroup.Mixin addbA addFb addbb.
+Canonical bool_baseGroup := Eval hnf in BaseFinGroupType bool bool_groupMixin.
+Canonical boolGroup := Eval hnf in FinGroupType addbb.
+ +
+Section SymAltDef.
+ +
+Variable T : finType.
+Implicit Types (s : {perm T}) (x y z : T).
+ +
+
+ +
+ Definitions of the alternate groups and some Properties * +
+
+Definition Sym of phant T : {set {perm T}} := setT.
+ +
+Canonical Sym_group phT := Eval hnf in [group of Sym phT].
+ +
+ +
+Canonical sign_morph := @Morphism _ _ 'Sym_T _ (in2W (@odd_permM _)).
+ +
+Definition Alt of phant T := 'ker (@odd_perm T).
+ +
+Canonical Alt_group phT := Eval hnf in [group of Alt phT].
+ +
+ +
+Lemma Alt_even p : (p \in 'Alt_T) = ~~ p.
+ +
+Lemma Alt_subset : 'Alt_T \subset 'Sym_T.
+ +
+Lemma Alt_normal : 'Alt_T <| 'Sym_T.
+ +
+Lemma Alt_norm : 'Sym_T \subset 'N('Alt_T).
+ +
+Let n := #|T|.
+ +
+Lemma Alt_index : 1 < n #|'Sym_T : 'Alt_T| = 2.
+ +
+Lemma card_Sym : #|'Sym_T| = n`!.
+ +
+Lemma card_Alt : 1 < n (2 × #|'Alt_T|)%N = n`!.
+ +
+Lemma Sym_trans : [transitive^n 'Sym_T, on setT | 'P].
+ +
+Lemma Alt_trans : [transitive^n.-2 'Alt_T, on setT | 'P].
+ +
+Lemma aperm_faithful (A : {group {perm T}}) : [faithful A, on setT | 'P].
+ +
+End SymAltDef.
+ +
+Notation "''Sym_' T" := (Sym (Phant T))
+  (at level 8, T at level 2, format "''Sym_' T") : group_scope.
+Notation "''Sym_' T" := (Sym_group (Phant T)) : Group_scope.
+ +
+Notation "''Alt_' T" := (Alt (Phant T))
+  (at level 8, T at level 2, format "''Alt_' T") : group_scope.
+Notation "''Alt_' T" := (Alt_group (Phant T)) : Group_scope.
+ +
+Lemma trivial_Alt_2 (T : finType) : #|T| 2 'Alt_T = 1.
+ +
+Lemma simple_Alt_3 (T : finType) : #|T| = 3 simple 'Alt_T.
+ +
+Lemma not_simple_Alt_4 (T : finType) : #|T| = 4 ~~ simple 'Alt_T.
+ +
+Lemma simple_Alt5_base (T : finType) : #|T| = 5 simple 'Alt_T.
+ +
+Section Restrict.
+ +
+Variables (T : finType) (x : T).
+Notation T' := {y | y != x}.
+ +
+Lemma rfd_funP (p : {perm T}) (u : T') :
+  let p1 := if p x == x then p else 1 in p1 (val u) != x.
+ +
+Definition rfd_fun p := [fun u Sub ((_ : {perm T}) _) (rfd_funP p u) : T'].
+ +
+Lemma rfdP p : injective (rfd_fun p).
+ +
+Definition rfd p := perm (@rfdP p).
+ +
+Hypothesis card_T : 2 < #|T|.
+ +
+Lemma rfd_morph : {in 'C_('Sym_T)[x | 'P] &, {morph rfd : y z / y × z}}.
+ +
+Canonical rfd_morphism := Morphism rfd_morph.
+ +
+Definition rgd_fun (p : {perm T'}) :=
+  [fun x1 if insub x1 is Some u then sval (p u) else x].
+ +
+Lemma rgdP p : injective (rgd_fun p).
+ +
+Definition rgd p := perm (@rgdP p).
+ +
+Lemma rfd_odd (p : {perm T}) : p x = x rfd p = p :> bool.
+ +
+Lemma rfd_iso : 'C_('Alt_T)[x | 'P] \isog 'Alt_T'.
+ +
+End Restrict.
+ +
+Lemma simple_Alt5 (T : finType) : #|T| 5 simple 'Alt_T.
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3