From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Wed, 22 May 2019 13:43:08 +0200 Subject: htmldoc regenerated --- docs/htmldoc/mathcomp.solvable.alt.html | 83 ++++++++++++++++----------------- 1 file changed, 41 insertions(+), 42 deletions(-) (limited to 'docs/htmldoc/mathcomp.solvable.alt.html') diff --git a/docs/htmldoc/mathcomp.solvable.alt.html b/docs/htmldoc/mathcomp.solvable.alt.html index dd87d49..f94a27f 100644 --- a/docs/htmldoc/mathcomp.solvable.alt.html +++ b/docs/htmldoc/mathcomp.solvable.alt.html @@ -21,7 +21,6 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
 Distributed under the terms of CeCILL-B.                                  *)

-Require Import mathcomp.ssreflect.ssreflect.

@@ -42,16 +41,16 @@ Import GroupScope.

-Definition bool_groupMixin := FinGroup.Mixin addbA addFb addbb.
-Canonical bool_baseGroup := Eval hnf in BaseFinGroupType bool bool_groupMixin.
-Canonical boolGroup := Eval hnf in FinGroupType addbb.
+Definition bool_groupMixin := FinGroup.Mixin addbA addFb addbb.
+Canonical bool_baseGroup := Eval hnf in BaseFinGroupType bool bool_groupMixin.
+Canonical boolGroup := Eval hnf in FinGroupType addbb.

Section SymAltDef.

Variable T : finType.
-Implicit Types (s : {perm T}) (x y z : T).
+Implicit Types (s : {perm T}) (x y z : T).

@@ -60,132 +59,132 @@ Definitions of the alternate groups and some Properties *
-Definition Sym of phant T : {set {perm T}} := setT.
+Definition Sym of phant T : {set {perm T}} := setT.

-Canonical Sym_group phT := Eval hnf in [group of Sym phT].
+Canonical Sym_group phT := Eval hnf in [group of Sym phT].


-Canonical sign_morph := @Morphism _ _ 'Sym_T _ (in2W (@odd_permM _)).
+Canonical sign_morph := @Morphism _ _ 'Sym_T _ (in2W (@odd_permM _)).

-Definition Alt of phant T := 'ker (@odd_perm T).
+Definition Alt of phant T := 'ker (@odd_perm T).

-Canonical Alt_group phT := Eval hnf in [group of Alt phT].
+Canonical Alt_group phT := Eval hnf in [group of Alt phT].


-Lemma Alt_even p : (p \in 'Alt_T) = ~~ p.
+Lemma Alt_even p : (p \in 'Alt_T) = ~~ p.

-Lemma Alt_subset : 'Alt_T \subset 'Sym_T.
+Lemma Alt_subset : 'Alt_T \subset 'Sym_T.

-Lemma Alt_normal : 'Alt_T <| 'Sym_T.
+Lemma Alt_normal : 'Alt_T <| 'Sym_T.

-Lemma Alt_norm : 'Sym_T \subset 'N('Alt_T).
+Lemma Alt_norm : 'Sym_T \subset 'N('Alt_T).

-Let n := #|T|.
+Let n := #|T|.

-Lemma Alt_index : 1 < n #|'Sym_T : 'Alt_T| = 2.
+Lemma Alt_index : 1 < n #|'Sym_T : 'Alt_T| = 2.

-Lemma card_Sym : #|'Sym_T| = n`!.
+Lemma card_Sym : #|'Sym_T| = n`!.

-Lemma card_Alt : 1 < n (2 × #|'Alt_T|)%N = n`!.
+Lemma card_Alt : 1 < n (2 × #|'Alt_T|)%N = n`!.

-Lemma Sym_trans : [transitive^n 'Sym_T, on setT | 'P].
+Lemma Sym_trans : [transitive^n 'Sym_T, on setT | 'P].

-Lemma Alt_trans : [transitive^n.-2 'Alt_T, on setT | 'P].
+Lemma Alt_trans : [transitive^n.-2 'Alt_T, on setT | 'P].

-Lemma aperm_faithful (A : {group {perm T}}) : [faithful A, on setT | 'P].
+Lemma aperm_faithful (A : {group {perm T}}) : [faithful A, on setT | 'P].

End SymAltDef.

-Notation "''Sym_' T" := (Sym (Phant T))
+Notation "''Sym_' T" := (Sym (Phant T))
  (at level 8, T at level 2, format "''Sym_' T") : group_scope.
-Notation "''Sym_' T" := (Sym_group (Phant T)) : Group_scope.
+Notation "''Sym_' T" := (Sym_group (Phant T)) : Group_scope.

-Notation "''Alt_' T" := (Alt (Phant T))
+Notation "''Alt_' T" := (Alt (Phant T))
  (at level 8, T at level 2, format "''Alt_' T") : group_scope.
-Notation "''Alt_' T" := (Alt_group (Phant T)) : Group_scope.
+Notation "''Alt_' T" := (Alt_group (Phant T)) : Group_scope.

-Lemma trivial_Alt_2 (T : finType) : #|T| 2 'Alt_T = 1.
+Lemma trivial_Alt_2 (T : finType) : #|T| 2 'Alt_T = 1.

-Lemma simple_Alt_3 (T : finType) : #|T| = 3 simple 'Alt_T.
+Lemma simple_Alt_3 (T : finType) : #|T| = 3 simple 'Alt_T.

-Lemma not_simple_Alt_4 (T : finType) : #|T| = 4 ~~ simple 'Alt_T.
+Lemma not_simple_Alt_4 (T : finType) : #|T| = 4 ~~ simple 'Alt_T.

-Lemma simple_Alt5_base (T : finType) : #|T| = 5 simple 'Alt_T.
+Lemma simple_Alt5_base (T : finType) : #|T| = 5 simple 'Alt_T.

Section Restrict.

Variables (T : finType) (x : T).
-Notation T' := {y | y != x}.
+Notation T' := {y | y != x}.

-Lemma rfd_funP (p : {perm T}) (u : T') :
-  let p1 := if p x == x then p else 1 in p1 (val u) != x.
+Lemma rfd_funP (p : {perm T}) (u : T') :
+  let p1 := if p x == x then p else 1 in p1 (val u) != x.

-Definition rfd_fun p := [fun u Sub ((_ : {perm T}) _) (rfd_funP p u) : T'].
+Definition rfd_fun p := [fun u Sub ((_ : {perm T}) _) (rfd_funP p u) : T'].

-Lemma rfdP p : injective (rfd_fun p).
+Lemma rfdP p : injective (rfd_fun p).

Definition rfd p := perm (@rfdP p).

-Hypothesis card_T : 2 < #|T|.
+Hypothesis card_T : 2 < #|T|.

-Lemma rfd_morph : {in 'C_('Sym_T)[x | 'P] &, {morph rfd : y z / y × z}}.
+Lemma rfd_morph : {in 'C_('Sym_T)[x | 'P] &, {morph rfd : y z / y × z}}.

Canonical rfd_morphism := Morphism rfd_morph.

-Definition rgd_fun (p : {perm T'}) :=
-  [fun x1 if insub x1 is Some u then sval (p u) else x].
+Definition rgd_fun (p : {perm T'}) :=
+  [fun x1 if insub x1 is Some u then sval (p u) else x].

-Lemma rgdP p : injective (rgd_fun p).
+Lemma rgdP p : injective (rgd_fun p).

Definition rgd p := perm (@rgdP p).

-Lemma rfd_odd (p : {perm T}) : p x = x rfd p = p :> bool.
+Lemma rfd_odd (p : {perm T}) : p x = x rfd p = p :> bool.

-Lemma rfd_iso : 'C_('Alt_T)[x | 'P] \isog 'Alt_T'.
+Lemma rfd_iso : 'C_('Alt_T)[x | 'P] \isog 'Alt_T'.

End Restrict.

-Lemma simple_Alt5 (T : finType) : #|T| 5 simple 'Alt_T.
+Lemma simple_Alt5 (T : finType) : #|T| 5 simple 'Alt_T.
-- cgit v1.2.3