From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.solvable.alt.html | 198 -------------------------------- 1 file changed, 198 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.solvable.alt.html (limited to 'docs/htmldoc/mathcomp.solvable.alt.html') diff --git a/docs/htmldoc/mathcomp.solvable.alt.html b/docs/htmldoc/mathcomp.solvable.alt.html deleted file mode 100644 index f94a27f..0000000 --- a/docs/htmldoc/mathcomp.solvable.alt.html +++ /dev/null @@ -1,198 +0,0 @@ - - - - - -mathcomp.solvable.alt - - - - -
- - - -
- -

Library mathcomp.solvable.alt

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- Definitions of the symmetric and alternate groups, and some properties. - 'Sym_T == The symmetric group over type T (which must have a finType - structure). - := [set: {perm T} ] - 'Alt_T == The alternating group over type T. -
-
- -
-Set Implicit Arguments.
- -
-Import GroupScope.
- -
-Definition bool_groupMixin := FinGroup.Mixin addbA addFb addbb.
-Canonical bool_baseGroup := Eval hnf in BaseFinGroupType bool bool_groupMixin.
-Canonical boolGroup := Eval hnf in FinGroupType addbb.
- -
-Section SymAltDef.
- -
-Variable T : finType.
-Implicit Types (s : {perm T}) (x y z : T).
- -
-
- -
- Definitions of the alternate groups and some Properties * -
-
-Definition Sym of phant T : {set {perm T}} := setT.
- -
-Canonical Sym_group phT := Eval hnf in [group of Sym phT].
- -
- -
-Canonical sign_morph := @Morphism _ _ 'Sym_T _ (in2W (@odd_permM _)).
- -
-Definition Alt of phant T := 'ker (@odd_perm T).
- -
-Canonical Alt_group phT := Eval hnf in [group of Alt phT].
- -
- -
-Lemma Alt_even p : (p \in 'Alt_T) = ~~ p.
- -
-Lemma Alt_subset : 'Alt_T \subset 'Sym_T.
- -
-Lemma Alt_normal : 'Alt_T <| 'Sym_T.
- -
-Lemma Alt_norm : 'Sym_T \subset 'N('Alt_T).
- -
-Let n := #|T|.
- -
-Lemma Alt_index : 1 < n #|'Sym_T : 'Alt_T| = 2.
- -
-Lemma card_Sym : #|'Sym_T| = n`!.
- -
-Lemma card_Alt : 1 < n (2 × #|'Alt_T|)%N = n`!.
- -
-Lemma Sym_trans : [transitive^n 'Sym_T, on setT | 'P].
- -
-Lemma Alt_trans : [transitive^n.-2 'Alt_T, on setT | 'P].
- -
-Lemma aperm_faithful (A : {group {perm T}}) : [faithful A, on setT | 'P].
- -
-End SymAltDef.
- -
-Notation "''Sym_' T" := (Sym (Phant T))
-  (at level 8, T at level 2, format "''Sym_' T") : group_scope.
-Notation "''Sym_' T" := (Sym_group (Phant T)) : Group_scope.
- -
-Notation "''Alt_' T" := (Alt (Phant T))
-  (at level 8, T at level 2, format "''Alt_' T") : group_scope.
-Notation "''Alt_' T" := (Alt_group (Phant T)) : Group_scope.
- -
-Lemma trivial_Alt_2 (T : finType) : #|T| 2 'Alt_T = 1.
- -
-Lemma simple_Alt_3 (T : finType) : #|T| = 3 simple 'Alt_T.
- -
-Lemma not_simple_Alt_4 (T : finType) : #|T| = 4 ~~ simple 'Alt_T.
- -
-Lemma simple_Alt5_base (T : finType) : #|T| = 5 simple 'Alt_T.
- -
-Section Restrict.
- -
-Variables (T : finType) (x : T).
-Notation T' := {y | y != x}.
- -
-Lemma rfd_funP (p : {perm T}) (u : T') :
-  let p1 := if p x == x then p else 1 in p1 (val u) != x.
- -
-Definition rfd_fun p := [fun u Sub ((_ : {perm T}) _) (rfd_funP p u) : T'].
- -
-Lemma rfdP p : injective (rfd_fun p).
- -
-Definition rfd p := perm (@rfdP p).
- -
-Hypothesis card_T : 2 < #|T|.
- -
-Lemma rfd_morph : {in 'C_('Sym_T)[x | 'P] &, {morph rfd : y z / y × z}}.
- -
-Canonical rfd_morphism := Morphism rfd_morph.
- -
-Definition rgd_fun (p : {perm T'}) :=
-  [fun x1 if insub x1 is Some u then sval (p u) else x].
- -
-Lemma rgdP p : injective (rgd_fun p).
- -
-Definition rgd p := perm (@rgdP p).
- -
-Lemma rfd_odd (p : {perm T}) : p x = x rfd p = p :> bool.
- -
-Lemma rfd_iso : 'C_('Alt_T)[x | 'P] \isog 'Alt_T'.
- -
-End Restrict.
- -
-Lemma simple_Alt5 (T : finType) : #|T| 5 simple 'Alt_T.
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3