Library mathcomp.solvable.abelian
+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.
+ Distributed under the terms of CeCILL-B. *)
+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+
++ Distributed under the terms of CeCILL-B. *)
+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ Constructions based on abelian groups and their structure, with some
+ emphasis on elementary abelian p-groups.
+ 'Ldiv_n == the set of all x that satisfy x ^+ n = 1, or,
+ equivalently the set of x whose order divides n.
+ 'Ldiv_n(G) == the set of x in G that satisfy x ^+ n = 1.
+ := G :&: 'Ldiv_n (pure Notation)
+ exponent G == the exponent of G: the least e such that x ^+ e = 1
+ for all x in G (the LCM of the orders of x \in G).
+ If G is nilpotent its exponent is reached. Note that
+ `exponent G %| m' reads as `G has exponent m'.
+ 'm(G) == the generator rank of G: the size of a smallest
+ generating set for G (this is a basis for G if G
+ abelian).
+ abelian_type G == the abelian type of G : if G is abelian, a lexico-
+ graphically maximal sequence of the orders of the
+ elements of a minimal basis of G (if G is a p-group
+ this is the sequence of orders for any basis of G,
+ sorted in decending order).
+ homocyclic G == G is the direct product of cycles of equal order,
+ i.e., G is abelian with constant abelian type.
+ p.-abelem G == G is an elementary abelian p-group, i.e., it is
+ an abelian p-group of exponent p, and thus of order
+ p ^ 'm(G) and rank (logn p #|G|).
+ is_abelem G == G is an elementary abelian p-group for some prime p.
+ 'E_p(G) == the set of elementary abelian p-subgroups of G.
+ := [set E : {group _} | p.-abelem E & E \subset G]
+ 'E_p^n(G) == the set of elementary abelian p-subgroups of G of
+ order p ^ n (or, equivalently, of rank n).
+ := [set E in 'E_p(G) | logn p #|E| == n]
+ := [set E in 'E_p(G) | #|E| == p ^ n]%N if p is prime
+ 'E*p(G) == the set of maximal elementary abelian p-subgroups
+ of G.
+ := [set E | [max E | E \in 'E_p(G) ]#]
+ 'E^n(G) == the set of elementary abelian subgroups of G that
+ have gerank n (i.e., p-rank n for some prime p).
+ := \bigcup(0 <= p < #|G|.+1) 'E_p^n(G)
+ 'r_p(G) == the p-rank of G: the maximal rank of an elementary
+ subgroup of G.
+ := \max(E in 'E_p(G)) logn p #|E|.
+ 'r(G) == the rank of G.
+ := \max(0 <= p < #|G|.+1) 'm_p(G).
+ Note that 'r(G) coincides with 'r_p(G) if G is a p-group, and with 'm(G)
+ if G is abelian, but is much more useful than 'm(G) in the proof of the
+ Odd Order Theorem.
+ 'Ohm_n(G) == the group generated by the x in G with order p ^ m
+ for some prime p and some m <= n. Usually, G will be
+ a p-group, so 'Ohm_n(G) will be generated by
+ 'Ldiv(p ^ n)(G), set of elements of G of order at
+ most p ^ n. If G is also abelian then 'Ohm_n(G)
+ consists exactly of those element, and the abelian
+ type of G can be computed from the orders of the
+ 'Ohm_n(G) subgroups.
+ 'Mho^n(G) == the group generated by the x ^+ (p ^ n) for x a
+ p-element of G for some prime p. Usually G is a
+ p-group, and 'Mho^n(G) is generated by all such
+ x ^+ (p ^ n); it consists of exactly these if G is
+ also abelian.
+
+
+
+
+ We defer the definition of the functors ('Omh_n(G), 'Mho^n(G)) because
+ they must quantify over the finGroupType explicitly.
+
+
+
+
+Variable gT : finGroupType.
+Implicit Types (x : gT) (A B : {set gT}) (pi : nat_pred) (p n : nat).
+ +
+Definition Ldiv n := [set x : gT | x ^+ n == 1].
+ +
+Definition exponent A := \big[lcmn/1%N]_(x in A) #[x].
+ +
+Definition abelem p A := [&& p.-group A, abelian A & exponent A %| p].
+ +
+Definition is_abelem A := abelem (pdiv #|A|) A.
+ +
+Definition pElem p A := [set E : {group gT} | E \subset A & abelem p E].
+ +
+Definition pnElem p n A := [set E in pElem p A | logn p #|E| == n].
+ +
+Definition nElem n A := \bigcup_(0 ≤ p < #|A|.+1) pnElem p n A.
+ +
+Definition pmaxElem p A := [set E | [max E | E \in pElem p A]].
+ +
+Definition p_rank p A := \max_(E in pElem p A) logn p #|E|.
+ +
+Definition rank A := \max_(0 ≤ p < #|A|.+1) p_rank p A.
+ +
+Definition gen_rank A := #|[arg min_(B < A | <<B>> == A) #|B|]|.
+ +
+
+
++Variable gT : finGroupType.
+Implicit Types (x : gT) (A B : {set gT}) (pi : nat_pred) (p n : nat).
+ +
+Definition Ldiv n := [set x : gT | x ^+ n == 1].
+ +
+Definition exponent A := \big[lcmn/1%N]_(x in A) #[x].
+ +
+Definition abelem p A := [&& p.-group A, abelian A & exponent A %| p].
+ +
+Definition is_abelem A := abelem (pdiv #|A|) A.
+ +
+Definition pElem p A := [set E : {group gT} | E \subset A & abelem p E].
+ +
+Definition pnElem p n A := [set E in pElem p A | logn p #|E| == n].
+ +
+Definition nElem n A := \bigcup_(0 ≤ p < #|A|.+1) pnElem p n A.
+ +
+Definition pmaxElem p A := [set E | [max E | E \in pElem p A]].
+ +
+Definition p_rank p A := \max_(E in pElem p A) logn p #|E|.
+ +
+Definition rank A := \max_(0 ≤ p < #|A|.+1) p_rank p A.
+ +
+Definition gen_rank A := #|[arg min_(B < A | <<B>> == A) #|B|]|.
+ +
+
+ The definition of abelian_type depends on an existence lemma.
+ The definition of homocyclic depends on abelian_type.
+
+
+
+
+End AbelianDefs.
+ +
+ +
+Notation "''Ldiv_' n " := (Ldiv _ n)
+ (at level 8, n at level 2, format "''Ldiv_' n ") : group_scope.
+ +
+Notation "''Ldiv_' n ( G )" := (G :&: 'Ldiv_n)
+ (at level 8, n at level 2, format "''Ldiv_' n ( G )") : group_scope.
+ +
+ +
+Notation "p .-abelem" := (abelem p)
+ (at level 2, format "p .-abelem") : group_scope.
+ +
+Notation "''E_' p ( G )" := (pElem p G)
+ (at level 8, p at level 2, format "''E_' p ( G )") : group_scope.
+ +
+Notation "''E_' p ^ n ( G )" := (pnElem p n G)
+ (at level 8, p, n at level 2, format "''E_' p ^ n ( G )") : group_scope.
+ +
+Notation "''E' ^ n ( G )" := (nElem n G)
+ (at level 8, n at level 2, format "''E' ^ n ( G )") : group_scope.
+ +
+Notation "''E*_' p ( G )" := (pmaxElem p G)
+ (at level 8, p at level 2, format "''E*_' p ( G )") : group_scope.
+ +
+Notation "''m' ( A )" := (gen_rank A)
+ (at level 8, format "''m' ( A )") : group_scope.
+ +
+Notation "''r' ( A )" := (rank A)
+ (at level 8, format "''r' ( A )") : group_scope.
+ +
+Notation "''r_' p ( A )" := (p_rank p A)
+ (at level 8, p at level 2, format "''r_' p ( A )") : group_scope.
+ +
+Section Functors.
+ +
+
+
++End AbelianDefs.
+ +
+ +
+Notation "''Ldiv_' n " := (Ldiv _ n)
+ (at level 8, n at level 2, format "''Ldiv_' n ") : group_scope.
+ +
+Notation "''Ldiv_' n ( G )" := (G :&: 'Ldiv_n)
+ (at level 8, n at level 2, format "''Ldiv_' n ( G )") : group_scope.
+ +
+ +
+Notation "p .-abelem" := (abelem p)
+ (at level 2, format "p .-abelem") : group_scope.
+ +
+Notation "''E_' p ( G )" := (pElem p G)
+ (at level 8, p at level 2, format "''E_' p ( G )") : group_scope.
+ +
+Notation "''E_' p ^ n ( G )" := (pnElem p n G)
+ (at level 8, p, n at level 2, format "''E_' p ^ n ( G )") : group_scope.
+ +
+Notation "''E' ^ n ( G )" := (nElem n G)
+ (at level 8, n at level 2, format "''E' ^ n ( G )") : group_scope.
+ +
+Notation "''E*_' p ( G )" := (pmaxElem p G)
+ (at level 8, p at level 2, format "''E*_' p ( G )") : group_scope.
+ +
+Notation "''m' ( A )" := (gen_rank A)
+ (at level 8, format "''m' ( A )") : group_scope.
+ +
+Notation "''r' ( A )" := (rank A)
+ (at level 8, format "''r' ( A )") : group_scope.
+ +
+Notation "''r_' p ( A )" := (p_rank p A)
+ (at level 8, p at level 2, format "''r_' p ( A )") : group_scope.
+ +
+Section Functors.
+ +
+
+ A functor needs to quantify over the finGroupType just beore the set.
+
+
+
+
+Variables (n : nat) (gT : finGroupType) (A : {set gT}).
+ +
+Definition Ohm := <<[set x in A | x ^+ (pdiv #[x] ^ n) == 1]>>.
+ +
+Definition Mho := <<[set x ^+ (pdiv #[x] ^ n) | x in A & (pdiv #[x]).-elt x]>>.
+ +
+Canonical Ohm_group : {group gT} := Eval hnf in [group of Ohm].
+Canonical Mho_group : {group gT} := Eval hnf in [group of Mho].
+ +
+Lemma pdiv_p_elt (p : nat) (x : gT) : p.-elt x → x != 1 → pdiv #[x] = p.
+ +
+Lemma OhmPredP (x : gT) :
+ reflect (exists2 p, prime p & x ^+ (p ^ n) = 1) (x ^+ (pdiv #[x] ^ n) == 1).
+ +
+Lemma Mho_p_elt (p : nat) x : x \in A → p.-elt x → x ^+ (p ^ n) \in Mho.
+ +
+End Functors.
+ +
+ +
+Notation "''Ohm_' n ( G )" := (Ohm n G)
+ (at level 8, n at level 2, format "''Ohm_' n ( G )") : group_scope.
+Notation "''Ohm_' n ( G )" := (Ohm_group n G) : Group_scope.
+ +
+Notation "''Mho^' n ( G )" := (Mho n G)
+ (at level 8, n at level 2, format "''Mho^' n ( G )") : group_scope.
+Notation "''Mho^' n ( G )" := (Mho_group n G) : Group_scope.
+ +
+Section ExponentAbelem.
+ +
+Variable gT : finGroupType.
+Implicit Types (p n : nat) (pi : nat_pred) (x : gT) (A B C : {set gT}).
+Implicit Types E G H K P X Y : {group gT}.
+ +
+Lemma LdivP A n x : reflect (x \in A ∧ x ^+ n = 1) (x \in 'Ldiv_n(A)).
+ +
+Lemma dvdn_exponent x A : x \in A → #[x] %| exponent A.
+ +
+Lemma expg_exponent x A : x \in A → x ^+ exponent A = 1.
+ +
+Lemma exponentS A B : A \subset B → exponent A %| exponent B.
+ +
+Lemma exponentP A n :
+ reflect (∀ x, x \in A → x ^+ n = 1) (exponent A %| n).
+ +
+Lemma trivg_exponent G : (G :==: 1) = (exponent G %| 1).
+ +
+Lemma exponent1 : exponent [1 gT] = 1%N.
+ +
+Lemma exponent_dvdn G : exponent G %| #|G|.
+ +
+Lemma exponent_gt0 G : 0 < exponent G.
+ Hint Resolve exponent_gt0.
+ +
+Lemma pnat_exponent pi G : pi.-nat (exponent G) = pi.-group G.
+ +
+Lemma exponentJ A x : exponent (A :^ x) = exponent A.
+ +
+Lemma exponent_witness G : nilpotent G → {x | x \in G & exponent G = #[x]}.
+ +
+Lemma exponent_cycle x : exponent <[x]> = #[x].
+ +
+Lemma exponent_cyclic X : cyclic X → exponent X = #|X|.
+ +
+Lemma primes_exponent G : primes (exponent G) = primes (#|G|).
+ +
+Lemma pi_of_exponent G : \pi(exponent G) = \pi(G).
+ +
+Lemma partn_exponentS pi H G :
+ H \subset G → #|G|`_pi %| #|H| → (exponent H)`_pi = (exponent G)`_pi.
+ +
+Lemma exponent_Hall pi G H : pi.-Hall(G) H → exponent H = (exponent G)`_pi.
+ +
+Lemma exponent_Zgroup G : Zgroup G → exponent G = #|G|.
+ +
+Lemma cprod_exponent A B G :
+ A \* B = G → lcmn (exponent A) (exponent B) = (exponent G).
+ +
+Lemma dprod_exponent A B G :
+ A \x B = G → lcmn (exponent A) (exponent B) = (exponent G).
+ +
+Lemma sub_LdivT A n : (A \subset 'Ldiv_n) = (exponent A %| n).
+ +
+Lemma LdivT_J n x : 'Ldiv_n :^ x = 'Ldiv_n.
+ +
+Lemma LdivJ n A x : 'Ldiv_n(A :^ x) = 'Ldiv_n(A) :^ x.
+ +
+Lemma sub_Ldiv A n : (A \subset 'Ldiv_n(A)) = (exponent A %| n).
+ +
+Lemma group_Ldiv G n : abelian G → group_set 'Ldiv_n(G).
+ +
+Lemma abelian_exponent_gen A : abelian A → exponent <<A>> = exponent A.
+ +
+Lemma abelem_pgroup p A : p.-abelem A → p.-group A.
+ +
+Lemma abelem_abelian p A : p.-abelem A → abelian A.
+ +
+Lemma abelem1 p : p.-abelem [1 gT].
+ +
+Lemma abelemE p G : prime p → p.-abelem G = abelian G && (exponent G %| p).
+ +
+Lemma abelemP p G :
+ prime p →
+ reflect (abelian G ∧ ∀ x, x \in G → x ^+ p = 1) (p.-abelem G).
+ +
+Lemma abelem_order_p p G x : p.-abelem G → x \in G → x != 1 → #[x] = p.
+ +
+Lemma cyclic_abelem_prime p X : p.-abelem X → cyclic X → X :!=: 1 → #|X| = p.
+ +
+Lemma cycle_abelem p x : p.-elt x || prime p → p.-abelem <[x]> = (#[x] %| p).
+ +
+Lemma exponent2_abelem G : exponent G %| 2 → 2.-abelem G.
+ +
+Lemma prime_abelem p G : prime p → #|G| = p → p.-abelem G.
+ +
+Lemma abelem_cyclic p G : p.-abelem G → cyclic G = (logn p #|G| ≤ 1).
+ +
+Lemma abelemS p H G : H \subset G → p.-abelem G → p.-abelem H.
+ +
+Lemma abelemJ p G x : p.-abelem (G :^ x) = p.-abelem G.
+ +
+Lemma cprod_abelem p A B G :
+ A \* B = G → p.-abelem G = p.-abelem A && p.-abelem B.
+ +
+Lemma dprod_abelem p A B G :
+ A \x B = G → p.-abelem G = p.-abelem A && p.-abelem B.
+ +
+Lemma is_abelem_pgroup p G : p.-group G → is_abelem G = p.-abelem G.
+ +
+Lemma is_abelemP G : reflect (exists2 p, prime p & p.-abelem G) (is_abelem G).
+ +
+Lemma pElemP p A E : reflect (E \subset A ∧ p.-abelem E) (E \in 'E_p(A)).
+ +
+Lemma pElemS p A B : A \subset B → 'E_p(A) \subset 'E_p(B).
+ +
+Lemma pElemI p A B : 'E_p(A :&: B) = 'E_p(A) :&: subgroups B.
+ +
+Lemma pElemJ x p A E : ((E :^ x)%G \in 'E_p(A :^ x)) = (E \in 'E_p(A)).
+ +
+Lemma pnElemP p n A E :
+ reflect [/\ E \subset A, p.-abelem E & logn p #|E| = n] (E \in 'E_p^n(A)).
+ +
+Lemma pnElemPcard p n A E :
+ E \in 'E_p^n(A) → [/\ E \subset A, p.-abelem E & #|E| = p ^ n]%N.
+ +
+Lemma card_pnElem p n A E : E \in 'E_p^n(A) → #|E| = (p ^ n)%N.
+ +
+Lemma pnElem0 p G : 'E_p^0(G) = [set 1%G].
+ +
+Lemma pnElem_prime p n A E : E \in 'E_p^n.+1(A) → prime p.
+ +
+Lemma pnElemE p n A :
+ prime p → 'E_p^n(A) = [set E in 'E_p(A) | #|E| == (p ^ n)%N].
+ +
+Lemma pnElemS p n A B : A \subset B → 'E_p^n(A) \subset 'E_p^n(B).
+ +
+Lemma pnElemI p n A B : 'E_p^n(A :&: B) = 'E_p^n(A) :&: subgroups B.
+ +
+Lemma pnElemJ x p n A E : ((E :^ x)%G \in 'E_p^n(A :^ x)) = (E \in 'E_p^n(A)).
+ +
+Lemma abelem_pnElem p n G :
+ p.-abelem G → n ≤ logn p #|G| → ∃ E, E \in 'E_p^n(G).
+ +
+Lemma card_p1Elem p A X : X \in 'E_p^1(A) → #|X| = p.
+ +
+Lemma p1ElemE p A : prime p → 'E_p^1(A) = [set X in subgroups A | #|X| == p].
+ +
+Lemma TIp1ElemP p A X Y :
+ X \in 'E_p^1(A) → Y \in 'E_p^1(A) → reflect (X :&: Y = 1) (X :!=: Y).
+ +
+Lemma card_p1Elem_pnElem p n A E :
+ E \in 'E_p^n(A) → #|'E_p^1(E)| = (\sum_(i < n) p ^ i)%N.
+ +
+Lemma card_p1Elem_p2Elem p A E : E \in 'E_p^2(A) → #|'E_p^1(E)| = p.+1.
+ +
+Lemma p2Elem_dprodP p A E X Y :
+ E \in 'E_p^2(A) → X \in 'E_p^1(E) → Y \in 'E_p^1(E) →
+ reflect (X \x Y = E) (X :!=: Y).
+ +
+Lemma nElemP n G E : reflect (∃ p, E \in 'E_p^n(G)) (E \in 'E^n(G)).
+ +
+Lemma nElem0 G : 'E^0(G) = [set 1%G].
+ +
+Lemma nElem1P G E :
+ reflect (E \subset G ∧ exists2 p, prime p & #|E| = p) (E \in 'E^1(G)).
+ +
+Lemma nElemS n G H : G \subset H → 'E^n(G) \subset 'E^n(H).
+ +
+Lemma nElemI n G H : 'E^n(G :&: H) = 'E^n(G) :&: subgroups H.
+ +
+Lemma def_pnElem p n G : 'E_p^n(G) = 'E_p(G) :&: 'E^n(G).
+ +
+Lemma pmaxElemP p A E :
+ reflect (E \in 'E_p(A) ∧ ∀ H, H \in 'E_p(A) → E \subset H → H :=: E)
+ (E \in 'E×_p(A)).
+ +
+Lemma pmaxElem_exists p A D :
+ D \in 'E_p(A) → {E | E \in 'E×_p(A) & D \subset E}.
+ +
+Lemma pmaxElem_LdivP p G E :
+ prime p → reflect ('Ldiv_p('C_G(E)) = E) (E \in 'E×_p(G)).
+ +
+Lemma pmaxElemS p A B :
+ A \subset B → 'E×_p(B) :&: subgroups A \subset 'E×_p(A).
+ +
+Lemma pmaxElemJ p A E x : ((E :^ x)%G \in 'E×_p(A :^ x)) = (E \in 'E×_p(A)).
+ +
+Lemma grank_min B : 'm(<<B>>) ≤ #|B|.
+ +
+Lemma grank_witness G : {B | <<B>> = G & #|B| = 'm(G)}.
+ +
+Lemma p_rank_witness p G : {E | E \in 'E_p^('r_p(G))(G)}.
+ +
+Lemma p_rank_geP p n G : reflect (∃ E, E \in 'E_p^n(G)) (n ≤ 'r_p(G)).
+ +
+Lemma p_rank_gt0 p H : ('r_p(H) > 0) = (p \in \pi(H)).
+ +
+Lemma p_rank1 p : 'r_p([1 gT]) = 0.
+ +
+Lemma logn_le_p_rank p A E : E \in 'E_p(A) → logn p #|E| ≤ 'r_p(A).
+ +
+Lemma p_rank_le_logn p G : 'r_p(G) ≤ logn p #|G|.
+ +
+Lemma p_rank_abelem p G : p.-abelem G → 'r_p(G) = logn p #|G|.
+ +
+Lemma p_rankS p A B : A \subset B → 'r_p(A) ≤ 'r_p(B).
+ +
+Lemma p_rankElem_max p A : 'E_p^('r_p(A))(A) \subset 'E×_p(A).
+ +
+Lemma p_rankJ p A x : 'r_p(A :^ x) = 'r_p(A).
+ +
+Lemma p_rank_Sylow p G H : p.-Sylow(G) H → 'r_p(H) = 'r_p(G).
+ +
+Lemma p_rank_Hall pi p G H : pi.-Hall(G) H → p \in pi → 'r_p(H) = 'r_p(G).
+ +
+Lemma p_rank_pmaxElem_exists p r G :
+ 'r_p(G) ≥ r → exists2 E, E \in 'E×_p(G) & 'r_p(E) ≥ r.
+ +
+Lemma rank1 : 'r([1 gT]) = 0.
+ +
+Lemma p_rank_le_rank p G : 'r_p(G) ≤ 'r(G).
+ +
+Lemma rank_gt0 G : ('r(G) > 0) = (G :!=: 1).
+ +
+Lemma rank_witness G : {p | prime p & 'r(G) = 'r_p(G)}.
+ +
+Lemma rank_pgroup p G : p.-group G → 'r(G) = 'r_p(G).
+ +
+Lemma rank_Sylow p G P : p.-Sylow(G) P → 'r(P) = 'r_p(G).
+ +
+Lemma rank_abelem p G : p.-abelem G → 'r(G) = logn p #|G|.
+ +
+Lemma nt_pnElem p n E A : E \in 'E_p^n(A) → n > 0 → E :!=: 1.
+ +
+Lemma rankJ A x : 'r(A :^ x) = 'r(A).
+ +
+Lemma rankS A B : A \subset B → 'r(A) ≤ 'r(B).
+ +
+Lemma rank_geP n G : reflect (∃ E, E \in 'E^n(G)) (n ≤ 'r(G)).
+ +
+End ExponentAbelem.
+ +
+ +
+Section MorphAbelem.
+ +
+Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).
+Implicit Types (G H E : {group aT}) (A B : {set aT}).
+ +
+Lemma exponent_morphim G : exponent (f @* G) %| exponent G.
+ +
+Lemma morphim_LdivT n : f @* 'Ldiv_n \subset 'Ldiv_n.
+ +
+Lemma morphim_Ldiv n A : f @* 'Ldiv_n(A) \subset 'Ldiv_n(f @* A).
+ +
+Lemma morphim_abelem p G : p.-abelem G → p.-abelem (f @* G).
+ +
+Lemma morphim_pElem p G E : E \in 'E_p(G) → (f @* E)%G \in 'E_p(f @* G).
+ +
+Lemma morphim_pnElem p n G E :
+ E \in 'E_p^n(G) → {m | m ≤ n & (f @* E)%G \in 'E_p^m(f @* G)}.
+ +
+Lemma morphim_grank G : G \subset D → 'm(f @* G) ≤ 'm(G).
+ +
+
+
++Variables (n : nat) (gT : finGroupType) (A : {set gT}).
+ +
+Definition Ohm := <<[set x in A | x ^+ (pdiv #[x] ^ n) == 1]>>.
+ +
+Definition Mho := <<[set x ^+ (pdiv #[x] ^ n) | x in A & (pdiv #[x]).-elt x]>>.
+ +
+Canonical Ohm_group : {group gT} := Eval hnf in [group of Ohm].
+Canonical Mho_group : {group gT} := Eval hnf in [group of Mho].
+ +
+Lemma pdiv_p_elt (p : nat) (x : gT) : p.-elt x → x != 1 → pdiv #[x] = p.
+ +
+Lemma OhmPredP (x : gT) :
+ reflect (exists2 p, prime p & x ^+ (p ^ n) = 1) (x ^+ (pdiv #[x] ^ n) == 1).
+ +
+Lemma Mho_p_elt (p : nat) x : x \in A → p.-elt x → x ^+ (p ^ n) \in Mho.
+ +
+End Functors.
+ +
+ +
+Notation "''Ohm_' n ( G )" := (Ohm n G)
+ (at level 8, n at level 2, format "''Ohm_' n ( G )") : group_scope.
+Notation "''Ohm_' n ( G )" := (Ohm_group n G) : Group_scope.
+ +
+Notation "''Mho^' n ( G )" := (Mho n G)
+ (at level 8, n at level 2, format "''Mho^' n ( G )") : group_scope.
+Notation "''Mho^' n ( G )" := (Mho_group n G) : Group_scope.
+ +
+Section ExponentAbelem.
+ +
+Variable gT : finGroupType.
+Implicit Types (p n : nat) (pi : nat_pred) (x : gT) (A B C : {set gT}).
+Implicit Types E G H K P X Y : {group gT}.
+ +
+Lemma LdivP A n x : reflect (x \in A ∧ x ^+ n = 1) (x \in 'Ldiv_n(A)).
+ +
+Lemma dvdn_exponent x A : x \in A → #[x] %| exponent A.
+ +
+Lemma expg_exponent x A : x \in A → x ^+ exponent A = 1.
+ +
+Lemma exponentS A B : A \subset B → exponent A %| exponent B.
+ +
+Lemma exponentP A n :
+ reflect (∀ x, x \in A → x ^+ n = 1) (exponent A %| n).
+ +
+Lemma trivg_exponent G : (G :==: 1) = (exponent G %| 1).
+ +
+Lemma exponent1 : exponent [1 gT] = 1%N.
+ +
+Lemma exponent_dvdn G : exponent G %| #|G|.
+ +
+Lemma exponent_gt0 G : 0 < exponent G.
+ Hint Resolve exponent_gt0.
+ +
+Lemma pnat_exponent pi G : pi.-nat (exponent G) = pi.-group G.
+ +
+Lemma exponentJ A x : exponent (A :^ x) = exponent A.
+ +
+Lemma exponent_witness G : nilpotent G → {x | x \in G & exponent G = #[x]}.
+ +
+Lemma exponent_cycle x : exponent <[x]> = #[x].
+ +
+Lemma exponent_cyclic X : cyclic X → exponent X = #|X|.
+ +
+Lemma primes_exponent G : primes (exponent G) = primes (#|G|).
+ +
+Lemma pi_of_exponent G : \pi(exponent G) = \pi(G).
+ +
+Lemma partn_exponentS pi H G :
+ H \subset G → #|G|`_pi %| #|H| → (exponent H)`_pi = (exponent G)`_pi.
+ +
+Lemma exponent_Hall pi G H : pi.-Hall(G) H → exponent H = (exponent G)`_pi.
+ +
+Lemma exponent_Zgroup G : Zgroup G → exponent G = #|G|.
+ +
+Lemma cprod_exponent A B G :
+ A \* B = G → lcmn (exponent A) (exponent B) = (exponent G).
+ +
+Lemma dprod_exponent A B G :
+ A \x B = G → lcmn (exponent A) (exponent B) = (exponent G).
+ +
+Lemma sub_LdivT A n : (A \subset 'Ldiv_n) = (exponent A %| n).
+ +
+Lemma LdivT_J n x : 'Ldiv_n :^ x = 'Ldiv_n.
+ +
+Lemma LdivJ n A x : 'Ldiv_n(A :^ x) = 'Ldiv_n(A) :^ x.
+ +
+Lemma sub_Ldiv A n : (A \subset 'Ldiv_n(A)) = (exponent A %| n).
+ +
+Lemma group_Ldiv G n : abelian G → group_set 'Ldiv_n(G).
+ +
+Lemma abelian_exponent_gen A : abelian A → exponent <<A>> = exponent A.
+ +
+Lemma abelem_pgroup p A : p.-abelem A → p.-group A.
+ +
+Lemma abelem_abelian p A : p.-abelem A → abelian A.
+ +
+Lemma abelem1 p : p.-abelem [1 gT].
+ +
+Lemma abelemE p G : prime p → p.-abelem G = abelian G && (exponent G %| p).
+ +
+Lemma abelemP p G :
+ prime p →
+ reflect (abelian G ∧ ∀ x, x \in G → x ^+ p = 1) (p.-abelem G).
+ +
+Lemma abelem_order_p p G x : p.-abelem G → x \in G → x != 1 → #[x] = p.
+ +
+Lemma cyclic_abelem_prime p X : p.-abelem X → cyclic X → X :!=: 1 → #|X| = p.
+ +
+Lemma cycle_abelem p x : p.-elt x || prime p → p.-abelem <[x]> = (#[x] %| p).
+ +
+Lemma exponent2_abelem G : exponent G %| 2 → 2.-abelem G.
+ +
+Lemma prime_abelem p G : prime p → #|G| = p → p.-abelem G.
+ +
+Lemma abelem_cyclic p G : p.-abelem G → cyclic G = (logn p #|G| ≤ 1).
+ +
+Lemma abelemS p H G : H \subset G → p.-abelem G → p.-abelem H.
+ +
+Lemma abelemJ p G x : p.-abelem (G :^ x) = p.-abelem G.
+ +
+Lemma cprod_abelem p A B G :
+ A \* B = G → p.-abelem G = p.-abelem A && p.-abelem B.
+ +
+Lemma dprod_abelem p A B G :
+ A \x B = G → p.-abelem G = p.-abelem A && p.-abelem B.
+ +
+Lemma is_abelem_pgroup p G : p.-group G → is_abelem G = p.-abelem G.
+ +
+Lemma is_abelemP G : reflect (exists2 p, prime p & p.-abelem G) (is_abelem G).
+ +
+Lemma pElemP p A E : reflect (E \subset A ∧ p.-abelem E) (E \in 'E_p(A)).
+ +
+Lemma pElemS p A B : A \subset B → 'E_p(A) \subset 'E_p(B).
+ +
+Lemma pElemI p A B : 'E_p(A :&: B) = 'E_p(A) :&: subgroups B.
+ +
+Lemma pElemJ x p A E : ((E :^ x)%G \in 'E_p(A :^ x)) = (E \in 'E_p(A)).
+ +
+Lemma pnElemP p n A E :
+ reflect [/\ E \subset A, p.-abelem E & logn p #|E| = n] (E \in 'E_p^n(A)).
+ +
+Lemma pnElemPcard p n A E :
+ E \in 'E_p^n(A) → [/\ E \subset A, p.-abelem E & #|E| = p ^ n]%N.
+ +
+Lemma card_pnElem p n A E : E \in 'E_p^n(A) → #|E| = (p ^ n)%N.
+ +
+Lemma pnElem0 p G : 'E_p^0(G) = [set 1%G].
+ +
+Lemma pnElem_prime p n A E : E \in 'E_p^n.+1(A) → prime p.
+ +
+Lemma pnElemE p n A :
+ prime p → 'E_p^n(A) = [set E in 'E_p(A) | #|E| == (p ^ n)%N].
+ +
+Lemma pnElemS p n A B : A \subset B → 'E_p^n(A) \subset 'E_p^n(B).
+ +
+Lemma pnElemI p n A B : 'E_p^n(A :&: B) = 'E_p^n(A) :&: subgroups B.
+ +
+Lemma pnElemJ x p n A E : ((E :^ x)%G \in 'E_p^n(A :^ x)) = (E \in 'E_p^n(A)).
+ +
+Lemma abelem_pnElem p n G :
+ p.-abelem G → n ≤ logn p #|G| → ∃ E, E \in 'E_p^n(G).
+ +
+Lemma card_p1Elem p A X : X \in 'E_p^1(A) → #|X| = p.
+ +
+Lemma p1ElemE p A : prime p → 'E_p^1(A) = [set X in subgroups A | #|X| == p].
+ +
+Lemma TIp1ElemP p A X Y :
+ X \in 'E_p^1(A) → Y \in 'E_p^1(A) → reflect (X :&: Y = 1) (X :!=: Y).
+ +
+Lemma card_p1Elem_pnElem p n A E :
+ E \in 'E_p^n(A) → #|'E_p^1(E)| = (\sum_(i < n) p ^ i)%N.
+ +
+Lemma card_p1Elem_p2Elem p A E : E \in 'E_p^2(A) → #|'E_p^1(E)| = p.+1.
+ +
+Lemma p2Elem_dprodP p A E X Y :
+ E \in 'E_p^2(A) → X \in 'E_p^1(E) → Y \in 'E_p^1(E) →
+ reflect (X \x Y = E) (X :!=: Y).
+ +
+Lemma nElemP n G E : reflect (∃ p, E \in 'E_p^n(G)) (E \in 'E^n(G)).
+ +
+Lemma nElem0 G : 'E^0(G) = [set 1%G].
+ +
+Lemma nElem1P G E :
+ reflect (E \subset G ∧ exists2 p, prime p & #|E| = p) (E \in 'E^1(G)).
+ +
+Lemma nElemS n G H : G \subset H → 'E^n(G) \subset 'E^n(H).
+ +
+Lemma nElemI n G H : 'E^n(G :&: H) = 'E^n(G) :&: subgroups H.
+ +
+Lemma def_pnElem p n G : 'E_p^n(G) = 'E_p(G) :&: 'E^n(G).
+ +
+Lemma pmaxElemP p A E :
+ reflect (E \in 'E_p(A) ∧ ∀ H, H \in 'E_p(A) → E \subset H → H :=: E)
+ (E \in 'E×_p(A)).
+ +
+Lemma pmaxElem_exists p A D :
+ D \in 'E_p(A) → {E | E \in 'E×_p(A) & D \subset E}.
+ +
+Lemma pmaxElem_LdivP p G E :
+ prime p → reflect ('Ldiv_p('C_G(E)) = E) (E \in 'E×_p(G)).
+ +
+Lemma pmaxElemS p A B :
+ A \subset B → 'E×_p(B) :&: subgroups A \subset 'E×_p(A).
+ +
+Lemma pmaxElemJ p A E x : ((E :^ x)%G \in 'E×_p(A :^ x)) = (E \in 'E×_p(A)).
+ +
+Lemma grank_min B : 'm(<<B>>) ≤ #|B|.
+ +
+Lemma grank_witness G : {B | <<B>> = G & #|B| = 'm(G)}.
+ +
+Lemma p_rank_witness p G : {E | E \in 'E_p^('r_p(G))(G)}.
+ +
+Lemma p_rank_geP p n G : reflect (∃ E, E \in 'E_p^n(G)) (n ≤ 'r_p(G)).
+ +
+Lemma p_rank_gt0 p H : ('r_p(H) > 0) = (p \in \pi(H)).
+ +
+Lemma p_rank1 p : 'r_p([1 gT]) = 0.
+ +
+Lemma logn_le_p_rank p A E : E \in 'E_p(A) → logn p #|E| ≤ 'r_p(A).
+ +
+Lemma p_rank_le_logn p G : 'r_p(G) ≤ logn p #|G|.
+ +
+Lemma p_rank_abelem p G : p.-abelem G → 'r_p(G) = logn p #|G|.
+ +
+Lemma p_rankS p A B : A \subset B → 'r_p(A) ≤ 'r_p(B).
+ +
+Lemma p_rankElem_max p A : 'E_p^('r_p(A))(A) \subset 'E×_p(A).
+ +
+Lemma p_rankJ p A x : 'r_p(A :^ x) = 'r_p(A).
+ +
+Lemma p_rank_Sylow p G H : p.-Sylow(G) H → 'r_p(H) = 'r_p(G).
+ +
+Lemma p_rank_Hall pi p G H : pi.-Hall(G) H → p \in pi → 'r_p(H) = 'r_p(G).
+ +
+Lemma p_rank_pmaxElem_exists p r G :
+ 'r_p(G) ≥ r → exists2 E, E \in 'E×_p(G) & 'r_p(E) ≥ r.
+ +
+Lemma rank1 : 'r([1 gT]) = 0.
+ +
+Lemma p_rank_le_rank p G : 'r_p(G) ≤ 'r(G).
+ +
+Lemma rank_gt0 G : ('r(G) > 0) = (G :!=: 1).
+ +
+Lemma rank_witness G : {p | prime p & 'r(G) = 'r_p(G)}.
+ +
+Lemma rank_pgroup p G : p.-group G → 'r(G) = 'r_p(G).
+ +
+Lemma rank_Sylow p G P : p.-Sylow(G) P → 'r(P) = 'r_p(G).
+ +
+Lemma rank_abelem p G : p.-abelem G → 'r(G) = logn p #|G|.
+ +
+Lemma nt_pnElem p n E A : E \in 'E_p^n(A) → n > 0 → E :!=: 1.
+ +
+Lemma rankJ A x : 'r(A :^ x) = 'r(A).
+ +
+Lemma rankS A B : A \subset B → 'r(A) ≤ 'r(B).
+ +
+Lemma rank_geP n G : reflect (∃ E, E \in 'E^n(G)) (n ≤ 'r(G)).
+ +
+End ExponentAbelem.
+ +
+ +
+Section MorphAbelem.
+ +
+Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).
+Implicit Types (G H E : {group aT}) (A B : {set aT}).
+ +
+Lemma exponent_morphim G : exponent (f @* G) %| exponent G.
+ +
+Lemma morphim_LdivT n : f @* 'Ldiv_n \subset 'Ldiv_n.
+ +
+Lemma morphim_Ldiv n A : f @* 'Ldiv_n(A) \subset 'Ldiv_n(f @* A).
+ +
+Lemma morphim_abelem p G : p.-abelem G → p.-abelem (f @* G).
+ +
+Lemma morphim_pElem p G E : E \in 'E_p(G) → (f @* E)%G \in 'E_p(f @* G).
+ +
+Lemma morphim_pnElem p n G E :
+ E \in 'E_p^n(G) → {m | m ≤ n & (f @* E)%G \in 'E_p^m(f @* G)}.
+ +
+Lemma morphim_grank G : G \subset D → 'm(f @* G) ≤ 'm(G).
+ +
+
+ There are no general morphism relations for the p-rank. We later prove
+ some relations for the p-rank of a quotient in the QuotientAbelem section.
+
+
+
+
+End MorphAbelem.
+ +
+Section InjmAbelem.
+ +
+Variables (aT rT : finGroupType) (D G : {group aT}) (f : {morphism D >-> rT}).
+Hypotheses (injf : 'injm f) (sGD : G \subset D).
+Let defG : invm injf @* (f @* G) = G := morphim_invm injf sGD.
+ +
+Lemma exponent_injm : exponent (f @* G) = exponent G.
+ +
+Lemma injm_Ldiv n A : f @* 'Ldiv_n(A) = 'Ldiv_n(f @* A).
+ +
+Lemma injm_abelem p : p.-abelem (f @* G) = p.-abelem G.
+ +
+Lemma injm_pElem p (E : {group aT}) :
+ E \subset D → ((f @* E)%G \in 'E_p(f @* G)) = (E \in 'E_p(G)).
+ +
+Lemma injm_pnElem p n (E : {group aT}) :
+ E \subset D → ((f @* E)%G \in 'E_p^n(f @* G)) = (E \in 'E_p^n(G)).
+ +
+Lemma injm_nElem n (E : {group aT}) :
+ E \subset D → ((f @* E)%G \in 'E^n(f @* G)) = (E \in 'E^n(G)).
+ +
+Lemma injm_pmaxElem p (E : {group aT}) :
+ E \subset D → ((f @* E)%G \in 'E×_p(f @* G)) = (E \in 'E×_p(G)).
+ +
+Lemma injm_grank : 'm(f @* G) = 'm(G).
+ +
+Lemma injm_p_rank p : 'r_p(f @* G) = 'r_p(G).
+ +
+Lemma injm_rank : 'r(f @* G) = 'r(G).
+ +
+End InjmAbelem.
+ +
+Section IsogAbelem.
+ +
+Variables (aT rT : finGroupType) (G : {group aT}) (H : {group rT}).
+Hypothesis isoGH : G \isog H.
+ +
+Lemma exponent_isog : exponent G = exponent H.
+ +
+Lemma isog_abelem p : p.-abelem G = p.-abelem H.
+ +
+Lemma isog_grank : 'm(G) = 'm(H).
+ +
+Lemma isog_p_rank p : 'r_p(G) = 'r_p(H).
+ +
+Lemma isog_rank : 'r(G) = 'r(H).
+ +
+End IsogAbelem.
+ +
+Section QuotientAbelem.
+ +
+Variables (gT : finGroupType) (p : nat).
+Implicit Types E G K H : {group gT}.
+ +
+Lemma exponent_quotient G H : exponent (G / H) %| exponent G.
+ +
+Lemma quotient_LdivT n H : 'Ldiv_n / H \subset 'Ldiv_n.
+ +
+Lemma quotient_Ldiv n A H : 'Ldiv_n(A) / H \subset 'Ldiv_n(A / H).
+ +
+Lemma quotient_abelem G H : p.-abelem G → p.-abelem (G / H).
+ +
+Lemma quotient_pElem G H E : E \in 'E_p(G) → (E / H)%G \in 'E_p(G / H).
+ +
+Lemma logn_quotient G H : logn p #|G / H| ≤ logn p #|G|.
+ +
+Lemma quotient_pnElem G H n E :
+ E \in 'E_p^n(G) → {m | m ≤ n & (E / H)%G \in 'E_p^m(G / H)}.
+ +
+Lemma quotient_grank G H : G \subset 'N(H) → 'm(G / H) ≤ 'm(G).
+ +
+Lemma p_rank_quotient G H : G \subset 'N(H) → 'r_p(G) - 'r_p(H) ≤ 'r_p(G / H).
+ +
+Lemma p_rank_dprod K H G : K \x H = G → 'r_p(K) + 'r_p(H) = 'r_p(G).
+ +
+Lemma p_rank_p'quotient G H :
+ (p : nat)^'.-group H → G \subset 'N(H) → 'r_p(G / H) = 'r_p(G).
+ +
+End QuotientAbelem.
+ +
+Section OhmProps.
+ +
+Section Generic.
+ +
+Variables (n : nat) (gT : finGroupType).
+Implicit Types (p : nat) (x : gT) (rT : finGroupType).
+Implicit Types (A B : {set gT}) (D G H : {group gT}).
+ +
+Lemma Ohm_sub G : 'Ohm_n(G) \subset G.
+ +
+Lemma Ohm1 : 'Ohm_n([1 gT]) = 1.
+ +
+Lemma Ohm_id G : 'Ohm_n('Ohm_n(G)) = 'Ohm_n(G).
+ +
+Lemma Ohm_cont rT G (f : {morphism G >-> rT}) :
+ f @* 'Ohm_n(G) \subset 'Ohm_n(f @* G).
+ +
+Lemma OhmS H G : H \subset G → 'Ohm_n(H) \subset 'Ohm_n(G).
+ +
+Lemma OhmE p G : p.-group G → 'Ohm_n(G) = <<'Ldiv_(p ^ n)(G)>>.
+ +
+Lemma OhmEabelian p G :
+ p.-group G → abelian 'Ohm_n(G) → 'Ohm_n(G) = 'Ldiv_(p ^ n)(G).
+ +
+Lemma Ohm_p_cycle p x :
+ p.-elt x → 'Ohm_n(<[x]>) = <[x ^+ (p ^ (logn p #[x] - n))]>.
+ +
+Lemma Ohm_dprod A B G : A \x B = G → 'Ohm_n(A) \x 'Ohm_n(B) = 'Ohm_n(G).
+ +
+Lemma Mho_sub G : 'Mho^n(G) \subset G.
+ +
+Lemma Mho1 : 'Mho^n([1 gT]) = 1.
+ +
+Lemma morphim_Mho rT D G (f : {morphism D >-> rT}) :
+ G \subset D → f @* 'Mho^n(G) = 'Mho^n(f @* G).
+ +
+Lemma Mho_cont rT G (f : {morphism G >-> rT}) :
+ f @* 'Mho^n(G) \subset 'Mho^n(f @* G).
+ +
+Lemma MhoS H G : H \subset G → 'Mho^n(H) \subset 'Mho^n(G).
+ +
+Lemma MhoE p G : p.-group G → 'Mho^n(G) = <<[set x ^+ (p ^ n) | x in G]>>.
+ +
+Lemma MhoEabelian p G :
+ p.-group G → abelian G → 'Mho^n(G) = [set x ^+ (p ^ n) | x in G].
+ +
+Lemma trivg_Mho G : 'Mho^n(G) == 1 → 'Ohm_n(G) == G.
+ +
+Lemma Mho_p_cycle p x : p.-elt x → 'Mho^n(<[x]>) = <[x ^+ (p ^ n)]>.
+ +
+Lemma Mho_cprod A B G : A \* B = G → 'Mho^n(A) \* 'Mho^n(B) = 'Mho^n(G).
+ +
+Lemma Mho_dprod A B G : A \x B = G → 'Mho^n(A) \x 'Mho^n(B) = 'Mho^n(G).
+ +
+End Generic.
+ +
+Canonical Ohm_igFun i := [igFun by Ohm_sub i & Ohm_cont i].
+Canonical Ohm_gFun i := [gFun by Ohm_cont i].
+Canonical Ohm_mgFun i := [mgFun by OhmS i].
+ +
+Canonical Mho_igFun i := [igFun by Mho_sub i & Mho_cont i].
+Canonical Mho_gFun i := [gFun by Mho_cont i].
+Canonical Mho_mgFun i := [mgFun by MhoS i].
+ +
+Section char.
+ +
+Variables (n : nat) (gT rT : finGroupType) (D G : {group gT}).
+ +
+Lemma Ohm_char : 'Ohm_n(G) \char G.
+Lemma Ohm_normal : 'Ohm_n(G) <| G.
+ +
+Lemma Mho_char : 'Mho^n(G) \char G.
+Lemma Mho_normal : 'Mho^n(G) <| G.
+ +
+Lemma morphim_Ohm (f : {morphism D >-> rT}) :
+ G \subset D → f @* 'Ohm_n(G) \subset 'Ohm_n(f @* G).
+ +
+Lemma injm_Ohm (f : {morphism D >-> rT}) :
+ 'injm f → G \subset D → f @* 'Ohm_n(G) = 'Ohm_n(f @* G).
+ +
+Lemma isog_Ohm (H : {group rT}) : G \isog H → 'Ohm_n(G) \isog 'Ohm_n(H).
+ +
+Lemma isog_Mho (H : {group rT}) : G \isog H → 'Mho^n(G) \isog 'Mho^n(H).
+ +
+End char.
+ +
+Variable gT : finGroupType.
+Implicit Types (pi : nat_pred) (p : nat).
+Implicit Types (A B C : {set gT}) (D G H E : {group gT}).
+ +
+Lemma Ohm0 G : 'Ohm_0(G) = 1.
+ +
+Lemma Ohm_leq m n G : m ≤ n → 'Ohm_m(G) \subset 'Ohm_n(G).
+ +
+Lemma OhmJ n G x : 'Ohm_n(G :^ x) = 'Ohm_n(G) :^ x.
+ +
+Lemma Mho0 G : 'Mho^0(G) = G.
+ +
+Lemma Mho_leq m n G : m ≤ n → 'Mho^n(G) \subset 'Mho^m(G).
+ +
+Lemma MhoJ n G x : 'Mho^n(G :^ x) = 'Mho^n(G) :^ x.
+ +
+Lemma extend_cyclic_Mho G p x :
+ p.-group G → x \in G → 'Mho^1(G) = <[x ^+ p]> →
+ ∀ k, k > 0 → 'Mho^k(G) = <[x ^+ (p ^ k)]>.
+ +
+Lemma Ohm1Eprime G : 'Ohm_1(G) = <<[set x in G | prime #[x]]>>.
+ +
+Lemma abelem_Ohm1 p G : p.-group G → p.-abelem 'Ohm_1(G) = abelian 'Ohm_1(G).
+ +
+Lemma Ohm1_abelem p G : p.-group G → abelian G → p.-abelem ('Ohm_1(G)).
+ +
+Lemma Ohm1_id p G : p.-abelem G → 'Ohm_1(G) = G.
+ +
+Lemma abelem_Ohm1P p G :
+ abelian G → p.-group G → reflect ('Ohm_1(G) = G) (p.-abelem G).
+ +
+Lemma TI_Ohm1 G H : H :&: 'Ohm_1(G) = 1 → H :&: G = 1.
+ +
+Lemma Ohm1_eq1 G : ('Ohm_1(G) == 1) = (G :==: 1).
+ +
+Lemma meet_Ohm1 G H : G :&: H != 1 → G :&: 'Ohm_1(H) != 1.
+ +
+Lemma Ohm1_cent_max G E p : E \in 'E×_p(G) → p.-group G → 'Ohm_1('C_G(E)) = E.
+ +
+Lemma Ohm1_cyclic_pgroup_prime p G :
+ cyclic G → p.-group G → G :!=: 1 → #|'Ohm_1(G)| = p.
+ +
+Lemma cyclic_pgroup_dprod_trivg p A B C :
+ p.-group C → cyclic C → A \x B = C →
+ A = 1 ∧ B = C ∨ B = 1 ∧ A = C.
+ +
+Lemma piOhm1 G : \pi('Ohm_1(G)) = \pi(G).
+ +
+Lemma Ohm1Eexponent p G :
+ prime p → exponent 'Ohm_1(G) %| p → 'Ohm_1(G) = 'Ldiv_p(G).
+ +
+Lemma p_rank_Ohm1 p G : 'r_p('Ohm_1(G)) = 'r_p(G).
+ +
+Lemma rank_Ohm1 G : 'r('Ohm_1(G)) = 'r(G).
+ +
+Lemma p_rank_abelian p G : abelian G → 'r_p(G) = logn p #|'Ohm_1(G)|.
+ +
+Lemma rank_abelian_pgroup p G :
+ p.-group G → abelian G → 'r(G) = logn p #|'Ohm_1(G)|.
+ +
+End OhmProps.
+ +
+Section AbelianStructure.
+ +
+Variable gT : finGroupType.
+Implicit Types (p : nat) (G H K E : {group gT}).
+ +
+Lemma abelian_splits x G :
+ x \in G → #[x] = exponent G → abelian G → [splits G, over <[x]>].
+ +
+Lemma abelem_splits p G H : p.-abelem G → H \subset G → [splits G, over H].
+ +
+Fact abelian_type_subproof G :
+ {H : {group gT} & abelian G → {x | #[x] = exponent G & <[x]> \x H = G}}.
+ +
+Fixpoint abelian_type_rec n G :=
+ if n is n'.+1 then if abelian G && (G :!=: 1) then
+ exponent G :: abelian_type_rec n' (tag (abelian_type_subproof G))
+ else [::] else [::].
+ +
+Definition abelian_type (A : {set gT}) := abelian_type_rec #|A| <<A>>.
+ +
+Lemma abelian_type_dvdn_sorted A : sorted [rel m n | n %| m] (abelian_type A).
+ +
+Lemma abelian_type_gt1 A : all [pred m | m > 1] (abelian_type A).
+ +
+Lemma abelian_type_sorted A : sorted geq (abelian_type A).
+ +
+Theorem abelian_structure G :
+ abelian G →
+ {b | \big[dprod/1]_(x <- b) <[x]> = G & map order b = abelian_type G}.
+ +
+Lemma count_logn_dprod_cycle p n b G :
+ \big[dprod/1]_(x <- b) <[x]> = G →
+ count [pred x | logn p #[x] > n] b = logn p #|'Ohm_n.+1(G) : 'Ohm_n(G)|.
+ +
+Lemma perm_eq_abelian_type p b G :
+ p.-group G → \big[dprod/1]_(x <- b) <[x]> = G → 1 \notin b →
+ perm_eq (map order b) (abelian_type G).
+ +
+Lemma size_abelian_type G : abelian G → size (abelian_type G) = 'r(G).
+ +
+Lemma mul_card_Ohm_Mho_abelian n G :
+ abelian G → (#|'Ohm_n(G)| × #|'Mho^n(G)|)%N = #|G|.
+ +
+Lemma grank_abelian G : abelian G → 'm(G) = 'r(G).
+ +
+Lemma rank_cycle (x : gT) : 'r(<[x]>) = (x != 1).
+ +
+Lemma abelian_rank1_cyclic G : abelian G → cyclic G = ('r(G) ≤ 1).
+ +
+Definition homocyclic A := abelian A && constant (abelian_type A).
+ +
+Lemma homocyclic_Ohm_Mho n p G :
+ p.-group G → homocyclic G → 'Ohm_n(G) = 'Mho^(logn p (exponent G) - n)(G).
+ +
+Lemma Ohm_Mho_homocyclic (n p : nat) G :
+ abelian G → p.-group G → 0 < n < logn p (exponent G) →
+ 'Ohm_n(G) = 'Mho^(logn p (exponent G) - n)(G) → homocyclic G.
+ +
+Lemma abelem_homocyclic p G : p.-abelem G → homocyclic G.
+ +
+Lemma homocyclic1 : homocyclic [1 gT].
+ +
+Lemma Ohm1_homocyclicP p G : p.-group G → abelian G →
+ reflect ('Ohm_1(G) = 'Mho^(logn p (exponent G)).-1(G)) (homocyclic G).
+ +
+Lemma abelian_type_homocyclic G :
+ homocyclic G → abelian_type G = nseq 'r(G) (exponent G).
+ +
+Lemma abelian_type_abelem p G : p.-abelem G → abelian_type G = nseq 'r(G) p.
+ +
+Lemma max_card_abelian G :
+ abelian G → #|G| ≤ exponent G ^ 'r(G) ?= iff homocyclic G.
+ +
+Lemma card_homocyclic G : homocyclic G → #|G| = (exponent G ^ 'r(G))%N.
+ +
+Lemma abelian_type_dprod_homocyclic p K H G :
+ K \x H = G → p.-group G → homocyclic G →
+ abelian_type K = nseq 'r(K) (exponent G)
+ ∧ abelian_type H = nseq 'r(H) (exponent G).
+ +
+Lemma dprod_homocyclic p K H G :
+ K \x H = G → p.-group G → homocyclic G → homocyclic K ∧ homocyclic H.
+ +
+Lemma exponent_dprod_homocyclic p K H G :
+ K \x H = G → p.-group G → homocyclic G → K :!=: 1 →
+ exponent K = exponent G.
+ +
+End AbelianStructure.
+ +
+ +
+Section IsogAbelian.
+ +
+Variables aT rT : finGroupType.
+Implicit Type (gT : finGroupType) (D G : {group aT}) (H : {group rT}).
+ +
+Lemma isog_abelian_type G H : isog G H → abelian_type G = abelian_type H.
+ +
+Lemma eq_abelian_type_isog G H :
+ abelian G → abelian H → isog G H = (abelian_type G == abelian_type H).
+ +
+Lemma isog_abelem_card p G H :
+ p.-abelem G → isog G H = p.-abelem H && (#|H| == #|G|).
+ +
+Variables (D : {group aT}) (f : {morphism D >-> rT}).
+ +
+Lemma morphim_rank_abelian G : abelian G → 'r(f @* G) ≤ 'r(G).
+ +
+Lemma morphim_p_rank_abelian p G : abelian G → 'r_p(f @* G) ≤ 'r_p(G).
+ +
+Lemma isog_homocyclic G H : G \isog H → homocyclic G = homocyclic H.
+ +
+End IsogAbelian.
+ +
+Section QuotientRank.
+ +
+Variables (gT : finGroupType) (p : nat) (G H : {group gT}).
+Hypothesis cGG : abelian G.
+ +
+Lemma quotient_rank_abelian : 'r(G / H) ≤ 'r(G).
+ +
+Lemma quotient_p_rank_abelian : 'r_p(G / H) ≤ 'r_p(G).
+ +
+End QuotientRank.
+ +
+Section FimModAbelem.
+ +
+Import GRing.Theory FinRing.Theory.
+ +
+Lemma fin_lmod_char_abelem p (R : ringType) (V : finLmodType R):
+ p \in [char R]%R → p.-abelem [set: V].
+ +
+Lemma fin_Fp_lmod_abelem p (V : finLmodType 'F_p) :
+ prime p → p.-abelem [set: V].
+ +
+Lemma fin_ring_char_abelem p (R : finRingType) :
+ p \in [char R]%R → p.-abelem [set: R].
+ +
+End FimModAbelem.
+ +
+
++End MorphAbelem.
+ +
+Section InjmAbelem.
+ +
+Variables (aT rT : finGroupType) (D G : {group aT}) (f : {morphism D >-> rT}).
+Hypotheses (injf : 'injm f) (sGD : G \subset D).
+Let defG : invm injf @* (f @* G) = G := morphim_invm injf sGD.
+ +
+Lemma exponent_injm : exponent (f @* G) = exponent G.
+ +
+Lemma injm_Ldiv n A : f @* 'Ldiv_n(A) = 'Ldiv_n(f @* A).
+ +
+Lemma injm_abelem p : p.-abelem (f @* G) = p.-abelem G.
+ +
+Lemma injm_pElem p (E : {group aT}) :
+ E \subset D → ((f @* E)%G \in 'E_p(f @* G)) = (E \in 'E_p(G)).
+ +
+Lemma injm_pnElem p n (E : {group aT}) :
+ E \subset D → ((f @* E)%G \in 'E_p^n(f @* G)) = (E \in 'E_p^n(G)).
+ +
+Lemma injm_nElem n (E : {group aT}) :
+ E \subset D → ((f @* E)%G \in 'E^n(f @* G)) = (E \in 'E^n(G)).
+ +
+Lemma injm_pmaxElem p (E : {group aT}) :
+ E \subset D → ((f @* E)%G \in 'E×_p(f @* G)) = (E \in 'E×_p(G)).
+ +
+Lemma injm_grank : 'm(f @* G) = 'm(G).
+ +
+Lemma injm_p_rank p : 'r_p(f @* G) = 'r_p(G).
+ +
+Lemma injm_rank : 'r(f @* G) = 'r(G).
+ +
+End InjmAbelem.
+ +
+Section IsogAbelem.
+ +
+Variables (aT rT : finGroupType) (G : {group aT}) (H : {group rT}).
+Hypothesis isoGH : G \isog H.
+ +
+Lemma exponent_isog : exponent G = exponent H.
+ +
+Lemma isog_abelem p : p.-abelem G = p.-abelem H.
+ +
+Lemma isog_grank : 'm(G) = 'm(H).
+ +
+Lemma isog_p_rank p : 'r_p(G) = 'r_p(H).
+ +
+Lemma isog_rank : 'r(G) = 'r(H).
+ +
+End IsogAbelem.
+ +
+Section QuotientAbelem.
+ +
+Variables (gT : finGroupType) (p : nat).
+Implicit Types E G K H : {group gT}.
+ +
+Lemma exponent_quotient G H : exponent (G / H) %| exponent G.
+ +
+Lemma quotient_LdivT n H : 'Ldiv_n / H \subset 'Ldiv_n.
+ +
+Lemma quotient_Ldiv n A H : 'Ldiv_n(A) / H \subset 'Ldiv_n(A / H).
+ +
+Lemma quotient_abelem G H : p.-abelem G → p.-abelem (G / H).
+ +
+Lemma quotient_pElem G H E : E \in 'E_p(G) → (E / H)%G \in 'E_p(G / H).
+ +
+Lemma logn_quotient G H : logn p #|G / H| ≤ logn p #|G|.
+ +
+Lemma quotient_pnElem G H n E :
+ E \in 'E_p^n(G) → {m | m ≤ n & (E / H)%G \in 'E_p^m(G / H)}.
+ +
+Lemma quotient_grank G H : G \subset 'N(H) → 'm(G / H) ≤ 'm(G).
+ +
+Lemma p_rank_quotient G H : G \subset 'N(H) → 'r_p(G) - 'r_p(H) ≤ 'r_p(G / H).
+ +
+Lemma p_rank_dprod K H G : K \x H = G → 'r_p(K) + 'r_p(H) = 'r_p(G).
+ +
+Lemma p_rank_p'quotient G H :
+ (p : nat)^'.-group H → G \subset 'N(H) → 'r_p(G / H) = 'r_p(G).
+ +
+End QuotientAbelem.
+ +
+Section OhmProps.
+ +
+Section Generic.
+ +
+Variables (n : nat) (gT : finGroupType).
+Implicit Types (p : nat) (x : gT) (rT : finGroupType).
+Implicit Types (A B : {set gT}) (D G H : {group gT}).
+ +
+Lemma Ohm_sub G : 'Ohm_n(G) \subset G.
+ +
+Lemma Ohm1 : 'Ohm_n([1 gT]) = 1.
+ +
+Lemma Ohm_id G : 'Ohm_n('Ohm_n(G)) = 'Ohm_n(G).
+ +
+Lemma Ohm_cont rT G (f : {morphism G >-> rT}) :
+ f @* 'Ohm_n(G) \subset 'Ohm_n(f @* G).
+ +
+Lemma OhmS H G : H \subset G → 'Ohm_n(H) \subset 'Ohm_n(G).
+ +
+Lemma OhmE p G : p.-group G → 'Ohm_n(G) = <<'Ldiv_(p ^ n)(G)>>.
+ +
+Lemma OhmEabelian p G :
+ p.-group G → abelian 'Ohm_n(G) → 'Ohm_n(G) = 'Ldiv_(p ^ n)(G).
+ +
+Lemma Ohm_p_cycle p x :
+ p.-elt x → 'Ohm_n(<[x]>) = <[x ^+ (p ^ (logn p #[x] - n))]>.
+ +
+Lemma Ohm_dprod A B G : A \x B = G → 'Ohm_n(A) \x 'Ohm_n(B) = 'Ohm_n(G).
+ +
+Lemma Mho_sub G : 'Mho^n(G) \subset G.
+ +
+Lemma Mho1 : 'Mho^n([1 gT]) = 1.
+ +
+Lemma morphim_Mho rT D G (f : {morphism D >-> rT}) :
+ G \subset D → f @* 'Mho^n(G) = 'Mho^n(f @* G).
+ +
+Lemma Mho_cont rT G (f : {morphism G >-> rT}) :
+ f @* 'Mho^n(G) \subset 'Mho^n(f @* G).
+ +
+Lemma MhoS H G : H \subset G → 'Mho^n(H) \subset 'Mho^n(G).
+ +
+Lemma MhoE p G : p.-group G → 'Mho^n(G) = <<[set x ^+ (p ^ n) | x in G]>>.
+ +
+Lemma MhoEabelian p G :
+ p.-group G → abelian G → 'Mho^n(G) = [set x ^+ (p ^ n) | x in G].
+ +
+Lemma trivg_Mho G : 'Mho^n(G) == 1 → 'Ohm_n(G) == G.
+ +
+Lemma Mho_p_cycle p x : p.-elt x → 'Mho^n(<[x]>) = <[x ^+ (p ^ n)]>.
+ +
+Lemma Mho_cprod A B G : A \* B = G → 'Mho^n(A) \* 'Mho^n(B) = 'Mho^n(G).
+ +
+Lemma Mho_dprod A B G : A \x B = G → 'Mho^n(A) \x 'Mho^n(B) = 'Mho^n(G).
+ +
+End Generic.
+ +
+Canonical Ohm_igFun i := [igFun by Ohm_sub i & Ohm_cont i].
+Canonical Ohm_gFun i := [gFun by Ohm_cont i].
+Canonical Ohm_mgFun i := [mgFun by OhmS i].
+ +
+Canonical Mho_igFun i := [igFun by Mho_sub i & Mho_cont i].
+Canonical Mho_gFun i := [gFun by Mho_cont i].
+Canonical Mho_mgFun i := [mgFun by MhoS i].
+ +
+Section char.
+ +
+Variables (n : nat) (gT rT : finGroupType) (D G : {group gT}).
+ +
+Lemma Ohm_char : 'Ohm_n(G) \char G.
+Lemma Ohm_normal : 'Ohm_n(G) <| G.
+ +
+Lemma Mho_char : 'Mho^n(G) \char G.
+Lemma Mho_normal : 'Mho^n(G) <| G.
+ +
+Lemma morphim_Ohm (f : {morphism D >-> rT}) :
+ G \subset D → f @* 'Ohm_n(G) \subset 'Ohm_n(f @* G).
+ +
+Lemma injm_Ohm (f : {morphism D >-> rT}) :
+ 'injm f → G \subset D → f @* 'Ohm_n(G) = 'Ohm_n(f @* G).
+ +
+Lemma isog_Ohm (H : {group rT}) : G \isog H → 'Ohm_n(G) \isog 'Ohm_n(H).
+ +
+Lemma isog_Mho (H : {group rT}) : G \isog H → 'Mho^n(G) \isog 'Mho^n(H).
+ +
+End char.
+ +
+Variable gT : finGroupType.
+Implicit Types (pi : nat_pred) (p : nat).
+Implicit Types (A B C : {set gT}) (D G H E : {group gT}).
+ +
+Lemma Ohm0 G : 'Ohm_0(G) = 1.
+ +
+Lemma Ohm_leq m n G : m ≤ n → 'Ohm_m(G) \subset 'Ohm_n(G).
+ +
+Lemma OhmJ n G x : 'Ohm_n(G :^ x) = 'Ohm_n(G) :^ x.
+ +
+Lemma Mho0 G : 'Mho^0(G) = G.
+ +
+Lemma Mho_leq m n G : m ≤ n → 'Mho^n(G) \subset 'Mho^m(G).
+ +
+Lemma MhoJ n G x : 'Mho^n(G :^ x) = 'Mho^n(G) :^ x.
+ +
+Lemma extend_cyclic_Mho G p x :
+ p.-group G → x \in G → 'Mho^1(G) = <[x ^+ p]> →
+ ∀ k, k > 0 → 'Mho^k(G) = <[x ^+ (p ^ k)]>.
+ +
+Lemma Ohm1Eprime G : 'Ohm_1(G) = <<[set x in G | prime #[x]]>>.
+ +
+Lemma abelem_Ohm1 p G : p.-group G → p.-abelem 'Ohm_1(G) = abelian 'Ohm_1(G).
+ +
+Lemma Ohm1_abelem p G : p.-group G → abelian G → p.-abelem ('Ohm_1(G)).
+ +
+Lemma Ohm1_id p G : p.-abelem G → 'Ohm_1(G) = G.
+ +
+Lemma abelem_Ohm1P p G :
+ abelian G → p.-group G → reflect ('Ohm_1(G) = G) (p.-abelem G).
+ +
+Lemma TI_Ohm1 G H : H :&: 'Ohm_1(G) = 1 → H :&: G = 1.
+ +
+Lemma Ohm1_eq1 G : ('Ohm_1(G) == 1) = (G :==: 1).
+ +
+Lemma meet_Ohm1 G H : G :&: H != 1 → G :&: 'Ohm_1(H) != 1.
+ +
+Lemma Ohm1_cent_max G E p : E \in 'E×_p(G) → p.-group G → 'Ohm_1('C_G(E)) = E.
+ +
+Lemma Ohm1_cyclic_pgroup_prime p G :
+ cyclic G → p.-group G → G :!=: 1 → #|'Ohm_1(G)| = p.
+ +
+Lemma cyclic_pgroup_dprod_trivg p A B C :
+ p.-group C → cyclic C → A \x B = C →
+ A = 1 ∧ B = C ∨ B = 1 ∧ A = C.
+ +
+Lemma piOhm1 G : \pi('Ohm_1(G)) = \pi(G).
+ +
+Lemma Ohm1Eexponent p G :
+ prime p → exponent 'Ohm_1(G) %| p → 'Ohm_1(G) = 'Ldiv_p(G).
+ +
+Lemma p_rank_Ohm1 p G : 'r_p('Ohm_1(G)) = 'r_p(G).
+ +
+Lemma rank_Ohm1 G : 'r('Ohm_1(G)) = 'r(G).
+ +
+Lemma p_rank_abelian p G : abelian G → 'r_p(G) = logn p #|'Ohm_1(G)|.
+ +
+Lemma rank_abelian_pgroup p G :
+ p.-group G → abelian G → 'r(G) = logn p #|'Ohm_1(G)|.
+ +
+End OhmProps.
+ +
+Section AbelianStructure.
+ +
+Variable gT : finGroupType.
+Implicit Types (p : nat) (G H K E : {group gT}).
+ +
+Lemma abelian_splits x G :
+ x \in G → #[x] = exponent G → abelian G → [splits G, over <[x]>].
+ +
+Lemma abelem_splits p G H : p.-abelem G → H \subset G → [splits G, over H].
+ +
+Fact abelian_type_subproof G :
+ {H : {group gT} & abelian G → {x | #[x] = exponent G & <[x]> \x H = G}}.
+ +
+Fixpoint abelian_type_rec n G :=
+ if n is n'.+1 then if abelian G && (G :!=: 1) then
+ exponent G :: abelian_type_rec n' (tag (abelian_type_subproof G))
+ else [::] else [::].
+ +
+Definition abelian_type (A : {set gT}) := abelian_type_rec #|A| <<A>>.
+ +
+Lemma abelian_type_dvdn_sorted A : sorted [rel m n | n %| m] (abelian_type A).
+ +
+Lemma abelian_type_gt1 A : all [pred m | m > 1] (abelian_type A).
+ +
+Lemma abelian_type_sorted A : sorted geq (abelian_type A).
+ +
+Theorem abelian_structure G :
+ abelian G →
+ {b | \big[dprod/1]_(x <- b) <[x]> = G & map order b = abelian_type G}.
+ +
+Lemma count_logn_dprod_cycle p n b G :
+ \big[dprod/1]_(x <- b) <[x]> = G →
+ count [pred x | logn p #[x] > n] b = logn p #|'Ohm_n.+1(G) : 'Ohm_n(G)|.
+ +
+Lemma perm_eq_abelian_type p b G :
+ p.-group G → \big[dprod/1]_(x <- b) <[x]> = G → 1 \notin b →
+ perm_eq (map order b) (abelian_type G).
+ +
+Lemma size_abelian_type G : abelian G → size (abelian_type G) = 'r(G).
+ +
+Lemma mul_card_Ohm_Mho_abelian n G :
+ abelian G → (#|'Ohm_n(G)| × #|'Mho^n(G)|)%N = #|G|.
+ +
+Lemma grank_abelian G : abelian G → 'm(G) = 'r(G).
+ +
+Lemma rank_cycle (x : gT) : 'r(<[x]>) = (x != 1).
+ +
+Lemma abelian_rank1_cyclic G : abelian G → cyclic G = ('r(G) ≤ 1).
+ +
+Definition homocyclic A := abelian A && constant (abelian_type A).
+ +
+Lemma homocyclic_Ohm_Mho n p G :
+ p.-group G → homocyclic G → 'Ohm_n(G) = 'Mho^(logn p (exponent G) - n)(G).
+ +
+Lemma Ohm_Mho_homocyclic (n p : nat) G :
+ abelian G → p.-group G → 0 < n < logn p (exponent G) →
+ 'Ohm_n(G) = 'Mho^(logn p (exponent G) - n)(G) → homocyclic G.
+ +
+Lemma abelem_homocyclic p G : p.-abelem G → homocyclic G.
+ +
+Lemma homocyclic1 : homocyclic [1 gT].
+ +
+Lemma Ohm1_homocyclicP p G : p.-group G → abelian G →
+ reflect ('Ohm_1(G) = 'Mho^(logn p (exponent G)).-1(G)) (homocyclic G).
+ +
+Lemma abelian_type_homocyclic G :
+ homocyclic G → abelian_type G = nseq 'r(G) (exponent G).
+ +
+Lemma abelian_type_abelem p G : p.-abelem G → abelian_type G = nseq 'r(G) p.
+ +
+Lemma max_card_abelian G :
+ abelian G → #|G| ≤ exponent G ^ 'r(G) ?= iff homocyclic G.
+ +
+Lemma card_homocyclic G : homocyclic G → #|G| = (exponent G ^ 'r(G))%N.
+ +
+Lemma abelian_type_dprod_homocyclic p K H G :
+ K \x H = G → p.-group G → homocyclic G →
+ abelian_type K = nseq 'r(K) (exponent G)
+ ∧ abelian_type H = nseq 'r(H) (exponent G).
+ +
+Lemma dprod_homocyclic p K H G :
+ K \x H = G → p.-group G → homocyclic G → homocyclic K ∧ homocyclic H.
+ +
+Lemma exponent_dprod_homocyclic p K H G :
+ K \x H = G → p.-group G → homocyclic G → K :!=: 1 →
+ exponent K = exponent G.
+ +
+End AbelianStructure.
+ +
+ +
+Section IsogAbelian.
+ +
+Variables aT rT : finGroupType.
+Implicit Type (gT : finGroupType) (D G : {group aT}) (H : {group rT}).
+ +
+Lemma isog_abelian_type G H : isog G H → abelian_type G = abelian_type H.
+ +
+Lemma eq_abelian_type_isog G H :
+ abelian G → abelian H → isog G H = (abelian_type G == abelian_type H).
+ +
+Lemma isog_abelem_card p G H :
+ p.-abelem G → isog G H = p.-abelem H && (#|H| == #|G|).
+ +
+Variables (D : {group aT}) (f : {morphism D >-> rT}).
+ +
+Lemma morphim_rank_abelian G : abelian G → 'r(f @* G) ≤ 'r(G).
+ +
+Lemma morphim_p_rank_abelian p G : abelian G → 'r_p(f @* G) ≤ 'r_p(G).
+ +
+Lemma isog_homocyclic G H : G \isog H → homocyclic G = homocyclic H.
+ +
+End IsogAbelian.
+ +
+Section QuotientRank.
+ +
+Variables (gT : finGroupType) (p : nat) (G H : {group gT}).
+Hypothesis cGG : abelian G.
+ +
+Lemma quotient_rank_abelian : 'r(G / H) ≤ 'r(G).
+ +
+Lemma quotient_p_rank_abelian : 'r_p(G / H) ≤ 'r_p(G).
+ +
+End QuotientRank.
+ +
+Section FimModAbelem.
+ +
+Import GRing.Theory FinRing.Theory.
+ +
+Lemma fin_lmod_char_abelem p (R : ringType) (V : finLmodType R):
+ p \in [char R]%R → p.-abelem [set: V].
+ +
+Lemma fin_Fp_lmod_abelem p (V : finLmodType 'F_p) :
+ prime p → p.-abelem [set: V].
+ +
+Lemma fin_ring_char_abelem p (R : finRingType) :
+ p \in [char R]%R → p.-abelem [set: R].
+ +
+End FimModAbelem.
+ +
+