From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.fingroup.presentation.html | 95 ++++++++++++------------
1 file changed, 47 insertions(+), 48 deletions(-)
(limited to 'docs/htmldoc/mathcomp.fingroup.presentation.html')
diff --git a/docs/htmldoc/mathcomp.fingroup.presentation.html b/docs/htmldoc/mathcomp.fingroup.presentation.html
index 319155d..301b4f4 100644
--- a/docs/htmldoc/mathcomp.fingroup.presentation.html
+++ b/docs/htmldoc/mathcomp.fingroup.presentation.html
@@ -21,7 +21,6 @@
-
Notation "1" :=
Idx :
group_presentation.
+
Notation "1" :=
Idx :
group_presentation.
-
Infix "×" :=
Mul :
group_presentation.
-
Infix "^+" :=
Exp :
group_presentation.
-
Infix "^" :=
Conj :
group_presentation.
-
Notation "x ^-1" := (
Inv x) :
group_presentation.
-
Notation "x ^- n" := (
Inv (
x ^+ n)) :
group_presentation.
-
Notation "[ ~ x1 , x2 , .. , xn ]" :=
+
Infix "×" :=
Mul :
group_presentation.
+
Infix "^+" :=
Exp :
group_presentation.
+
Infix "^" :=
Conj :
group_presentation.
+
Notation "x ^-1" := (
Inv x) :
group_presentation.
+
Notation "x ^- n" := (
Inv (
x ^+ n)) :
group_presentation.
+
Notation "[ ~ x1 , x2 , .. , xn ]" :=
(
Comm .. (
Comm x1 x2) ..
xn) :
group_presentation.
-
Notation "x = y" := (
Eq2 x y) :
group_presentation.
-
Notation "x = y = z" := (
Eq3 x y z) :
group_presentation.
-
Notation "( r1 , r2 , .. , rn )" :=
+
Notation "x = y" := (
Eq2 x y) :
group_presentation.
+
Notation "x = y = z" := (
Eq3 x y z) :
group_presentation.
+
Notation "( r1 , r2 , .. , rn )" :=
(
And .. (
And r1 r2) ..
rn) :
group_presentation.
@@ -218,26 +217,26 @@
Declare (implicitly) the argument scope tags.
-
Notation "x : p" := (
fun x ⇒
Cast p) :
nt_group_presentation.
+
Notation "x : p" := (
fun x ⇒
Cast p) :
nt_group_presentation.
-
Notation "x : p" := (
Generator (
x : p)) :
group_presentation.
+
Notation "x : p" := (
Generator (
x : p)) :
group_presentation.
-
Notation "H \homg 'Grp' p" := (
hom H p)
+
Notation "H \homg 'Grp' p" := (
hom H p)
(
at level 70,
p at level 0,
format "H \homg 'Grp' p") :
group_scope.
-
Notation "H \isog 'Grp' p" := (
iso H p)
+
Notation "H \isog 'Grp' p" := (
iso H p)
(
at level 70,
p at level 0,
format "H \isog 'Grp' p") :
group_scope.
-
Notation "H \homg 'Grp' ( x : p )" := (
hom H (
x : p))
+
Notation "H \homg 'Grp' ( x : p )" := (
hom H (
x : p))
(
at level 70,
x at level 0,
format "'[hv' H '/ ' \homg 'Grp' ( x : p ) ']'") :
group_scope.
-
Notation "H \isog 'Grp' ( x : p )" := (
iso H (
x : p))
+
Notation "H \isog 'Grp' ( x : p )" := (
iso H (
x : p))
(
at level 70,
x at level 0,
format "'[hv' H '/ ' \isog 'Grp' ( x : p ) ']'") :
group_scope.
@@ -251,28 +250,28 @@
Import Presentation.
-
Lemma isoGrp_hom gT (
G :
{group gT})
p :
G \isog Grp p → G \homg Grp p.
+
Lemma isoGrp_hom gT (
G :
{group gT})
p :
G \isog Grp p → G \homg Grp p.
-
Lemma isoGrpP gT (
G :
{group gT})
p rT (
H :
{group rT}) :
-
G \isog Grp p → reflect (
#|H| = #|G| ∧ H \homg Grp p) (
H \isog G).
+
Lemma isoGrpP gT (
G :
{group gT})
p rT (
H :
{group rT}) :
+
G \isog Grp p → reflect (
#|H| = #|G| ∧ H \homg Grp p) (
H \isog G).
-
Lemma homGrp_trans rT gT (
H :
{set rT}) (
G :
{group gT})
p :
-
H \homg G → G \homg Grp p → H \homg Grp p.
+
Lemma homGrp_trans rT gT (
H :
{set rT}) (
G :
{group gT})
p :
+
H \homg G → G \homg Grp p → H \homg Grp p.
-
Lemma eq_homGrp gT rT (
G :
{group gT}) (
H :
{group rT})
p :
-
G \isog H → (G \homg Grp p) = (H \homg Grp p).
+
Lemma eq_homGrp gT rT (
G :
{group gT}) (
H :
{group rT})
p :
+
G \isog H → (G \homg Grp p) = (H \homg Grp p).
-
Lemma isoGrp_trans gT rT (
G :
{group gT}) (
H :
{group rT})
p :
-
G \isog H → H \isog Grp p → G \isog Grp p.
+
Lemma isoGrp_trans gT rT (
G :
{group gT}) (
H :
{group rT})
p :
+
G \isog H → H \isog Grp p → G \isog Grp p.
-
Lemma intro_isoGrp gT (
G :
{group gT})
p :
-
G \homg Grp p → (∀ rT (
H :
{group rT}),
H \homg Grp p → H \homg G) →
-
G \isog Grp p.
+
Lemma intro_isoGrp gT (
G :
{group gT})
p :
+
G \homg Grp p → (∀ rT (
H :
{group rT}),
H \homg Grp p → H \homg G) →
+
G \isog Grp p.
End PresentationTheory.
--
cgit v1.2.3