From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.field.separable.html | 219 ++++++++++++++---------------
1 file changed, 109 insertions(+), 110 deletions(-)
(limited to 'docs/htmldoc/mathcomp.field.separable.html')
diff --git a/docs/htmldoc/mathcomp.field.separable.html b/docs/htmldoc/mathcomp.field.separable.html
index e436592..6ba91d2 100644
--- a/docs/htmldoc/mathcomp.field.separable.html
+++ b/docs/htmldoc/mathcomp.field.separable.html
@@ -21,7 +21,6 @@
@@ -63,58 +62,58 @@
Variable R : idomainType.
-Implicit Types p q d u v : {poly R}.
+Implicit Types p q d u v : {poly R}.
-Definition separable_poly p := coprimep p p^`.
+Definition separable_poly p := coprimep p p^`.
-Lemma separable_poly_neq0 p : separable p → p != 0.
+Lemma separable_poly_neq0 p : separable p → p != 0.
Lemma poly_square_freeP p :
- (∀ u v, u × v %| p → coprimep u v)
- ↔ (∀ u, size u != 1%N → ~~ (u ^+ 2 %| p)).
+ (∀ u v, u × v %| p → coprimep u v)
+ ↔ (∀ u, size u != 1%N → ~~ (u ^+ 2 %| p)).
Lemma separable_polyP {p} :
- reflect [/\ ∀ u v, u × v %| p → coprimep u v
- & ∀ u, u %| p → 1 < size u → u^` != 0]
+ reflect [/\ ∀ u v, u × v %| p → coprimep u v
+ & ∀ u, u %| p → 1 < size u → u^` != 0]
(separable p).
-Lemma separable_coprime p u v : separable p → u × v %| p → coprimep u v.
+Lemma separable_coprime p u v : separable p → u × v %| p → coprimep u v.
Lemma separable_nosquare p u k :
- separable p → 1 < k → size u != 1%N → (u ^+ k %| p) = false.
+ separable p → 1 < k → size u != 1%N → (u ^+ k %| p) = false.
Lemma separable_deriv_eq0 p u :
- separable p → u %| p → 1 < size u → (u^` == 0) = false.
+ separable p → u %| p → 1 < size u → (u^` == 0) = false.
-Lemma dvdp_separable p q : q %| p → separable p → separable q.
+Lemma dvdp_separable p q : q %| p → separable p → separable q.
Lemma separable_mul p q :
- separable (p × q) = [&& separable p, separable q & coprimep p q].
+ separable (p × q) = [&& separable p, separable q & coprimep p q].
-Lemma eqp_separable p q : p %= q → separable p = separable q.
+Lemma eqp_separable p q : p %= q → separable p = separable q.
Lemma separable_root p x :
- separable (p × ('X - x%:P)) = separable p && ~~ root p x.
+ separable (p × ('X - x%:P)) = separable p && ~~ root p x.
Lemma separable_prod_XsubC (r : seq R) :
- separable (\prod_(x <- r) ('X - x%:P)) = uniq r.
+ separable (\prod_(x <- r) ('X - x%:P)) = uniq r.
-Lemma make_separable p : p != 0 → separable (p %/ gcdp p p^`).
+Lemma make_separable p : p != 0 → separable (p %/ gcdp p p^`).
End SeparablePoly.
@@ -123,8 +122,8 @@
Lemma separable_map (F : fieldType) (R : idomainType)
- (f : {rmorphism F → R}) (p : {poly F}) :
- separable_poly (map_poly f p) = separable_poly p.
+ (f : {rmorphism F → R}) (p : {poly F}) :
+ separable_poly (map_poly f p) = separable_poly p.
Section InfinitePrimitiveElementTheorem.
@@ -132,23 +131,23 @@
-Variables (F L : fieldType) (iota : {rmorphism F → L}).
-Variables (x y : L) (p : {poly F}).
-Hypotheses (nz_p : p != 0) (px_0 : root (p ^ iota) x).
+Variables (F L : fieldType) (iota : {rmorphism F → L}).
+Variables (x y : L) (p : {poly F}).
+Hypotheses (nz_p : p != 0) (px_0 : root (p ^ iota) x).
-Let inFz z w := ∃ q, (q ^ iota).[z] = w.
+Let inFz z w := ∃ q, (q ^ iota).[z] = w.
Lemma large_field_PET q :
- root (q ^ iota) y → separable_poly q →
- exists2 r, r != 0
- & ∀ t (z := iota t × y - x), ~~ root r (iota t) → inFz z x ∧ inFz z y.
+ root (q ^ iota) y → separable_poly q →
+ exists2 r, r != 0
+ & ∀ t (z := iota t × y - x), ~~ root r (iota t) → inFz z x ∧ inFz z y.
-Lemma char0_PET (q : {poly F}) :
- q != 0 → root (q ^ iota) y → [char F] =i pred0 →
- ∃ n, let z := y *+ n - x in inFz z x ∧ inFz z y.
+Lemma char0_PET (q : {poly F}) :
+ q != 0 → root (q ^ iota) y → [char F] =i pred0 →
+ ∃ n, let z := y *+ n - x in inFz z x ∧ inFz z y.
End InfinitePrimitiveElementTheorem.
@@ -158,13 +157,13 @@
Variables (F : fieldType) (L : fieldExtType F).
-Implicit Types (U V W : {vspace L}) (E K M : {subfield L}) (D : 'End(L)).
+Implicit Types (U V W : {vspace L}) (E K M : {subfield L}) (D : 'End(L)).
Section Derivation.
-Variables (K : {vspace L}) (D : 'End(L)).
+Variables (K : {vspace L}) (D : 'End(L)).
@@ -175,45 +174,45 @@
the Derivation predicate for linear endomorphisms.
-
Definition Derivation (
s :=
vbasis K) :
bool :=
-
all (
fun u ⇒
all (
fun v ⇒
D (
u × v)
== D u × v + u × D v)
s)
s.
+
Definition Derivation (
s :=
vbasis K) :
bool :=
+
all (
fun u ⇒
all (
fun v ⇒
D (
u × v)
== D u × v + u × D v)
s)
s.
Hypothesis derD :
Derivation.
-
Lemma Derivation_mul :
{in K &, ∀ u v,
D (
u × v)
= D u × v + u × D v}.
+
Lemma Derivation_mul :
{in K &, ∀ u v,
D (
u × v)
= D u × v + u × D v}.
Lemma Derivation_mul_poly (
Dp :=
map_poly D) :
-
{in polyOver K &, ∀ p q,
Dp (
p × q)
= Dp p × q + p × Dp q}.
+
{in polyOver K &, ∀ p q,
Dp (
p × q)
= Dp p × q + p × Dp q}.
End Derivation.
-
Lemma DerivationS E K D : (
K ≤ E)%
VS → Derivation E D → Derivation K D.
+
Lemma DerivationS E K D : (
K ≤ E)%
VS → Derivation E D → Derivation K D.
Section DerivationAlgebra.
-
Variables (
E :
{subfield L}) (
D :
'End(L)).
+
Variables (
E :
{subfield L}) (
D :
'End(L)).
Hypothesis derD :
Derivation E D.
-
Lemma Derivation1 :
D 1
= 0.
+
Lemma Derivation1 :
D 1
= 0.
-
Lemma Derivation_scalar x :
x \in 1%
VS → D x = 0.
+
Lemma Derivation_scalar x :
x \in 1%
VS → D x = 0.
-
Lemma Derivation_exp x m :
x \in E → D (
x ^+ m)
= x ^+ m.-1 *+ m × D x.
+
Lemma Derivation_exp x m :
x \in E → D (
x ^+ m)
= x ^+ m.-1 *+ m × D x.
Lemma Derivation_horner p x :
-
p \is a polyOver E → x \in E →
-
D p.[x] = (map_poly D p).[x] + p^`.[x] × D x.
+
p \is a polyOver E → x \in E →
+
D p.[x] = (map_poly D p).[x] + p^`.[x] × D x.
End DerivationAlgebra.
@@ -225,65 +224,65 @@
Section SeparableElement.
-
Variables (
K :
{subfield L}) (
x :
L).
+
Variables (
K :
{subfield L}) (
x :
L).
Lemma separable_elementP :
-
reflect (
∃ f, [/\ f \is a polyOver K, root f x & separable_poly f])
+
reflect (
∃ f, [/\ f \is a polyOver K, root f x & separable_poly f])
(
separable_element K x).
-
Lemma base_separable :
x \in K → separable_element K x.
+
Lemma base_separable :
x \in K → separable_element K x.
-
Lemma separable_nz_der :
separable_element K x = ((minPoly K x)^` != 0
).
+
Lemma separable_nz_der :
separable_element K x = ((minPoly K x)^` != 0
).
Lemma separablePn :
-
reflect (
exists2 p, p \in [char L] &
-
exists2 g, g \is a polyOver K & minPoly K x = g \Po 'X^p)
- (
~~ separable_element K x).
+
reflect (
exists2 p, p \in [char L] &
+
exists2 g, g \is a polyOver K & minPoly K x = g \Po 'X^p)
+ (
~~ separable_element K x).
-
Lemma separable_root_der :
separable_element K x (+) root (minPoly K x)^` x.
+
Lemma separable_root_der :
separable_element K x (+) root (minPoly K x)^` x.
Lemma Derivation_separable D :
-
Derivation <<K; x>> D → separable_element K x →
-
D x = - (map_poly D (
minPoly K x)
).[x] / (minPoly K x)^`.[x].
+
Derivation <<K; x>> D → separable_element K x →
+
D x = - (map_poly D (
minPoly K x)
).[x] / (minPoly K x)^`.[x].
Section ExtendDerivation.
-
Variable D :
'End(L).
+
Variable D :
'End(L).
-
Let Dx E :=
- (map_poly D (
minPoly E x)
).[x] / ((minPoly E x)^`).[x].
+
Let Dx E :=
- (map_poly D (
minPoly E x)
).[x] / ((minPoly E x)^`).[x].
Fact extendDerivation_subproof E (
adjEx :=
Fadjoin_poly E x) :
-
let body y (
p :=
adjEx y) :=
(map_poly D p).[x] + p^`.[x] × Dx E in
+
let body y (
p :=
adjEx y) :=
(map_poly D p).[x] + p^`.[x] × Dx E in
linear body.
-
Definition extendDerivation E :
'End(L) :=
+
Definition extendDerivation E :
'End(L) :=
linfun (
Linear (
extendDerivation_subproof E)).
Hypothesis derD :
Derivation K D.
-
Lemma extendDerivation_id y :
y \in K → extendDerivation K y = D y.
+
Lemma extendDerivation_id y :
y \in K → extendDerivation K y = D y.
Lemma extendDerivation_horner p :
-
p \is a polyOver K → separable_element K x →
-
extendDerivation K p.[x] = (map_poly D p).[x] + p^`.[x] × Dx K.
+
p \is a polyOver K → separable_element K x →
+
extendDerivation K p.[x] = (map_poly D p).[x] + p^`.[x] × Dx K.
Lemma extendDerivationP :
-
separable_element K x → Derivation <<K; x>> (
extendDerivation K).
+
separable_element K x → Derivation <<K; x>> (
extendDerivation K).
End ExtendDerivation.
@@ -297,8 +296,8 @@ http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/separable2.pdf
Lemma Derivation_separableP :
-
reflect
- (
∀ D,
Derivation <<K; x>> D → K ≤ lker D → <<K; x>> ≤ lker D)%
VS
+
reflect
+ (
∀ D,
Derivation <<K; x>> D → K ≤ lker D → <<K; x>> ≤ lker D)%
VS
(
separable_element K x).
@@ -308,69 +307,69 @@ http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/separable2.pdf
Lemma separable_elementS K E x :
- (
K ≤ E)%
VS → separable_element K x → separable_element E x.
+ (
K ≤ E)%
VS → separable_element K x → separable_element E x.
Lemma adjoin_separableP {
K x} :
-
reflect (
∀ y,
y \in <<K; x>>%
VS → separable_element K y)
+
reflect (
∀ y,
y \in <<K; x>>%
VS → separable_element K y)
(
separable_element K x).
Lemma separable_exponent K x :
-
∃ n, [char L].-nat n && separable_element K (
x ^+ n).
+
∃ n, [char L].-nat n && separable_element K (
x ^+ n).
-
Lemma charf0_separable K :
[char L] =i pred0 → ∀ x,
separable_element K x.
+
Lemma charf0_separable K :
[char L] =i pred0 → ∀ x,
separable_element K x.
Lemma charf_p_separable K x e p :
-
p \in [char L] → separable_element K x = (x \in <<K; x ^+ (p ^ e.+1)>>%
VS).
+
p \in [char L] → separable_element K x = (x \in <<K; x ^+ (p ^ e.+1)>>%
VS).
Lemma charf_n_separable K x n :
-
[char L].-nat n → 1
< n → separable_element K x = (x \in <<K; x ^+ n>>%
VS).
+
[char L].-nat n → 1
< n → separable_element K x = (x \in <<K; x ^+ n>>%
VS).
Definition purely_inseparable_element U x :=
-
x ^+ ex_minn (
separable_exponent <<U>> x)
\in U.
+
x ^+ ex_minn (
separable_exponent <<U>> x)
\in U.
Lemma purely_inseparable_elementP {
K x} :
-
reflect (
exists2 n, [char L].-nat n & x ^+ n \in K)
+
reflect (
exists2 n, [char L].-nat n & x ^+ n \in K)
(
purely_inseparable_element K x).
Lemma separable_inseparable_element K x :
-
separable_element K x && purely_inseparable_element K x = (x \in K).
+
separable_element K x && purely_inseparable_element K x = (x \in K).
-
Lemma base_inseparable K x :
x \in K → purely_inseparable_element K x.
+
Lemma base_inseparable K x :
x \in K → purely_inseparable_element K x.
Lemma sub_inseparable K E x :
- (
K ≤ E)%
VS → purely_inseparable_element K x →
+ (
K ≤ E)%
VS → purely_inseparable_element K x →
purely_inseparable_element E x.
Section PrimitiveElementTheorem.
-
Variables (
K :
{subfield L}) (
x y :
L).
+
Variables (
K :
{subfield L}) (
x y :
L).
Section FiniteCase.
-
Variable N :
nat.
+
Variable N :
nat.
-
Let K_is_large :=
∃ s, [/\ uniq s, {subset s ≤ K} & N < size s].
+
Let K_is_large :=
∃ s, [/\ uniq s, {subset s ≤ K} & N < size s].
-
Let cyclic_or_large (
z :
L) :
z != 0
→ K_is_large ∨ ∃ a, z ^+ a.+1 = 1.
+
Let cyclic_or_large (
z :
L) :
z != 0
→ K_is_large ∨ ∃ a, z ^+ a.+1 = 1.
-
Lemma finite_PET :
K_is_large ∨ ∃ z, (
<< <<K; y>>; x>> = <<K; z>>)%
VS.
+
Lemma finite_PET :
K_is_large ∨ ∃ z, (
<< <<K; y>>; x>> = <<K; z>>)%
VS.
End FiniteCase.
@@ -379,112 +378,112 @@ http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/separable2.pdf
Hypothesis sepKy :
separable_element K y.
-
Lemma Primitive_Element_Theorem :
∃ z, (
<< <<K; y>>; x>> = <<K; z>>)%
VS.
+
Lemma Primitive_Element_Theorem :
∃ z, (
<< <<K; y>>; x>> = <<K; z>>)%
VS.
-
Lemma adjoin_separable :
separable_element <<K; y>> x → separable_element K x.
+
Lemma adjoin_separable :
separable_element <<K; y>> x → separable_element K x.
End PrimitiveElementTheorem.
Lemma strong_Primitive_Element_Theorem K x y :
-
separable_element <<K; x>> y →
-
exists2 z : L, (
<< <<K; y>>; x>> = <<K; z>>)%
VS
-
& separable_element K x → separable_element K y.
+
separable_element <<K; x>> y →
+
exists2 z : L, (
<< <<K; y>>; x>> = <<K; z>>)%
VS
+
& separable_element K x → separable_element K y.
-
Definition separable U W :
bool :=
+
Definition separable U W :
bool :=
all (
separable_element U) (
vbasis W).
-
Definition purely_inseparable U W :
bool :=
+
Definition purely_inseparable U W :
bool :=
all (
purely_inseparable_element U) (
vbasis W).
Lemma separable_add K x y :
-
separable_element K x → separable_element K y → separable_element K (
x + y).
+
separable_element K x → separable_element K y → separable_element K (
x + y).
-
Lemma separable_sum I r (
P :
pred I) (
v_ :
I → L)
K :
-
(∀ i,
P i → separable_element K (
v_ i)
) →
-
separable_element K (
\sum_(i <- r | P i) v_ i).
+
Lemma separable_sum I r (
P :
pred I) (
v_ :
I → L)
K :
+
(∀ i,
P i → separable_element K (
v_ i)
) →
+
separable_element K (
\sum_(i <- r | P i) v_ i).
Lemma inseparable_add K x y :
-
purely_inseparable_element K x → purely_inseparable_element K y →
-
purely_inseparable_element K (
x + y).
+
purely_inseparable_element K x → purely_inseparable_element K y →
+
purely_inseparable_element K (
x + y).
-
Lemma inseparable_sum I r (
P :
pred I) (
v_ :
I → L)
K :
-
(∀ i,
P i → purely_inseparable_element K (
v_ i)
) →
-
purely_inseparable_element K (
\sum_(i <- r | P i) v_ i).
+
Lemma inseparable_sum I r (
P :
pred I) (
v_ :
I → L)
K :
+
(∀ i,
P i → purely_inseparable_element K (
v_ i)
) →
+
purely_inseparable_element K (
\sum_(i <- r | P i) v_ i).
Lemma separableP {
K E} :
-
reflect (
∀ y,
y \in E → separable_element K y) (
separable K E).
+
reflect (
∀ y,
y \in E → separable_element K y) (
separable K E).
Lemma purely_inseparableP {
K E} :
-
reflect (
∀ y,
y \in E → purely_inseparable_element K y)
+
reflect (
∀ y,
y \in E → purely_inseparable_element K y)
(
purely_inseparable K E).
-
Lemma adjoin_separable_eq K x :
separable_element K x = separable K <<K; x>>%
VS.
+
Lemma adjoin_separable_eq K x :
separable_element K x = separable K <<K; x>>%
VS.
Lemma separable_inseparable_decomposition E K :
-
{x | x \in E ∧ separable_element K x & purely_inseparable <<K; x>> E}.
+
{x | x \in E ∧ separable_element K x & purely_inseparable <<K; x>> E}.
Definition separable_generator K E :
L :=
-
s2val (
locked (
separable_inseparable_decomposition E K)).
+
s2val (
locked (
separable_inseparable_decomposition E K)).
-
Lemma separable_generator_mem E K :
separable_generator K E \in E.
+
Lemma separable_generator_mem E K :
separable_generator K E \in E.
Lemma separable_generatorP E K :
separable_element K (
separable_generator K E).
Lemma separable_generator_maximal E K :
-
purely_inseparable <<K; separable_generator K E>> E.
+
purely_inseparable <<K; separable_generator K E>> E.
Lemma sub_adjoin_separable_generator E K :
-
separable K E → (
E ≤ <<K; separable_generator K E>>)%
VS.
+
separable K E → (
E ≤ <<K; separable_generator K E>>)%
VS.
Lemma eq_adjoin_separable_generator E K :
-
separable K E → (
K ≤ E)%
VS →
-
E = <<K; separable_generator K E>>%
VS :> {vspace _}.
+
separable K E → (
K ≤ E)%
VS →
+
E = <<K; separable_generator K E>>%
VS :> {vspace _}.
Lemma separable_refl K :
separable K K.
-
Lemma separable_trans M K E :
separable K M → separable M E → separable K E.
+
Lemma separable_trans M K E :
separable K M → separable M E → separable K E.
Lemma separableS K1 K2 E2 E1 :
- (
K1 ≤ K2)%
VS → (
E2 ≤ E1)%
VS → separable K1 E1 → separable K2 E2.
+ (
K1 ≤ K2)%
VS → (
E2 ≤ E1)%
VS → separable K1 E1 → separable K2 E2.
-
Lemma separableSl K M E : (
K ≤ M)%
VS → separable K E → separable M E.
+
Lemma separableSl K M E : (
K ≤ M)%
VS → separable K E → separable M E.
-
Lemma separableSr K M E : (
M ≤ E)%
VS → separable K E → separable K M.
+
Lemma separableSr K M E : (
M ≤ E)%
VS → separable K E → separable K M.
Lemma separable_Fadjoin_seq K rs :
-
all (
separable_element K)
rs → separable K <<K & rs>>.
+
all (
separable_element K)
rs → separable K <<K & rs>>.
Lemma purely_inseparable_refl K :
purely_inseparable K K.
Lemma purely_inseparable_trans M K E :
-
purely_inseparable K M → purely_inseparable M E → purely_inseparable K E.
+
purely_inseparable K M → purely_inseparable M E → purely_inseparable K E.
End Separable.
--
cgit v1.2.3