From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.field.finfield.html | 177 +++++++++++++++---------------
1 file changed, 88 insertions(+), 89 deletions(-)
(limited to 'docs/htmldoc/mathcomp.field.finfield.html')
diff --git a/docs/htmldoc/mathcomp.field.finfield.html b/docs/htmldoc/mathcomp.field.finfield.html
index c6454db..398b5de 100644
--- a/docs/htmldoc/mathcomp.field.finfield.html
+++ b/docs/htmldoc/mathcomp.field.finfield.html
@@ -21,7 +21,6 @@
@@ -90,10 +89,10 @@
Variable R : finRingType.
-Lemma finRing_nontrivial : [set: R] != 1%g.
+Lemma finRing_nontrivial : [set: R] != 1%g.
-Lemma finRing_gt1 : 1 < #|R|.
+Lemma finRing_gt1 : 1 < #|R|.
End FinRing.
@@ -105,26 +104,26 @@
Variable F : finFieldType.
-Lemma card_finField_unit : #|[set: {unit F}]| = #|F|.-1.
+Lemma card_finField_unit : #|[set: {unit F}]| = #|F|.-1.
-Definition finField_unit x (nz_x : x != 0) :=
- FinRing.unit F (etrans (unitfE x) nz_x).
+Definition finField_unit x (nz_x : x != 0) :=
+ FinRing.unit F (etrans (unitfE x) nz_x).
-Lemma expf_card x : x ^+ #|F| = x :> F.
+Lemma expf_card x : x ^+ #|F| = x :> F.
-Lemma finField_genPoly : 'X^#|F| - 'X = \prod_x ('X - x%:P) :> {poly F}.
+Lemma finField_genPoly : 'X^#|F| - 'X = \prod_x ('X - x%:P) :> {poly F}.
-Lemma finCharP : {p | prime p & p \in [char F]}.
+Lemma finCharP : {p | prime p & p \in [char F]}.
-Lemma finField_is_abelem : is_abelem [set: F].
+Lemma finField_is_abelem : is_abelem [set: F].
-Lemma card_finCharP p n : #|F| = (p ^ n)%N → prime p → p \in [char F].
+Lemma card_finCharP p n : #|F| = (p ^ n)%N → prime p → p \in [char F].
End FinField.
@@ -140,23 +139,23 @@
Variable cvT : Vector.class_of F T.
-Let vT := Vector.Pack (Phant F) cvT T.
+Let vT := Vector.Pack (Phant F) cvT.
-Lemma card_vspace (V : {vspace vT}) : #|V| = (#|F| ^ \dim V)%N.
+Lemma card_vspace (V : {vspace vT}) : #|V| = (#|F| ^ \dim V)%N.
-Lemma card_vspacef : #|{: vT}%VS| = #|T|.
+Lemma card_vspacef : #|{: vT}%VS| = #|T|.
End Vector.
Variable caT : Falgebra.class_of F T.
-Let aT := Falgebra.Pack (Phant F) caT T.
+Let aT := Falgebra.Pack (Phant F) caT.
-Lemma card_vspace1 : #|(1%VS : {vspace aT})| = #|F|.
+Lemma card_vspace1 : #|(1%VS : {vspace aT})| = #|F|.
End CardVspace.
@@ -185,9 +184,9 @@
Canonical fieldExt_finType fT := FinType fT (VectFinMixin fT).
-Canonical Falg_finRingType aT := [finRingType of aT].
-Canonical fieldExt_finRingType fT := [finRingType of fT].
-Canonical fieldExt_finFieldType fT := [finFieldType of fT].
+Canonical Falg_finRingType aT := [finRingType of aT].
+Canonical fieldExt_finRingType fT := [finRingType of fT].
+Canonical fieldExt_finFieldType fT := [finFieldType of fT].
Lemma finField_splittingField_axiom fT : SplittingField.axiom fT.
@@ -206,7 +205,7 @@
Section PrimeChar.
-Variable p : nat.
+Variable p : nat.
Section PrimeCharRing.
@@ -215,49 +214,49 @@
Variable R0 : ringType.
-Definition PrimeCharType of p \in [char R0] : predArgType := R0.
+Definition PrimeCharType of p \in [char R0] : predArgType := R0.
-Hypothesis charRp : p \in [char R0].
-Implicit Types (a b : 'F_p) (x y : R).
+Hypothesis charRp : p \in [char R0].
+Implicit Types (a b : 'F_p) (x y : R).
-Canonical primeChar_eqType := [eqType of R].
-Canonical primeChar_choiceType := [choiceType of R].
-Canonical primeChar_zmodType := [zmodType of R].
-Canonical primeChar_ringType := [ringType of R].
+Canonical primeChar_eqType := [eqType of R].
+Canonical primeChar_choiceType := [choiceType of R].
+Canonical primeChar_zmodType := [zmodType of R].
+Canonical primeChar_ringType := [ringType of R].
-Definition primeChar_scale a x := a%:R × x.
+Definition primeChar_scale a x := a%:R × x.
-Let natrFp n : (inZp n : 'F_p)%:R = n%:R :> R.
+Let natrFp n : (inZp n : 'F_p)%:R = n%:R :> R.
-Lemma primeChar_scaleA a b x : a ×p: (b ×p: x) = (a × b) ×p: x.
+Lemma primeChar_scaleA a b x : a ×p: (b ×p: x) = (a × b) ×p: x.
-Lemma primeChar_scale1 : left_id 1 primeChar_scale.
+Lemma primeChar_scale1 : left_id 1 primeChar_scale.
-Lemma primeChar_scaleDr : right_distributive primeChar_scale +%R.
+Lemma primeChar_scaleDr : right_distributive primeChar_scale +%R.
-Lemma primeChar_scaleDl x : {morph primeChar_scale^~ x: a b / a + b}.
+Lemma primeChar_scaleDl x : {morph primeChar_scale^~ x: a b / a + b}.
Definition primeChar_lmodMixin :=
LmodMixin primeChar_scaleA primeChar_scale1
primeChar_scaleDr primeChar_scaleDl.
-Canonical primeChar_lmodType := LmodType 'F_p R primeChar_lmodMixin.
+Canonical primeChar_lmodType := LmodType 'F_p R primeChar_lmodMixin.
-Lemma primeChar_scaleAl : GRing.Lalgebra.axiom ( *%R : R → R → R).
- Canonical primeChar_LalgType := LalgType 'F_p R primeChar_scaleAl.
+Lemma primeChar_scaleAl : GRing.Lalgebra.axiom ( *%R : R → R → R).
+ Canonical primeChar_LalgType := LalgType 'F_p R primeChar_scaleAl.
Lemma primeChar_scaleAr : GRing.Algebra.axiom primeChar_LalgType.
- Canonical primeChar_algType := AlgType 'F_p R primeChar_scaleAr.
+ Canonical primeChar_algType := AlgType 'F_p R primeChar_scaleAr.
End PrimeCharRing.
@@ -266,87 +265,87 @@
Canonical primeChar_unitRingType (R : unitRingType) charRp :=
- [unitRingType of type R charRp].
+ [unitRingType of type R charRp].
Canonical primeChar_unitAlgType (R : unitRingType) charRp :=
- [unitAlgType 'F_p of type R charRp].
+ [unitAlgType 'F_p of type R charRp].
Canonical primeChar_comRingType (R : comRingType) charRp :=
- [comRingType of type R charRp].
+ [comRingType of type R charRp].
Canonical primeChar_comUnitRingType (R : comUnitRingType) charRp :=
- [comUnitRingType of type R charRp].
+ [comUnitRingType of type R charRp].
Canonical primeChar_idomainType (R : idomainType) charRp :=
- [idomainType of type R charRp].
+ [idomainType of type R charRp].
Canonical primeChar_fieldType (F : fieldType) charFp :=
- [fieldType of type F charFp].
+ [fieldType of type F charFp].
Section FinRing.
-Variables (R0 : finRingType) (charRp : p \in [char R0]).
+Variables (R0 : finRingType) (charRp : p \in [char R0]).
-Canonical primeChar_finType := [finType of R].
-Canonical primeChar_finZmodType := [finZmodType of R].
-Canonical primeChar_baseGroupType := [baseFinGroupType of R for +%R].
-Canonical primeChar_groupType := [finGroupType of R for +%R].
-Canonical primeChar_finRingType := [finRingType of R].
-Canonical primeChar_finLmodType := [finLmodType 'F_p of R].
-Canonical primeChar_finLalgType := [finLalgType 'F_p of R].
-Canonical primeChar_finAlgType := [finAlgType 'F_p of R].
+Canonical primeChar_finType := [finType of R].
+Canonical primeChar_finZmodType := [finZmodType of R].
+Canonical primeChar_baseGroupType := [baseFinGroupType of R for +%R].
+Canonical primeChar_groupType := [finGroupType of R for +%R].
+Canonical primeChar_finRingType := [finRingType of R].
+Canonical primeChar_finLmodType := [finLmodType 'F_p of R].
+Canonical primeChar_finLalgType := [finLalgType 'F_p of R].
+Canonical primeChar_finAlgType := [finAlgType 'F_p of R].
Let pr_p : prime p.
-Lemma primeChar_abelem : p.-abelem [set: R].
+Lemma primeChar_abelem : p.-abelem [set: R].
-Lemma primeChar_pgroup : p.-group [set: R].
+Lemma primeChar_pgroup : p.-group [set: R].
-Lemma order_primeChar x : x != 0 :> R → #[x]%g = p.
+Lemma order_primeChar x : x != 0 :> R → #[x]%g = p.
-Let n := logn p #|R|.
+Let n := logn p #|R|.
-Lemma card_primeChar : #|R| = (p ^ n)%N.
+Lemma card_primeChar : #|R| = (p ^ n)%N.
Lemma primeChar_vectAxiom : Vector.axiom n (primeChar_lmodType charRp).
Definition primeChar_vectMixin := Vector.Mixin primeChar_vectAxiom.
-Canonical primeChar_vectType := VectType 'F_p R primeChar_vectMixin.
+Canonical primeChar_vectType := VectType 'F_p R primeChar_vectMixin.
-Lemma primeChar_dimf : \dim {:primeChar_vectType} = n.
+Lemma primeChar_dimf : \dim {:primeChar_vectType} = n.
End FinRing.
Canonical primeChar_finUnitRingType (R : finUnitRingType) charRp :=
- [finUnitRingType of type R charRp].
+ [finUnitRingType of type R charRp].
Canonical primeChar_finUnitAlgType (R : finUnitRingType) charRp :=
- [finUnitAlgType 'F_p of type R charRp].
+ [finUnitAlgType 'F_p of type R charRp].
Canonical primeChar_FalgType (R : finUnitRingType) charRp :=
- [FalgType 'F_p of type R charRp].
+ [FalgType 'F_p of type R charRp].
Canonical primeChar_finComRingType (R : finComRingType) charRp :=
- [finComRingType of type R charRp].
+ [finComRingType of type R charRp].
Canonical primeChar_finComUnitRingType (R : finComUnitRingType) charRp :=
- [finComUnitRingType of type R charRp].
+ [finComUnitRingType of type R charRp].
Canonical primeChar_finIdomainType (R : finIdomainType) charRp :=
- [finIdomainType of type R charRp].
+ [finIdomainType of type R charRp].
Section FinField.
-Variables (F0 : finFieldType) (charFp : p \in [char F0]).
+Variables (F0 : finFieldType) (charFp : p \in [char F0]).
-Canonical primeChar_finFieldType := [finFieldType of F].
+Canonical primeChar_finFieldType := [finFieldType of F].
@@ -354,8 +353,8 @@
of the Canonical fieldType of F cannot be computed syntactically.