From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.field.cyclotomic.html | 39 ++++++++++++++---------------
1 file changed, 19 insertions(+), 20 deletions(-)
(limited to 'docs/htmldoc/mathcomp.field.cyclotomic.html')
diff --git a/docs/htmldoc/mathcomp.field.cyclotomic.html b/docs/htmldoc/mathcomp.field.cyclotomic.html
index aa91124..64a1afe 100644
--- a/docs/htmldoc/mathcomp.field.cyclotomic.html
+++ b/docs/htmldoc/mathcomp.field.cyclotomic.html
@@ -21,7 +21,6 @@
@@ -57,35 +56,35 @@
Definition cyclotomic (z : R) n :=
- \prod_(k < n | coprime k n) ('X - (z ^+ k)%:P).
+ \prod_(k < n | coprime k n) ('X - (z ^+ k)%:P).
-Lemma cyclotomic_monic z n : cyclotomic z n \is monic.
+Lemma cyclotomic_monic z n : cyclotomic z n \is monic.
-Lemma size_cyclotomic z n : size (cyclotomic z n) = (totient n).+1.
+Lemma size_cyclotomic z n : size (cyclotomic z n) = (totient n).+1.
End Ring.
Lemma separable_Xn_sub_1 (R : idomainType) n :
- n%:R != 0 :> R → @separable_poly R ('X^n - 1).
+ n%:R != 0 :> R → @separable_poly R ('X^n - 1).
Section Field.
-Variables (F : fieldType) (n : nat) (z : F).
-Hypothesis prim_z : n.-primitive_root z.
+Variables (F : fieldType) (n : nat) (z : F).
+Hypothesis prim_z : n.-primitive_root z.
Let n_gt0 := prim_order_gt0 prim_z.
-Lemma root_cyclotomic x : root (cyclotomic z n) x = n.-primitive_root x.
+Lemma root_cyclotomic x : root (cyclotomic z n) x = n.-primitive_root x.
Lemma prod_cyclotomic :
- 'X^n - 1 = \prod_(d <- divisors n) cyclotomic (z ^+ (n %/ d)) d.
+ 'X^n - 1 = \prod_(d <- divisors n) cyclotomic (z ^+ (n %/ d)) d.
End Field.
@@ -98,10 +97,10 @@
-Local Hint Resolve (@intr_inj [numDomainType of algC]).
+Local Hint Resolve (@intr_inj [numDomainType of algC]) : core.
-Lemma C_prim_root_exists n : (n > 0)%N → {z : algC | n.-primitive_root z}.
+Lemma C_prim_root_exists n : (n > 0)%N → {z : algC | n.-primitive_root z}.
@@ -112,34 +111,34 @@
--
cgit v1.2.3