From ed05182cece6bb3706e09b2ce14af4a41a2e8141 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 20 Apr 2018 10:54:22 +0200 Subject: generate the documentation for 1.7 --- docs/htmldoc/mathcomp.character.vcharacter.html | 658 ++++++++++++++++++++++++ 1 file changed, 658 insertions(+) create mode 100644 docs/htmldoc/mathcomp.character.vcharacter.html (limited to 'docs/htmldoc/mathcomp.character.vcharacter.html') diff --git a/docs/htmldoc/mathcomp.character.vcharacter.html b/docs/htmldoc/mathcomp.character.vcharacter.html new file mode 100644 index 0000000..4b01b7a --- /dev/null +++ b/docs/htmldoc/mathcomp.character.vcharacter.html @@ -0,0 +1,658 @@ + + + + + +mathcomp.character.vcharacter + + + + +
+ + + +
+ +

Library mathcomp.character.vcharacter

+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
+ Distributed under the terms of CeCILL-B.                                  *)

+Require Import mathcomp.ssreflect.ssreflect.
+ +
+Set Implicit Arguments.
+ +
+Import GroupScope GRing.Theory Num.Theory.
+Local Open Scope ring_scope.
+ +
+
+ +
+ This file provides basic notions of virtual character theory: + 'Z[S, A] == collective predicate for the phi that are Z-linear + combinations of elements of S : seq 'CF(G) and have + support in A : {set gT}. + 'Z[S] == collective predicate for the Z-linear combinations of + elements of S. + 'Z[irr G] == the collective predicate for virtual characters. + dirr G == the collective predicate for normal virtual characters, + i.e., virtual characters of norm 1: + mu \in dirr G <=> m \in 'Z[irr G] and ' [mu] = 1 + <=> mu or - mu \in irr G. +> othonormal subsets of 'Z[irr G] are contained in dirr G. + dIirr G == an index type for normal virtual characters. + dchi i == the normal virtual character of index i. + of_irr i == the (unique) irreducible constituent of dchi i: + dchi i = 'chi(of_irr i) or - 'chi(of_irr i). + ndirr i == the index of - dchi i. + dirr1 G == the normal virtual character index of 1 : 'CF(G), the + principal character. + dirr_dIirr j f == the index i (or dirr1 G if it does not exist) such that + dchi i = f j. + dirr_constt phi == the normal virtual character constituents of phi: + i \in dirr_constt phi <=> [dchi i, phi] > 0. + to_dirr phi i == the normal virtual character constituent of phi with an + irreducible constituent i, when i \in irr_constt phi. +
+
+ +
+Section Basics.
+ +
+Variables (gT : finGroupType) (B : {set gT}) (S : seq 'CF(B)) (A : {set gT}).
+ +
+Definition Zchar : pred_class :=
+  [pred phi in 'CF(B, A) | dec_Cint_span (in_tuple S) phi].
+Fact Zchar_key : pred_key Zchar.
+Canonical Zchar_keyed := KeyedPred Zchar_key.
+ +
+Lemma cfun0_zchar : 0 \in Zchar.
+ +
+Fact Zchar_zmod : zmod_closed Zchar.
+Canonical Zchar_opprPred := OpprPred Zchar_zmod.
+Canonical Zchar_addrPred := AddrPred Zchar_zmod.
+Canonical Zchar_zmodPred := ZmodPred Zchar_zmod.
+ +
+Lemma scale_zchar a phi : a \in Cint phi \in Zchar a *: phi \in Zchar.
+ +
+End Basics.
+ +
+Notation "''Z[' S , A ]" := (Zchar S A)
+  (at level 8, format "''Z[' S , A ]") : group_scope.
+Notation "''Z[' S ]" := 'Z[S, setT]
+  (at level 8, format "''Z[' S ]") : group_scope.
+ +
+Section Zchar.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+Implicit Types (A B : {set gT}) (S : seq 'CF(G)).
+ +
+Lemma zchar_split S A phi :
+  phi \in 'Z[S, A] = (phi \in 'Z[S]) && (phi \in 'CF(G, A)).
+ +
+Lemma zcharD1E phi S : (phi \in 'Z[S, G^#]) = (phi \in 'Z[S]) && (phi 1%g == 0).
+ +
+Lemma zcharD1 phi S A :
+  (phi \in 'Z[S, A^#]) = (phi \in 'Z[S, A]) && (phi 1%g == 0).
+ +
+Lemma zcharW S A : {subset 'Z[S, A] 'Z[S]}.
+ +
+Lemma zchar_on S A : {subset 'Z[S, A] 'CF(G, A)}.
+ +
+Lemma zchar_onS A B S : A \subset B {subset 'Z[S, A] 'Z[S, B]}.
+ +
+Lemma zchar_onG S : 'Z[S, G] =i 'Z[S].
+ +
+Lemma irr_vchar_on A : {subset 'Z[irr G, A] 'CF(G, A)}.
+ +
+Lemma support_zchar S A phi : phi \in 'Z[S, A] support phi \subset A.
+ +
+Lemma mem_zchar_on S A phi :
+  phi \in 'CF(G, A) phi \in S phi \in 'Z[S, A].
+ +
+
+ +
+ A special lemma is needed because trivial fails to use the cfun_onT Hint. +
+
+Lemma mem_zchar S phi : phi \in S phi \in 'Z[S].
+ +
+Lemma zchar_nth_expansion S A phi :
+    phi \in 'Z[S, A]
+  {z | i, z i \in Cint & phi = \sum_(i < size S) z i *: S`_i}.
+ +
+Lemma zchar_tuple_expansion n (S : n.-tuple 'CF(G)) A phi :
+    phi \in 'Z[S, A]
+  {z | i, z i \in Cint & phi = \sum_(i < n) z i *: S`_i}.
+ +
+
+ +
+ A pure seq version with the extra hypothesis of S's unicity. +
+
+Lemma zchar_expansion S A phi : uniq S
+    phi \in 'Z[S, A]
+  {z | xi, z xi \in Cint & phi = \sum_(xi <- S) z xi *: xi}.
+ +
+Lemma zchar_span S A : {subset 'Z[S, A] <<S>>%VS}.
+ +
+Lemma zchar_trans S1 S2 A B :
+  {subset S1 'Z[S2, B]} {subset 'Z[S1, A] 'Z[S2, A]}.
+ +
+Lemma zchar_trans_on S1 S2 A :
+  {subset S1 'Z[S2, A]} {subset 'Z[S1] 'Z[S2, A]}.
+ +
+Lemma zchar_sub_irr S A :
+  {subset S 'Z[irr G]} {subset 'Z[S, A] 'Z[irr G, A]}.
+ +
+Lemma zchar_subset S1 S2 A :
+  {subset S1 S2} {subset 'Z[S1, A] 'Z[S2, A]}.
+ +
+Lemma zchar_subseq S1 S2 A :
+  subseq S1 S2 {subset 'Z[S1, A] 'Z[S2, A]}.
+ +
+Lemma zchar_filter S A (p : pred 'CF(G)) :
+  {subset 'Z[filter p S, A] 'Z[S, A]}.
+ +
+End Zchar.
+ +
+Section VChar.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+Implicit Types (A B : {set gT}) (phi chi : 'CF(G)) (S : seq 'CF(G)).
+ +
+Lemma char_vchar chi : chi \is a character chi \in 'Z[irr G].
+ +
+Lemma irr_vchar i : 'chi[G]_i \in 'Z[irr G].
+ +
+Lemma cfun1_vchar : 1 \in 'Z[irr G].
+ +
+Lemma vcharP phi :
+  reflect (exists2 chi1, chi1 \is a character
+            & exists2 chi2, chi2 \is a character & phi = chi1 - chi2)
+          (phi \in 'Z[irr G]).
+ +
+Lemma Aint_vchar phi x : phi \in 'Z[irr G] phi x \in Aint.
+ +
+Lemma Cint_vchar1 phi : phi \in 'Z[irr G] phi 1%g \in Cint.
+ +
+Lemma Cint_cfdot_vchar_irr i phi : phi \in 'Z[irr G] '[phi, 'chi_i] \in Cint.
+ +
+Lemma cfdot_vchar_r phi psi :
+  psi \in 'Z[irr G] '[phi, psi] = \sum_i '[phi, 'chi_i] × '[psi, 'chi_i].
+ +
+Lemma Cint_cfdot_vchar : {in 'Z[irr G] &, phi psi, '[phi, psi] \in Cint}.
+ +
+Lemma Cnat_cfnorm_vchar : {in 'Z[irr G], phi, '[phi] \in Cnat}.
+ +
+Fact vchar_mulr_closed : mulr_closed 'Z[irr G].
+Canonical vchar_mulrPred := MulrPred vchar_mulr_closed.
+Canonical vchar_smulrPred := SmulrPred vchar_mulr_closed.
+Canonical vchar_semiringPred := SemiringPred vchar_mulr_closed.
+Canonical vchar_subringPred := SubringPred vchar_mulr_closed.
+ +
+Lemma mul_vchar A :
+  {in 'Z[irr G, A] &, phi psi, phi × psi \in 'Z[irr G, A]}.
+ +
+Section CfdotPairwiseOrthogonal.
+ +
+Variables (M : {group gT}) (S : seq 'CF(G)) (nu : 'CF(G) 'CF(M)).
+Hypotheses (Inu : {in 'Z[S] &, isometry nu}) (oSS : pairwise_orthogonal S).
+ +
+Let freeS := orthogonal_free oSS.
+Let uniqS : uniq S := free_uniq freeS.
+Let Z_S : {subset S 'Z[S]}.
+Let notS0 : 0 \notin S.
+Let dotSS := proj2 (pairwise_orthogonalP oSS).
+ +
+Lemma map_pairwise_orthogonal : pairwise_orthogonal (map nu S).
+ +
+Lemma cfproj_sum_orthogonal P z phi :
+    phi \in S
+  '[\sum_(xi <- S | P xi) z xi *: nu xi, nu phi]
+    = if P phi then z phi × '[phi] else 0.
+ +
+Lemma cfdot_sum_orthogonal z1 z2 :
+  '[\sum_(xi <- S) z1 xi *: nu xi, \sum_(xi <- S) z2 xi *: nu xi]
+    = \sum_(xi <- S) z1 xi × (z2 xi)^* × '[xi].
+ +
+Lemma cfnorm_sum_orthogonal z :
+  '[\sum_(xi <- S) z xi *: nu xi] = \sum_(xi <- S) `|z xi| ^+ 2 × '[xi].
+ +
+Lemma cfnorm_orthogonal : '[\sum_(xi <- S) nu xi] = \sum_(xi <- S) '[xi].
+ +
+End CfdotPairwiseOrthogonal.
+ +
+Lemma orthogonal_span S phi :
+    pairwise_orthogonal S phi \in <<S>>%VS
+  {z | z = fun xi'[phi, xi] / '[xi] & phi = \sum_(xi <- S) z xi *: xi}.
+ +
+Section CfDotOrthonormal.
+ +
+Variables (M : {group gT}) (S : seq 'CF(G)) (nu : 'CF(G) 'CF(M)).
+Hypotheses (Inu : {in 'Z[S] &, isometry nu}) (onS : orthonormal S).
+Let oSS := orthonormal_orthogonal onS.
+Let freeS := orthogonal_free oSS.
+Let nS1 : {in S, phi, '[phi] = 1}.
+ +
+Lemma map_orthonormal : orthonormal (map nu S).
+ +
+Lemma cfproj_sum_orthonormal z phi :
+  phi \in S '[\sum_(xi <- S) z xi *: nu xi, nu phi] = z phi.
+ +
+Lemma cfdot_sum_orthonormal z1 z2 :
+  '[\sum_(xi <- S) z1 xi *: xi, \sum_(xi <- S) z2 xi *: xi]
+     = \sum_(xi <- S) z1 xi × (z2 xi)^*.
+ +
+Lemma cfnorm_sum_orthonormal z :
+  '[\sum_(xi <- S) z xi *: nu xi] = \sum_(xi <- S) `|z xi| ^+ 2.
+ +
+Lemma cfnorm_map_orthonormal : '[\sum_(xi <- S) nu xi] = (size S)%:R.
+ +
+Lemma orthonormal_span phi :
+    phi \in <<S>>%VS
+  {z | z = fun xi'[phi, xi] & phi = \sum_(xi <- S) z xi *: xi}.
+ +
+End CfDotOrthonormal.
+ +
+Lemma cfnorm_orthonormal S :
+  orthonormal S '[\sum_(xi <- S) xi] = (size S)%:R.
+ +
+Lemma vchar_orthonormalP S :
+    {subset S 'Z[irr G]}
+  reflect ( I : {set Iirr G}, b : Iirr G bool,
+           perm_eq S [seq (-1) ^+ b i *: 'chi_i | i in I])
+          (orthonormal S).
+ +
+Lemma vchar_norm1P phi :
+    phi \in 'Z[irr G] '[phi] = 1
+   b : bool, i : Iirr G, phi = (-1) ^+ b *: 'chi_i.
+ +
+Lemma zchar_small_norm phi n :
+    phi \in 'Z[irr G] '[phi] = n%:R (n < 4)%N
+  {S : n.-tuple 'CF(G) |
+    [/\ orthonormal S, {subset S 'Z[irr G]} & phi = \sum_(xi <- S) xi]}.
+ +
+Lemma vchar_norm2 phi :
+    phi \in 'Z[irr G, G^#] '[phi] = 2%:R
+   i, exists2 j, j != i & phi = 'chi_i - 'chi_j.
+ +
+End VChar.
+ +
+Section Isometries.
+ +
+Variables (gT : finGroupType) (L G : {group gT}) (S : seq 'CF(L)).
+Implicit Type nu : {additive 'CF(L) 'CF(G)}.
+ +
+Lemma Zisometry_of_cfnorm (tauS : seq 'CF(G)) :
+    pairwise_orthogonal S pairwise_orthogonal tauS
+    map cfnorm tauS = map cfnorm S {subset tauS 'Z[irr G]}
+  {tau : {linear 'CF(L) 'CF(G)} | map tau S = tauS
+       & {in 'Z[S], isometry tau, to 'Z[irr G]}}.
+ +
+Lemma Zisometry_of_iso f :
+    free S {in S, isometry f, to 'Z[irr G]}
+  {tau : {linear 'CF(L) 'CF(G)} | {in S, tau =1 f}
+       & {in 'Z[S], isometry tau, to 'Z[irr G]}}.
+ +
+Lemma Zisometry_inj A nu :
+  {in 'Z[S, A] &, isometry nu} {in 'Z[S, A] &, injective nu}.
+ +
+Lemma isometry_in_zchar nu : {in S &, isometry nu} {in 'Z[S] &, isometry nu}.
+ +
+End Isometries.
+ +
+Section AutVchar.
+ +
+Variables (u : {rmorphism algC algC}) (gT : finGroupType) (G : {group gT}).
+Implicit Type (S : seq 'CF(G)) (phi chi : 'CF(G)).
+ +
+Lemma cfAut_zchar S A psi :
+  cfAut_closed u S psi \in 'Z[S, A] psi^u \in 'Z[S, A].
+ +
+Lemma cfAut_vchar A psi : psi \in 'Z[irr G, A] psi^u \in 'Z[irr G, A].
+ +
+Lemma sub_aut_zchar S A psi :
+   {subset S 'Z[irr G]} psi \in 'Z[S, A] psi^u \in 'Z[S, A]
+  psi - psi^u \in 'Z[S, A^#].
+ +
+Lemma conjC_vcharAut chi x : chi \in 'Z[irr G] (u (chi x))^* = u (chi x)^*.
+ +
+Lemma cfdot_aut_vchar phi chi :
+  chi \in 'Z[irr G] '[phi^u , chi^u] = u '[phi, chi].
+ +
+Lemma vchar_aut A chi : (chi^u \in 'Z[irr G, A]) = (chi \in 'Z[irr G, A]).
+ +
+End AutVchar.
+ +
+Definition cfConjC_vchar := cfAut_vchar conjC.
+ +
+Section MoreVchar.
+ +
+Variables (gT : finGroupType) (G H : {group gT}).
+ +
+Lemma cfRes_vchar phi : phi \in 'Z[irr G] 'Res[H] phi \in 'Z[irr H].
+ +
+Lemma cfRes_vchar_on A phi :
+  H \subset G phi \in 'Z[irr G, A] 'Res[H] phi \in 'Z[irr H, A].
+ +
+Lemma cfInd_vchar phi : phi \in 'Z[irr H] 'Ind[G] phi \in 'Z[irr G].
+ +
+Lemma sub_conjC_vchar A phi :
+  phi \in 'Z[irr G, A] phi - (phi^*)%CF \in 'Z[irr G, A^#].
+ +
+Lemma Frobenius_kernel_exists :
+  [Frobenius G with complement H] {K : {group gT} | [Frobenius G = K ><| H]}.
+ +
+End MoreVchar.
+ +
+Definition dirr (gT : finGroupType) (B : {set gT}) : pred_class :=
+  [pred f : 'CF(B) | (f \in irr B) || (- f \in irr B)].
+ +
+Section Norm1vchar.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+ +
+Fact dirr_key : pred_key (dirr G).
+Canonical dirr_keyed := KeyedPred dirr_key.
+ +
+Fact dirr_oppr_closed : oppr_closed (dirr G).
+ Canonical dirr_opprPred := OpprPred dirr_oppr_closed.
+ +
+Lemma dirr_opp v : (- v \in dirr G) = (v \in dirr G).
+Lemma dirr_sign n v : ((-1)^+ n *: v \in dirr G) = (v \in dirr G).
+ +
+Lemma irr_dirr i : 'chi_i \in dirr G.
+ +
+Lemma dirrP f :
+  reflect ( b : bool, i, f = (-1) ^+ b *: 'chi_i) (f \in dirr G).
+ +
+
+ +
+ This should perhaps be the definition of dirr. +
+
+Lemma dirrE phi : phi \in dirr G = (phi \in 'Z[irr G]) && ('[phi] == 1).
+ +
+Lemma cfdot_dirr f g : f \in dirr G g \in dirr G
+  '[f, g] = (if f == - g then -1 else (f == g)%:R).
+ +
+Lemma dirr_norm1 phi : phi \in 'Z[irr G] '[phi] = 1 phi \in dirr G.
+ +
+Lemma dirr_aut u phi : (cfAut u phi \in dirr G) = (phi \in dirr G).
+ +
+Definition dIirr (B : {set gT}) := (bool × (Iirr B))%type.
+ +
+Definition dirr1 (B : {set gT}) : dIirr B := (false, 0).
+ +
+Definition ndirr (B : {set gT}) (i : dIirr B) : dIirr B :=
+  (~~ i.1, i.2).
+ +
+Lemma ndirr_diff (i : dIirr G) : ndirr i != i.
+ +
+Lemma ndirrK : involutive (@ndirr G).
+ +
+Lemma ndirr_inj : injective (@ndirr G).
+ +
+Definition dchi (B : {set gT}) (i : dIirr B) : 'CF(B) :=
+  (-1)^+ i.1 *: 'chi_i.2.
+ +
+Lemma dchi1 : dchi (dirr1 G) = 1.
+ +
+Lemma dirr_dchi i : dchi i \in dirr G.
+ +
+Lemma dIrrP phi : reflect ( i, phi = dchi i) (phi \in dirr G).
+ +
+Lemma dchi_ndirrE (i : dIirr G) : dchi (ndirr i) = - dchi i.
+ +
+Lemma cfdot_dchi (i j : dIirr G) :
+  '[dchi i, dchi j] = (i == j)%:R - (i == ndirr j)%:R.
+ +
+Lemma dchi_vchar i : dchi i \in 'Z[irr G].
+ +
+Lemma cfnorm_dchi (i : dIirr G) : '[dchi i] = 1.
+ +
+Lemma dirr_inj : injective (@dchi G).
+ +
+Definition dirr_dIirr (B : {set gT}) J (f : J 'CF(B)) j : dIirr B :=
+  odflt (dirr1 B) [pick i | dchi i == f j].
+ +
+Lemma dirr_dIirrPE J (f : J 'CF(G)) (P : pred J) :
+    ( j, P j f j \in dirr G)
+   j, P j dchi (dirr_dIirr f j) = f j.
+ +
+Lemma dirr_dIirrE J (f : J 'CF(G)) :
+  ( j, f j \in dirr G) j, dchi (dirr_dIirr f j) = f j.
+ +
+Definition dirr_constt (B : {set gT}) (phi: 'CF(B)) : {set (dIirr B)} :=
+  [set i | 0 < '[phi, dchi i]].
+ +
+Lemma dirr_consttE (phi : 'CF(G)) (i : dIirr G) :
+  (i \in dirr_constt phi) = (0 < '[phi, dchi i]).
+ +
+Lemma Cnat_dirr (phi : 'CF(G)) i :
+  phi \in 'Z[irr G] i \in dirr_constt phi '[phi, dchi i] \in Cnat.
+ +
+Lemma dirr_constt_oppr (i : dIirr G) (phi : 'CF(G)) :
+  (i \in dirr_constt (-phi)) = (ndirr i \in dirr_constt phi).
+ +
+Lemma dirr_constt_oppI (phi: 'CF(G)) :
+   dirr_constt phi :&: dirr_constt (-phi) = set0.
+ +
+Lemma dirr_constt_oppl (phi: 'CF(G)) i :
+  i \in dirr_constt phi (ndirr i) \notin dirr_constt phi.
+ +
+Definition to_dirr (B : {set gT}) (phi : 'CF(B)) (i : Iirr B) : dIirr B :=
+  ('[phi, 'chi_i] < 0, i).
+ +
+Definition of_irr (B : {set gT}) (i : dIirr B) : Iirr B := i.2.
+ +
+Lemma irr_constt_to_dirr (phi: 'CF(G)) i : phi \in 'Z[irr G]
+  (i \in irr_constt phi) = (to_dirr phi i \in dirr_constt phi).
+ +
+Lemma to_dirrK (phi: 'CF(G)) : cancel (to_dirr phi) (@of_irr G).
+ +
+Lemma of_irrK (phi: 'CF(G)) :
+  {in dirr_constt phi, cancel (@of_irr G) (to_dirr phi)}.
+ +
+Lemma cfdot_todirrE (phi: 'CF(G)) i (phi_i := dchi (to_dirr phi i)) :
+  '[phi, phi_i] *: phi_i = '[phi, 'chi_i] *: 'chi_i.
+ +
+Lemma cfun_sum_dconstt (phi : 'CF(G)) :
+  phi \in 'Z[irr G]
+  phi = \sum_(i in dirr_constt phi) '[phi, dchi i] *: dchi i.
+
+ +
+ GG -- rewrite pattern fails in trunk + move=> PiZ; rewrite [X in X = _ ]cfun_sum_constt. +
+
+ +
+Lemma cnorm_dconstt (phi : 'CF(G)) :
+  phi \in 'Z[irr G]
+  '[phi] = \sum_(i in dirr_constt phi) '[phi, dchi i] ^+ 2.
+ +
+Lemma dirr_small_norm (phi : 'CF(G)) n :
+  phi \in 'Z[irr G] '[phi] = n%:R (n < 4)%N
+  [/\ #|dirr_constt phi| = n, dirr_constt phi :&: dirr_constt (- phi) = set0 &
+      phi = \sum_(i in dirr_constt phi) dchi i].
+ +
+Lemma cfdot_sum_dchi (phi1 phi2 : 'CF(G)) :
+  '[\sum_(i in dirr_constt phi1) dchi i,
+    \sum_(i in dirr_constt phi2) dchi i] =
+  #|dirr_constt phi1 :&: dirr_constt phi2|%:R -
+    #|dirr_constt phi1 :&: dirr_constt (- phi2)|%:R.
+ +
+Lemma cfdot_dirr_eq1 :
+  {in dirr G &, phi psi, ('[phi, psi] == 1) = (phi == psi)}.
+ +
+Lemma cfdot_add_dirr_eq1 :
+  {in dirr G & &, phi1 phi2 psi,
+    '[phi1 + phi2, psi] = 1 psi = phi1 psi = phi2}.
+ +
+End Norm1vchar.
+
+
+ + + +
+ + + \ No newline at end of file -- cgit v1.2.3