From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.character.integral_char.html | 338 --------------------- 1 file changed, 338 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.character.integral_char.html (limited to 'docs/htmldoc/mathcomp.character.integral_char.html') diff --git a/docs/htmldoc/mathcomp.character.integral_char.html b/docs/htmldoc/mathcomp.character.integral_char.html deleted file mode 100644 index 322b5ac..0000000 --- a/docs/htmldoc/mathcomp.character.integral_char.html +++ /dev/null @@ -1,338 +0,0 @@ - - - - - -mathcomp.character.integral_char - - - - -
- - - -
- -

Library mathcomp.character.integral_char

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- This file provides some standard results based on integrality properties - of characters, such as theorem asserting that the degree of an irreducible - character of G divides the order of G (Isaacs 3.11), or the famous p^a.q^b - solvability theorem of Burnside. - Defined here: - 'K_k == the kth class sum in gring F G, where k : 'I#|classes G|, and - F is inferred from the context. - := gset_mx F G (enum_val k) (see mxrepresentation.v). - --> The 'K_k form a basis of 'Z(group_ring F G)%%MS. - gring_classM_coef i j k == the coordinate of 'K_i *m 'K_j on 'K_k; this - is usually abbreviated as a i j k. - gring_classM_coef_set A B z == the set of all (x, y) in setX A B such - that x * y = z; if A and B are respectively the ith and jth - conjugacy class of G, and z is in the kth conjugacy class, then - gring_classM_coef i j k is exactly the cardinal of this set. - 'omega_i#A# == the mode of 'chi#G##i on (A \in 'Z(group_ring algC G))%MS, - i.e., the z such that gring_op 'Chi_i A = z%:M. -
-
- -
-Set Implicit Arguments.
- -
-Import GroupScope GRing.Theory Num.Theory.
-Local Open Scope ring_scope.
- -
-Lemma group_num_field_exists (gT : finGroupType) (G : {group gT}) :
-  {Qn : splittingFieldType rat & galois 1 {:Qn} &
-    {QnC : {rmorphism Qn algC}
-         & nuQn : argumentType (mem ('Gal({:Qn}%VS / 1%VS))),
-              {nu : {rmorphism algC algC} |
-                 {morph QnC: a / nuQn a >-> nu a}}
-         & {w : Qn & #|G|.-primitive_root w <<1; w>>%VS = fullv
-              & (hT : finGroupType) (H : {group hT}) (phi : 'CF(H)),
-                       phi \is a character
-                        x, (#[x] %| #|G|)%N {a | QnC a = phi x}}}}.
- -
-Section GenericClassSums.
- -
-
- -
- This is Isaacs, Theorem (2.4), generalized to an arbitrary field, and with - the combinatorial definition of the coeficients exposed. - This part could move to mxrepresentation. -
-
- -
-Variable (gT : finGroupType) (G : {group gT}) (F : fieldType).
- -
-Definition gring_classM_coef_set (Ki Kj : {set gT}) g :=
-  [set xy in [predX Ki & Kj] | let: (x, y) := xy in x × y == g]%g.
- -
-Definition gring_classM_coef (i j k : 'I_#|classes G|) :=
-  #|gring_classM_coef_set (enum_val i) (enum_val j) (repr (enum_val k))|.
- -
-Definition gring_class_sum (i : 'I_#|classes G|) := gset_mx F G (enum_val i).
- -
- -
-Lemma gring_class_sum_central i : ('K_i \in 'Z(group_ring F G))%MS.
- -
-Lemma set_gring_classM_coef (i j k : 'I_#|classes G|) g :
-    g \in enum_val k
-  a i j k = #|gring_classM_coef_set (enum_val i) (enum_val j) g|.
- -
-Theorem gring_classM_expansion i j : 'K_i ×m 'K_j = \sum_k (a i j k)%:R *: 'K_k.
- -
-Fact gring_irr_mode_key : unit.
-Definition gring_irr_mode_def (i : Iirr G) := ('chi_i 1%g)^-1 *: 'chi_i.
-Definition gring_irr_mode := locked_with gring_irr_mode_key gring_irr_mode_def.
-Canonical gring_irr_mode_unlockable := [unlockable fun gring_irr_mode].
- -
-End GenericClassSums.
- -
- -
-Notation "''K_' i" := (gring_class_sum _ i)
-  (at level 8, i at level 2, format "''K_' i") : ring_scope.
- -
-Notation "''omega_' i [ A ]" := (xcfun (gring_irr_mode i) A)
-   (at level 8, i at level 2, format "''omega_' i [ A ]") : ring_scope.
- -
-Section IntegralChar.
- -
-Variables (gT : finGroupType) (G : {group gT}).
- -
-
- -
- This is Isaacs, Corollary (3.6). -
-
-Lemma Aint_char (chi : 'CF(G)) x : chi \is a character chi x \in Aint.
- -
-Lemma Aint_irr i x : 'chi[G]_i x \in Aint.
- -
- -
-
- -
- This is Isaacs (2.25). -
- - -
- This is Isaacs, Theorem (3.7). -
- - -
- A more usable reformulation that does not involve the class sums. -
-
-Corollary Aint_class_div_irr1 x :
-  x \in G #|x ^: G|%:R × 'chi_i x / 'chi_i 1%g \in Aint.
- -
-
- -
- This is Isaacs, Theorem (3.8). -
-
-Theorem coprime_degree_support_cfcenter g :
-    coprime (truncC ('chi_i 1%g)) #|g ^: G| g \notin ('Z('chi_i))%CF
-  'chi_i g = 0.
- -
-End GringIrrMode.
- -
-
- -
- This is Isaacs, Theorem (3.9). -
-
-Theorem primes_class_simple_gt1 C :
-  simple G ~~ abelian G C \in (classes G)^# (size (primes #|C|) > 1)%N.
- -
-End IntegralChar.
- -
-Section MoreIntegralChar.
- -
-Implicit Type gT : finGroupType.
- -
-
- -
- This is Burnside's famous p^a.q^b theorem (Isaacs, Theorem (3.10)). -
-
-Theorem Burnside_p_a_q_b gT (G : {group gT}) :
-  (size (primes #|G|) 2)%N solvable G.
- -
-
- -
- This is Isaacs, Theorem (3.11). -
-
-Theorem dvd_irr1_cardG gT (G : {group gT}) i : ('chi[G]_i 1%g %| #|G|)%C.
- -
-
- -
- This is Isaacs, Theorem (3.12). -
-
-Theorem dvd_irr1_index_center gT (G : {group gT}) i :
-  ('chi[G]_i 1%g %| #|G : 'Z('chi_i)%CF|)%C.
- -
-
- -
- This is Isaacs, Problem (3.7). -
-
-Lemma gring_classM_coef_sum_eq gT (G : {group gT}) j1 j2 k g1 g2 g :
-   let a := @gring_classM_coef gT G j1 j2 in let a_k := a k in
-   g1 \in enum_val j1 g2 \in enum_val j2 g \in enum_val k
-   let sum12g := \sum_i 'chi[G]_i g1 × 'chi_i g2 × ('chi_i g)^* / 'chi_i 1%g in
-  a_k%:R = (#|enum_val j1| × #|enum_val j2|)%:R / #|G|%:R × sum12g.
- -
-
- -
- This is Isaacs, Problem (2.16). -
-
-Lemma index_support_dvd_degree gT (G H : {group gT}) chi :
-    H \subset G chi \is a character chi \in 'CF(G, H)
-    (H :==: 1%g) || abelian G
-  (#|G : H| %| chi 1%g)%C.
- -
-
- -
- This is Isaacs, Theorem (3.13). -
-
-Theorem faithful_degree_p_part gT (p : nat) (G P : {group gT}) i :
-    cfaithful 'chi[G]_i p.-nat (truncC ('chi_i 1%g))
-    p.-Sylow(G) P abelian P
-  'chi_i 1%g = (#|G : 'Z(G)|`_p)%:R.
- -
-
- -
- This is Isaacs, Lemma (3.14). - Note that the assumption that G be cyclic is unnecessary, as S will be - empty if this is not the case. -
-
-Lemma sum_norm2_char_generators gT (G : {group gT}) (chi : 'CF(G)) :
-    let S := [pred s | generator G s] in
-    chi \is a character {in S, s, chi s != 0}
-  \sum_(s in S) `|chi s| ^+ 2 #|S|%:R.
- -
-
- -
- This is Burnside's vanishing theorem (Isaacs, Theorem (3.15)). -
-
-Theorem nonlinear_irr_vanish gT (G : {group gT}) i :
-  'chi[G]_i 1%g > 1 exists2 x, x \in G & 'chi_i x = 0.
- -
-End MoreIntegralChar.
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3