From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.character.classfun.html | 1956 ------------------------- 1 file changed, 1956 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.character.classfun.html (limited to 'docs/htmldoc/mathcomp.character.classfun.html') diff --git a/docs/htmldoc/mathcomp.character.classfun.html b/docs/htmldoc/mathcomp.character.classfun.html deleted file mode 100644 index f6b1f56..0000000 --- a/docs/htmldoc/mathcomp.character.classfun.html +++ /dev/null @@ -1,1956 +0,0 @@ - - - - - -mathcomp.character.classfun - - - - -
- - - -
- -

Library mathcomp.character.classfun

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- This file contains the basic theory of class functions: - 'CF(G) == the type of class functions on G : {group gT}, i.e., - which map gT to the type algC of complex algebraics, - have support in G, and are constant on each conjugacy - class of G. 'CF(G) implements the FalgType interface of - finite-dimensional F-algebras. - The identity 1 : 'CF(G) is the indicator function of G, - and (later) the principal character. -> The %CF scope (cfun_scope) is bound to the 'CF(_) types. - 'CF(G)%VS == the (total) vector space of 'CF(G). - 'CF(G, A) == the subspace of functions in 'CF(G) with support in A. - phi x == the image of x : gT under phi : 'CF(G). - # [phi]%CF == the multiplicative order of phi : 'CF(G). - cfker phi == the kernel of phi : 'CF(G); note that cfker phi <| G. - cfaithful phi <=> phi : 'CF(G) is faithful (has a trivial kernel). - '1_A == the indicator function of A as a function of 'CF(G). - (Provided A <| G; G is determined by the context.) - phi^*%CF == the function conjugate to phi : 'CF(G). - cfAut u phi == the function conjugate to phi by an algC-automorphism u - phi^u The notation "_ ^u" is only reserved; it is up to - clients to set Notation "phi ^u" := (cfAut u phi). - ' [phi, psi] == the convolution of phi, psi : 'CF(G) over G, normalised - ' [phi, psi]_G by #|G| so that ' [1, 1]_G = 1 (G is usually inferred). - cfdotr psi phi == ' [phi, psi] (self-expanding). - ' [phi], ' [phi]_G == the squared norm ' [phi, phi] of phi : 'CF(G). - orthogonal R S <=> each phi in R : seq 'CF(G) is orthogonal to each psi in - S, i.e., ' [phi, psi] = 0. As 'CF(G) coerces to seq, one - can write orthogonal phi S and orthogonal phi psi. - pairwise_orthogonal S <=> the class functions in S are pairwise orthogonal - AND non-zero. - orthonormal S <=> S is pairwise orthogonal and all class functions in S - have norm 1. - isometry tau <-> tau : 'CF(D) -> 'CF(R) is an isometry, mapping - ' [, _ ]_D to ' [, _ ]_R. - {in CD, isometry tau, to CR} <-> in the domain CD, tau is an isometry - whose range is contained in CR. - cfReal phi <=> phi is real, i.e., phi^* == phi. - cfAut_closed u S <-> S : seq 'CF(G) is closed under conjugation by u. - cfConjC_closed S <-> S : seq 'CF(G) is closed under complex conjugation. - conjC_subset S1 S2 <-> S1 : seq 'CF(G) represents a subset of S2 closed - under complex conjugation. - := [/\ uniq S1, {subset S1 <= S2} & cfConjC_closed S1]. - 'Res[H] phi == the restriction of phi : 'CF(G) to a function of 'CF(H) - 'Res[H, G] phi 'Res[H] phi x = phi x if x \in H (when H \subset G), - 'Res phi 'Res[H] phi x = 0 if x \notin H. The syntax variants - allow H and G to be inferred; the default is to specify - H explicitly, and infer G from the type of phi. - 'Ind[G] phi == the class function of 'CF(G) induced by phi : 'CF(H), - 'Ind[G, H] phi when H \subset G. As with 'Res phi, both G and H can - 'Ind phi be inferred, though usually G isn't. - cfMorph phi == the class function in 'CF(G) that maps x to phi (f x), - where phi : 'CF(f @* G), provided G \subset 'dom f. - cfIsom isoGR phi == the class function in 'CF(R) that maps f x to phi x, - given isoGR : isom G R f, f : {morphism G >-> rT} and - phi : 'CF(G). - (phi %% H)%CF == special case of cfMorph phi, when phi : 'CF(G / H). - (phi / H)%CF == the class function in 'CF(G / H) that coincides with - phi : 'CF(G) on cosets of H \subset cfker phi. - For a group G that is a semidirect product (defG : K ><| H = G), we have - cfSdprod KxH phi == for phi : 'CF(H), the class function of 'CF(G) that - maps k * h to psi h when k \in K and h \in H. - For a group G that is a direct product (with KxH : K \x H = G), we have - cfDprodl KxH phi == for phi : 'CF(K), the class function of 'CF(G) that - maps k * h to phi k when k \in K and h \in H. - cfDprodr KxH psi == for psi : 'CF(H), the class function of 'CF(G) that - maps k * h to psi h when k \in K and h \in H. - cfDprod KxH phi psi == for phi : 'CF(K), psi : 'CF(H), the class function - of 'CF(G) that maps k * h to phi k * psi h (this is - the product of the two functions above). - Finally, given defG : \big[dprod/1](i | P i) A i = G, with G and A i - groups and i ranges over a finType, we have - cfBigdprodi defG phi == for phi : 'CF(A i) s.t. P i, the class function - of 'CF(G) that maps x to phi x_i, where x_i is the - (A i)-component of x : G. - cfBigdprod defG phi == for phi : forall i, 'CF(A i), the class function - of 'CF(G) that maps x to \prod(i | P i) phi i x_i, - where x_i is the (A i)-component of x : G. -
-
- -
-Set Implicit Arguments.
- -
-Import GroupScope GRing.Theory Num.Theory.
-Local Open Scope ring_scope.
-Delimit Scope cfun_scope with CF.
- -
-Reserved Notation "''CF' ( G , A )" (at level 8, format "''CF' ( G , A )").
-Reserved Notation "''CF' ( G )" (at level 8, format "''CF' ( G )").
-Reserved Notation "''1_' G" (at level 8, G at level 2, format "''1_' G").
-Reserved Notation "''Res[' H , G ]" (at level 8, only parsing).
-Reserved Notation "''Res[' H ]" (at level 8, format "''Res[' H ]").
-Reserved Notation "''Res'" (at level 8, only parsing).
-Reserved Notation "''Ind[' G , H ]" (at level 8, only parsing).
-Reserved Notation "''Ind[' G ]" (at level 8, format "''Ind[' G ]").
-Reserved Notation "''Ind'" (at level 8, only parsing).
-Reserved Notation "'[ phi , psi ]_ G" (at level 2, only parsing).
-Reserved Notation "'[ phi , psi ]"
-  (at level 2, format "'[hv' ''[' phi , '/ ' psi ] ']'").
-Reserved Notation "'[ phi ]_ G" (at level 2, only parsing).
-Reserved Notation "'[ phi ]" (at level 2, format "''[' phi ]").
-Reserved Notation "phi ^u" (at level 3, format "phi ^u").
- -
-Section AlgC.
-
- -
- Arithmetic properties of group orders in the characteristic 0 field algC. -
-
- -
-Variable (gT : finGroupType).
-Implicit Types (G : {group gT}) (B : {set gT}).
- -
-Lemma neq0CG G : (#|G|)%:R != 0 :> algC.
-Lemma neq0CiG G B : (#|G : B|)%:R != 0 :> algC.
- Lemma gt0CG G : 0 < #|G|%:R :> algC.
-Lemma gt0CiG G B : 0 < #|G : B|%:R :> algC.
- -
-Lemma algC'G G : [char algC]^'.-group G.
- -
-End AlgC.
- -
-Section Defs.
- -
-Variable gT : finGroupType.
- -
-Definition is_class_fun (B : {set gT}) (f : {ffun gT algC}) :=
-  [ x, y in B, f (x ^ y) == f x] && (support f \subset B).
- -
-Lemma intro_class_fun (G : {group gT}) f :
-    {in G &, x y, f (x ^ y) = f x}
-    ( x, x \notin G f x = 0)
-  is_class_fun G (finfun f).
- -
-Variable B : {set gT}.
- -
-Record classfun : predArgType :=
-  Classfun {cfun_val; _ : is_class_fun G cfun_val}.
-Implicit Types phi psi xi : classfun.
-
- -
- The default expansion lemma cfunE requires key = 0. -
-
-Fact classfun_key : unit.
-Definition Cfun := locked_with classfun_key (fun flag : natClassfun).
- -
-Canonical cfun_subType := Eval hnf in [subType for cfun_val].
-Definition cfun_eqMixin := Eval hnf in [eqMixin of classfun by <:].
-Canonical cfun_eqType := Eval hnf in EqType classfun cfun_eqMixin.
-Definition cfun_choiceMixin := Eval hnf in [choiceMixin of classfun by <:].
-Canonical cfun_choiceType := Eval hnf in ChoiceType classfun cfun_choiceMixin.
- -
-Definition fun_of_cfun phi := cfun_val phi : gT algC.
-Coercion fun_of_cfun : classfun >-> Funclass.
- -
-Lemma cfunElock k f fP : @Cfun k (finfun f) fP =1 f.
- -
-Lemma cfunE f fP : @Cfun 0 (finfun f) fP =1 f.
- -
-Lemma cfunP phi psi : phi =1 psi phi = psi.
- -
-Lemma cfun0gen phi x : x \notin G phi x = 0.
- -
-Lemma cfun_in_genP phi psi : {in G, phi =1 psi} phi = psi.
- -
-Lemma cfunJgen phi x y : y \in G phi (x ^ y) = phi x.
- -
-Fact cfun_zero_subproof : is_class_fun G (0 : {ffun _}).
- Definition cfun_zero := Cfun 0 cfun_zero_subproof.
- -
-Fact cfun_comp_subproof f phi :
-  f 0 = 0 is_class_fun G [ffun x f (phi x)].
-Definition cfun_comp f f0 phi := Cfun 0 (@cfun_comp_subproof f phi f0).
-Definition cfun_opp := cfun_comp (oppr0 _).
- -
-Fact cfun_add_subproof phi psi : is_class_fun G [ffun x phi x + psi x].
-Definition cfun_add phi psi := Cfun 0 (cfun_add_subproof phi psi).
- -
-Fact cfun_indicator_subproof (A : {set gT}) :
-  is_class_fun G [ffun x ((x \in G) && (x ^: G \subset A))%:R].
-Definition cfun_indicator A := Cfun 1 (cfun_indicator_subproof A).
- -
-Lemma cfun1Egen x : '1_G x = (x \in G)%:R.
- -
-Fact cfun_mul_subproof phi psi : is_class_fun G [ffun x phi x × psi x].
-Definition cfun_mul phi psi := Cfun 0 (cfun_mul_subproof phi psi).
- -
-Definition cfun_unit := [pred phi : classfun | [ x in G, phi x != 0]].
-Definition cfun_inv phi :=
-  if phi \in cfun_unit then cfun_comp (invr0 _) phi else phi.
- -
-Definition cfun_scale a := cfun_comp (mulr0 a).
- -
-Fact cfun_addA : associative cfun_add.
- Fact cfun_addC : commutative cfun_add.
- Fact cfun_add0 : left_id cfun_zero cfun_add.
- Fact cfun_addN : left_inverse cfun_zero cfun_opp cfun_add.
- -
-Definition cfun_zmodMixin := ZmodMixin cfun_addA cfun_addC cfun_add0 cfun_addN.
-Canonical cfun_zmodType := ZmodType classfun cfun_zmodMixin.
- -
-Lemma muln_cfunE phi n x : (phi *+ n) x = phi x *+ n.
- -
-Lemma sum_cfunE I r (P : pred I) (phi : I classfun) x :
-  (\sum_(i <- r | P i) phi i) x = \sum_(i <- r | P i) (phi i) x.
- -
-Fact cfun_mulA : associative cfun_mul.
- Fact cfun_mulC : commutative cfun_mul.
- Fact cfun_mul1 : left_id '1_G cfun_mul.
-Fact cfun_mulD : left_distributive cfun_mul cfun_add.
- Fact cfun_nz1 : '1_G != 0.
- -
-Definition cfun_ringMixin :=
-  ComRingMixin cfun_mulA cfun_mulC cfun_mul1 cfun_mulD cfun_nz1.
-Canonical cfun_ringType := RingType classfun cfun_ringMixin.
-Canonical cfun_comRingType := ComRingType classfun cfun_mulC.
- -
-Lemma expS_cfunE phi n x : (phi ^+ n.+1) x = phi x ^+ n.+1.
- -
-Fact cfun_mulV : {in cfun_unit, left_inverse 1 cfun_inv *%R}.
-Fact cfun_unitP phi psi : psi × phi = 1 phi \in cfun_unit.
-Fact cfun_inv0id : {in [predC cfun_unit], cfun_inv =1 id}.
- -
-Definition cfun_unitMixin := ComUnitRingMixin cfun_mulV cfun_unitP cfun_inv0id.
-Canonical cfun_unitRingType := UnitRingType classfun cfun_unitMixin.
-Canonical cfun_comUnitRingType := [comUnitRingType of classfun].
- -
-Fact cfun_scaleA a b phi :
-  cfun_scale a (cfun_scale b phi) = cfun_scale (a × b) phi.
- Fact cfun_scale1 : left_id 1 cfun_scale.
- Fact cfun_scaleDr : right_distributive cfun_scale +%R.
- Fact cfun_scaleDl phi : {morph cfun_scale^~ phi : a b / a + b}.
- -
-Definition cfun_lmodMixin :=
-  LmodMixin cfun_scaleA cfun_scale1 cfun_scaleDr cfun_scaleDl.
-Canonical cfun_lmodType := LmodType algC classfun cfun_lmodMixin.
- -
-Fact cfun_scaleAl a phi psi : a *: (phi × psi) = (a *: phi) × psi.
- Fact cfun_scaleAr a phi psi : a *: (phi × psi) = phi × (a *: psi).
- -
-Canonical cfun_lalgType := LalgType algC classfun cfun_scaleAl.
-Canonical cfun_algType := AlgType algC classfun cfun_scaleAr.
-Canonical cfun_unitAlgType := [unitAlgType algC of classfun].
- -
-Section Automorphism.
- -
-Variable u : {rmorphism algC algC}.
- -
-Definition cfAut := cfun_comp (rmorph0 u).
- -
-Lemma cfAut_cfun1i A : cfAut '1_A = '1_A.
- -
-Lemma cfAutZ a phi : cfAut (a *: phi) = u a *: cfAut phi.
- -
-Lemma cfAut_is_rmorphism : rmorphism cfAut.
-Canonical cfAut_additive := Additive cfAut_is_rmorphism.
-Canonical cfAut_rmorphism := RMorphism cfAut_is_rmorphism.
- -
-Lemma cfAut_cfun1 : cfAut 1 = 1.
- -
-Lemma cfAut_scalable : scalable_for (u \; *:%R) cfAut.
- Canonical cfAut_linear := AddLinear cfAut_scalable.
-Canonical cfAut_lrmorphism := [lrmorphism of cfAut].
- -
-Definition cfAut_closed (S : seq classfun) :=
-  {in S, phi, cfAut phi \in S}.
- -
-End Automorphism.
- -
-Definition cfReal phi := cfAut conjC phi == phi.
- -
-Definition cfConjC_subset (S1 S2 : seq classfun) :=
-  [/\ uniq S1, {subset S1 S2} & cfAut_closed conjC S1].
- -
-Fact cfun_vect_iso : Vector.axiom #|classes G| classfun.
-Definition cfun_vectMixin := VectMixin cfun_vect_iso.
-Canonical cfun_vectType := VectType algC classfun cfun_vectMixin.
-Canonical cfun_FalgType := [FalgType algC of classfun].
- -
-Definition cfun_base A : #|classes B ::&: A|.-tuple classfun :=
-  [tuple of [seq '1_xB | xB in classes B ::&: A]].
-Definition classfun_on A := <<cfun_base A>>%VS.
- -
-Definition cfdot phi psi := #|B|%:R^-1 × \sum_(x in B) phi x × (psi x)^*.
-Definition cfdotr_head k psi phi := let: tt := k in cfdot phi psi.
-Definition cfnorm_head k phi := let: tt := k in cfdot phi phi.
- -
-Coercion seq_of_cfun phi := [:: phi].
- -
-Definition cforder phi := \big[lcmn/1%N]_(x in <<B>>) #[phi x]%C.
- -
-End Defs.
- -
- -
- -
-Notation "''CF' ( G )" := (classfun G) : type_scope.
-Notation "''CF' ( G )" := (@fullv _ (cfun_vectType G)) : vspace_scope.
-Notation "''1_' A" := (cfun_indicator _ A) : ring_scope.
-Notation "''CF' ( G , A )" := (classfun_on G A) : ring_scope.
-Notation "1" := (@GRing.one (cfun_ringType _)) (only parsing) : cfun_scope.
- -
-Notation "phi ^*" := (cfAut conjC phi) : cfun_scope.
-Notation cfConjC_closed := (cfAut_closed conjC).
-
- -
- Workaround for overeager projection reduction. -
-
-Notation eqcfP := (@eqP (cfun_eqType _) _ _) (only parsing).
- -
-Notation "#[ phi ]" := (cforder phi) : cfun_scope.
-Notation "''[' u , v ]_ G":= (@cfdot _ G u v) (only parsing) : ring_scope.
-Notation "''[' u , v ]" := (cfdot u v) : ring_scope.
-Notation "''[' u ]_ G" := '[u, u]_G (only parsing) : ring_scope.
-Notation "''[' u ]" := '[u, u] : ring_scope.
-Notation cfdotr := (cfdotr_head tt).
-Notation cfnorm := (cfnorm_head tt).
- -
-Section Predicates.
- -
-Variables (gT rT : finGroupType) (D : {set gT}) (R : {set rT}).
-Implicit Types (phi psi : 'CF(D)) (S : seq 'CF(D)) (tau : 'CF(D) 'CF(R)).
- -
-Definition cfker phi := [set x in D | [ y, phi (x × y)%g == phi y]].
- -
-Definition cfaithful phi := cfker phi \subset [1].
- -
-Definition ortho_rec S1 S2 :=
-  all [pred phi | all [pred psi | '[phi, psi] == 0] S2] S1.
- -
-Fixpoint pair_ortho_rec S :=
-  if S is psi :: S' then ortho_rec psi S' && pair_ortho_rec S' else true.
- -
-
- -
- We exclude 0 from pairwise orthogonal sets. -
-
-Definition pairwise_orthogonal S := (0 \notin S) && pair_ortho_rec S.
- -
-Definition orthonormal S := all [pred psi | '[psi] == 1] S && pair_ortho_rec S.
- -
-Definition isometry tau := phi psi, '[tau phi, tau psi] = '[phi, psi].
- -
-Definition isometry_from_to mCFD tau mCFR :=
-   prop_in2 mCFD (inPhantom (isometry tau))
-   prop_in1 mCFD (inPhantom ( phi, in_mem (tau phi) mCFR)).
- -
-End Predicates.
- -
-
- -
- Outside section so the nosimpl does not get "cooked" out. -
-
-Definition orthogonal gT D S1 S2 := nosimpl (@ortho_rec gT D S1 S2).
- -
- -
-Notation "{ 'in' CFD , 'isometry' tau , 'to' CFR }" :=
-    (isometry_from_to (mem CFD) tau (mem CFR))
-  (at level 0, format "{ 'in' CFD , 'isometry' tau , 'to' CFR }")
-     : type_scope.
- -
-Section ClassFun.
- -
-Variables (gT : finGroupType) (G : {group gT}).
-Implicit Types (A B : {set gT}) (H K : {group gT}) (phi psi xi : 'CF(G)).
- -
- -
-Lemma cfun0 phi x : x \notin G phi x = 0.
- -
-Lemma support_cfun phi : support phi \subset G.
- -
-Lemma cfunJ phi x y : y \in G phi (x ^ y) = phi x.
- -
-Lemma cfun_repr phi x : phi (repr (x ^: G)) = phi x.
- -
-Lemma cfun_inP phi psi : {in G, phi =1 psi} phi = psi.
- -
-Lemma cfuniE A x : A <| G '1_A x = (x \in A)%:R.
- -
-Lemma support_cfuni A : A <| G support '1_A =i A.
- -
-Lemma eq_mul_cfuni A phi : A <| G {in A, phi × '1_A =1 phi}.
- -
-Lemma eq_cfuni A : A <| G {in A, '1_A =1 (1 : 'CF(G))}.
- -
-Lemma cfuniG : '1_G = 1.
- -
-Lemma cfun1E g : (1 : 'CF(G)) g = (g \in G)%:R.
- -
-Lemma cfun11 : (1 : 'CF(G)) 1%g = 1.
- -
-Lemma prod_cfunE I r (P : pred I) (phi : I 'CF(G)) x :
-  x \in G (\prod_(i <- r | P i) phi i) x = \prod_(i <- r | P i) (phi i) x.
- -
-Lemma exp_cfunE phi n x : x \in G (phi ^+ n) x = phi x ^+ n.
- -
-Lemma mul_cfuni A B : '1_A × '1_B = '1_(A :&: B) :> 'CF(G).
- -
-Lemma cfun_classE x y : '1_(x ^: G) y = ((x \in G) && (y \in x ^: G))%:R.
- -
-Lemma cfun_on_sum A :
-  'CF(G, A) = (\sum_(xG in classes G | xG \subset A) <['1_xG]>)%VS.
- -
-Lemma cfun_onP A phi :
-  reflect ( x, x \notin A phi x = 0) (phi \in 'CF(G, A)).
- -
-Lemma cfun_on0 A phi x : phi \in 'CF(G, A) x \notin A phi x = 0.
- -
-Lemma sum_by_classes (R : ringType) (F : gT R) :
-    {in G &, g h, F (g ^ h) = F g}
-  \sum_(g in G) F g = \sum_(xG in classes G) #|xG|%:R × F (repr xG).
- -
-Lemma cfun_base_free A : free (cfun_base G A).
- -
-Lemma dim_cfun : \dim 'CF(G) = #|classes G|.
- -
-Lemma dim_cfun_on A : \dim 'CF(G, A) = #|classes G ::&: A|.
- -
-Lemma dim_cfun_on_abelian A : abelian G A \subset G \dim 'CF(G, A) = #|A|.
- -
-Lemma cfuni_on A : '1_A \in 'CF(G, A).
- -
-Lemma mul_cfuni_on A phi : phi × '1_A \in 'CF(G, A).
- -
-Lemma cfun_onE phi A : (phi \in 'CF(G, A)) = (support phi \subset A).
- -
-Lemma cfun_onT phi : phi \in 'CF(G, [set: gT]).
- -
-Lemma cfun_onD1 phi A :
-  (phi \in 'CF(G, A^#)) = (phi \in 'CF(G, A)) && (phi 1%g == 0).
- -
-Lemma cfun_onG phi : phi \in 'CF(G, G).
- -
-Lemma cfunD1E phi : (phi \in 'CF(G, G^#)) = (phi 1%g == 0).
- -
-Lemma cfunGid : 'CF(G, G) = 'CF(G)%VS.
- -
-Lemma cfun_onS A B phi : B \subset A phi \in 'CF(G, B) phi \in 'CF(G, A).
- -
-Lemma cfun_complement A :
-  A <| G ('CF(G, A) + 'CF(G, G :\: A)%SET = 'CF(G))%VS.
- -
-Lemma cfConjCE phi x : (phi^*)%CF x = (phi x)^*.
- -
-Lemma cfConjCK : involutive (fun phiphi^*)%CF.
- -
-Lemma cfConjC_cfun1 : (1^*)%CF = 1 :> 'CF(G).
- -
-
- -
- Class function kernel and faithful class functions -
-
- -
-Fact cfker_is_group phi : group_set (cfker phi).
-Canonical cfker_group phi := Group (cfker_is_group phi).
- -
-Lemma cfker_sub phi : cfker phi \subset G.
- -
-Lemma cfker_norm phi : G \subset 'N(cfker phi).
- -
-Lemma cfker_normal phi : cfker phi <| G.
- -
-Lemma cfkerMl phi x y : x \in cfker phi phi (x × y)%g = phi y.
- -
-Lemma cfkerMr phi x y : x \in cfker phi phi (y × x)%g = phi y.
- -
-Lemma cfker1 phi x : x \in cfker phi phi x = phi 1%g.
- -
-Lemma cfker_cfun0 : @cfker _ G 0 = G.
- -
-Lemma cfker_add phi psi : cfker phi :&: cfker psi \subset cfker (phi + psi).
- -
-Lemma cfker_sum I r (P : pred I) (Phi : I 'CF(G)) :
-  G :&: \bigcap_(i <- r | P i) cfker (Phi i)
-   \subset cfker (\sum_(i <- r | P i) Phi i).
- -
-Lemma cfker_scale a phi : cfker phi \subset cfker (a *: phi).
- -
-Lemma cfker_scale_nz a phi : a != 0 cfker (a *: phi) = cfker phi.
- -
-Lemma cfker_opp phi : cfker (- phi) = cfker phi.
- -
-Lemma cfker_cfun1 : @cfker _ G 1 = G.
- -
-Lemma cfker_mul phi psi : cfker phi :&: cfker psi \subset cfker (phi × psi).
- -
-Lemma cfker_prod I r (P : pred I) (Phi : I 'CF(G)) :
-  G :&: \bigcap_(i <- r | P i) cfker (Phi i)
-   \subset cfker (\prod_(i <- r | P i) Phi i).
- -
-Lemma cfaithfulE phi : cfaithful phi = (cfker phi \subset [1]).
- -
-End ClassFun.
- -
-Notation "''CF' ( G , A )" := (classfun_on G A) : ring_scope.
- -
-Hint Resolve cfun_onT : core.
- -
-Section DotProduct.
- -
-Variable (gT : finGroupType) (G : {group gT}).
-Implicit Types (M : {group gT}) (phi psi xi : 'CF(G)) (R S : seq 'CF(G)).
- -
-Lemma cfdotE phi psi :
-  '[phi, psi] = #|G|%:R^-1 × \sum_(x in G) phi x × (psi x)^*.
- -
-Lemma cfdotElr A B phi psi :
-     phi \in 'CF(G, A) psi \in 'CF(G, B)
-  '[phi, psi] = #|G|%:R^-1 × \sum_(x in A :&: B) phi x × (psi x)^*.
- -
-Lemma cfdotEl A phi psi :
-     phi \in 'CF(G, A)
-  '[phi, psi] = #|G|%:R^-1 × \sum_(x in A) phi x × (psi x)^*.
- -
-Lemma cfdotEr A phi psi :
-     psi \in 'CF(G, A)
-  '[phi, psi] = #|G|%:R^-1 × \sum_(x in A) phi x × (psi x)^*.
- -
-Lemma cfdot_complement A phi psi :
-  phi \in 'CF(G, A) psi \in 'CF(G, G :\: A) '[phi, psi] = 0.
- -
-Lemma cfnormE A phi :
-  phi \in 'CF(G, A) '[phi] = #|G|%:R^-1 × (\sum_(x in A) `|phi x| ^+ 2).
- -
-Lemma eq_cfdotl A phi1 phi2 psi :
-  psi \in 'CF(G, A) {in A, phi1 =1 phi2} '[phi1, psi] = '[phi2, psi].
- -
-Lemma cfdot_cfuni A B :
-  A <| G B <| G '['1_A, '1_B]_G = #|A :&: B|%:R / #|G|%:R.
- -
-Lemma cfnorm1 : '[1]_G = 1.
- -
-Lemma cfdotrE psi phi : cfdotr psi phi = '[phi, psi].
- -
-Lemma cfdotr_is_linear xi : linear (cfdotr xi : 'CF(G) algC^o).
-Canonical cfdotr_additive xi := Additive (cfdotr_is_linear xi).
-Canonical cfdotr_linear xi := Linear (cfdotr_is_linear xi).
- -
-Lemma cfdot0l xi : '[0, xi] = 0.
- Lemma cfdotNl xi phi : '[- phi, xi] = - '[phi, xi].
- Lemma cfdotDl xi phi psi : '[phi + psi, xi] = '[phi, xi] + '[psi, xi].
- Lemma cfdotBl xi phi psi : '[phi - psi, xi] = '[phi, xi] - '[psi, xi].
- Lemma cfdotMnl xi phi n : '[phi *+ n, xi] = '[phi, xi] *+ n.
- Lemma cfdot_suml xi I r (P : pred I) (phi : I 'CF(G)) :
-  '[\sum_(i <- r | P i) phi i, xi] = \sum_(i <- r | P i) '[phi i, xi].
- Lemma cfdotZl xi a phi : '[a *: phi, xi] = a × '[phi, xi].
- -
-Lemma cfdotC phi psi : '[phi, psi] = ('[psi, phi])^*.
- -
-Lemma eq_cfdotr A phi psi1 psi2 :
-  phi \in 'CF(G, A) {in A, psi1 =1 psi2} '[phi, psi1] = '[phi, psi2].
- -
-Lemma cfdotBr xi phi psi : '[xi, phi - psi] = '[xi, phi] - '[xi, psi].
- Canonical cfun_dot_additive xi := Additive (cfdotBr xi).
- -
-Lemma cfdot0r xi : '[xi, 0] = 0.
-Lemma cfdotNr xi phi : '[xi, - phi] = - '[xi, phi].
- Lemma cfdotDr xi phi psi : '[xi, phi + psi] = '[xi, phi] + '[xi, psi].
- Lemma cfdotMnr xi phi n : '[xi, phi *+ n] = '[xi, phi] *+ n.
- Lemma cfdot_sumr xi I r (P : pred I) (phi : I 'CF(G)) :
-  '[xi, \sum_(i <- r | P i) phi i] = \sum_(i <- r | P i) '[xi, phi i].
- Lemma cfdotZr a xi phi : '[xi, a *: phi] = a^* × '[xi, phi].
- -
-Lemma cfdot_cfAut (u : {rmorphism algC algC}) phi psi :
-    {in image psi G, {morph u : x / x^*}}
-  '[cfAut u phi, cfAut u psi] = u '[phi, psi].
- -
-Lemma cfdot_conjC phi psi : '[phi^*, psi^*] = '[phi, psi]^*.
- -
-Lemma cfdot_conjCl phi psi : '[phi^*, psi] = '[phi, psi^*]^*.
- -
-Lemma cfdot_conjCr phi psi : '[phi, psi^*] = '[phi^*, psi]^*.
- -
-Lemma cfnorm_ge0 phi : 0 '[phi].
- -
-Lemma cfnorm_eq0 phi : ('[phi] == 0) = (phi == 0).
- -
-Lemma cfnorm_gt0 phi : ('[phi] > 0) = (phi != 0).
- -
-Lemma sqrt_cfnorm_ge0 phi : 0 sqrtC '[phi].
- -
-Lemma sqrt_cfnorm_eq0 phi : (sqrtC '[phi] == 0) = (phi == 0).
- -
-Lemma sqrt_cfnorm_gt0 phi : (sqrtC '[phi] > 0) = (phi != 0).
- -
-Lemma cfnormZ a phi : '[a *: phi]= `|a| ^+ 2 × '[phi]_G.
- -
-Lemma cfnormN phi : '[- phi] = '[phi].
- -
-Lemma cfnorm_sign n phi : '[(-1) ^+ n *: phi] = '[phi].
- -
-Lemma cfnormD phi psi :
-  let d := '[phi, psi] in '[phi + psi] = '[phi] + '[psi] + (d + d^*).
- -
-Lemma cfnormB phi psi :
-  let d := '[phi, psi] in '[phi - psi] = '[phi] + '[psi] - (d + d^*).
- -
-Lemma cfnormDd phi psi : '[phi, psi] = 0 '[phi + psi] = '[phi] + '[psi].
- -
-Lemma cfnormBd phi psi : '[phi, psi] = 0 '[phi - psi] = '[phi] + '[psi].
- -
-Lemma cfnorm_conjC phi : '[phi^*] = '[phi].
- -
-Lemma cfCauchySchwarz phi psi :
-  `|'[phi, psi]| ^+ 2 '[phi] × '[psi] ?= iff ~~ free (phi :: psi).
- -
-Lemma cfCauchySchwarz_sqrt phi psi :
-  `|'[phi, psi]| sqrtC '[phi] × sqrtC '[psi] ?= iff ~~ free (phi :: psi).
- -
-Lemma cf_triangle_lerif phi psi :
-  sqrtC '[phi + psi] sqrtC '[phi] + sqrtC '[psi]
-           ?= iff ~~ free (phi :: psi) && (0 coord [tuple psi] 0 phi).
- -
-Lemma orthogonal_cons phi R S :
-  orthogonal (phi :: R) S = orthogonal phi S && orthogonal R S.
- -
-Lemma orthoP phi psi : reflect ('[phi, psi] = 0) (orthogonal phi psi).
- -
-Lemma orthogonalP S R :
-  reflect {in S & R, phi psi, '[phi, psi] = 0} (orthogonal S R).
- -
-Lemma orthoPl phi S :
-  reflect {in S, psi, '[phi, psi] = 0} (orthogonal phi S).
- -
-Lemma orthogonal_sym : symmetric (@orthogonal _ G).
- -
-Lemma orthoPr S psi :
-  reflect {in S, phi, '[phi, psi] = 0} (orthogonal S psi).
- -
-Lemma eq_orthogonal R1 R2 S1 S2 :
-  R1 =i R2 S1 =i S2 orthogonal R1 S1 = orthogonal R2 S2.
- -
-Lemma orthogonal_catl R1 R2 S :
-  orthogonal (R1 ++ R2) S = orthogonal R1 S && orthogonal R2 S.
- -
-Lemma orthogonal_catr R S1 S2 :
-  orthogonal R (S1 ++ S2) = orthogonal R S1 && orthogonal R S2.
- -
-Lemma span_orthogonal S1 S2 phi1 phi2 :
-    orthogonal S1 S2 phi1 \in <<S1>>%VS phi2 \in <<S2>>%VS
'[phi1, phi2] = 0.
- -
-Lemma orthogonal_split S beta :
-  {X : 'CF(G) & X \in <<S>>%VS &
-      {Y | [/\ beta = X + Y, '[X, Y] = 0 & orthogonal Y S]}}.
- -
-Lemma map_orthogonal M (nu : 'CF(G) 'CF(M)) S R (A : {pred 'CF(G)}) :
-  {in A &, isometry nu} {subset S A} {subset R A}
orthogonal (map nu S) (map nu R) = orthogonal S R.
- -
-Lemma orthogonal_oppr S R : orthogonal S (map -%R R) = orthogonal S R.
- -
-Lemma orthogonal_oppl S R : orthogonal (map -%R S) R = orthogonal S R.
- -
-Lemma pairwise_orthogonalP S :
-  reflect (uniq (0 :: S)
-              {in S &, phi psi, phi != psi '[phi, psi] = 0})
-          (pairwise_orthogonal S).
- -
-Lemma pairwise_orthogonal_cat R S :
-  pairwise_orthogonal (R ++ S) =
-    [&& pairwise_orthogonal R, pairwise_orthogonal S & orthogonal R S].
- -
-Lemma eq_pairwise_orthogonal R S :
-  perm_eq R S pairwise_orthogonal R = pairwise_orthogonal S.
- -
-Lemma sub_pairwise_orthogonal S1 S2 :
-    {subset S1 S2} uniq S1
-  pairwise_orthogonal S2 pairwise_orthogonal S1.
- -
-Lemma orthogonal_free S : pairwise_orthogonal S free S.
- -
-Lemma filter_pairwise_orthogonal S p :
-  pairwise_orthogonal S pairwise_orthogonal (filter p S).
- -
-Lemma orthonormal_not0 S : orthonormal S 0 \notin S.
- -
-Lemma orthonormalE S :
-  orthonormal S = all [pred phi | '[phi] == 1] S && pairwise_orthogonal S.
- -
-Lemma orthonormal_orthogonal S : orthonormal S pairwise_orthogonal S.
- -
-Lemma orthonormal_cat R S :
-  orthonormal (R ++ S) = [&& orthonormal R, orthonormal S & orthogonal R S].
- -
-Lemma eq_orthonormal R S : perm_eq R S orthonormal R = orthonormal S.
- -
-Lemma orthonormal_free S : orthonormal S free S.
- -
-Lemma orthonormalP S :
-  reflect (uniq S {in S &, phi psi, '[phi, psi]_G = (phi == psi)%:R})
-          (orthonormal S).
- -
-Lemma sub_orthonormal S1 S2 :
-  {subset S1 S2} uniq S1 orthonormal S2 orthonormal S1.
- -
-Lemma orthonormal2P phi psi :
-  reflect [/\ '[phi, psi] = 0, '[phi] = 1 & '[psi] = 1]
-          (orthonormal [:: phi; psi]).
- -
-Lemma conjC_pair_orthogonal S chi :
-    cfConjC_closed S ~~ has cfReal S pairwise_orthogonal S chi \in S
-  pairwise_orthogonal (chi :: chi^*%CF).
- -
-Lemma cfdot_real_conjC phi psi : cfReal phi '[phi, psi^*]_G = '[phi, psi]^*.
- -
-Lemma extend_cfConjC_subset S X phi :
-    cfConjC_closed S ~~ has cfReal S phi \in S phi \notin X
-  cfConjC_subset X S cfConjC_subset [:: phi, phi^* & X]%CF S.
- -
-
- -
- Note: other isometry lemmas, and the dot product lemmas for orthogonal - and orthonormal sequences are in vcharacter, because we need the 'Z[S] - notation for the isometry domains. Alternatively, this could be moved to - cfun. -
-
- -
-End DotProduct.
- -
- -
-Section CfunOrder.
- -
-Variables (gT : finGroupType) (G : {group gT}) (phi : 'CF(G)).
- -
-Lemma dvdn_cforderP n :
-  reflect {in G, x, phi x ^+ n = 1} (#[phi]%CF %| n)%N.
- -
-Lemma dvdn_cforder n : (#[phi]%CF %| n) = (phi ^+ n == 1).
- -
-Lemma exp_cforder : phi ^+ #[phi]%CF = 1.
- -
-End CfunOrder.
- -
- -
-Section MorphOrder.
- -
-Variables (aT rT : finGroupType) (G : {group aT}) (R : {group rT}).
-Variable f : {rmorphism 'CF(G) 'CF(R)}.
- -
-Lemma cforder_rmorph phi : #[f phi]%CF %| #[phi]%CF.
- -
-Lemma cforder_inj_rmorph phi : injective f #[f phi]%CF = #[phi]%CF.
- -
-End MorphOrder.
- -
-Section BuildIsometries.
- -
-Variable (gT : finGroupType) (L G : {group gT}).
-Implicit Types (phi psi xi : 'CF(L)) (R S : seq 'CF(L)).
-Implicit Types (U : {pred 'CF(L)}) (W : {pred 'CF(G)}).
- -
-Lemma sub_iso_to U1 U2 W1 W2 tau :
-    {subset U2 U1} {subset W1 W2}
-  {in U1, isometry tau, to W1} {in U2, isometry tau, to W2}.
- -
-Lemma isometry_of_free S f :
-    free S {in S &, isometry f}
-  {tau : {linear 'CF(L) 'CF(G)} |
-    {in S, tau =1 f} & {in <<S>>%VS &, isometry tau}}.
- -
-Lemma isometry_of_cfnorm S tauS :
-    pairwise_orthogonal S pairwise_orthogonal tauS
-    map cfnorm tauS = map cfnorm S
-  {tau : {linear 'CF(L) 'CF(G)} | map tau S = tauS
-                                   & {in <<S>>%VS &, isometry tau}}.
- -
-Lemma isometry_raddf_inj U (tau : {additive 'CF(L) 'CF(G)}) :
-    {in U &, isometry tau} {in U &, u v, u - v \in U}
-  {in U &, injective tau}.
- -
-Lemma opp_isometry : @isometry _ _ G G -%R.
- -
-End BuildIsometries.
- -
-Section Restrict.
- -
-Variables (gT : finGroupType) (A B : {set gT}).
- -
-Fact cfRes_subproof (phi : 'CF(B)) :
-  is_class_fun H [ffun x phi (if H \subset G then x else 1%g) *+ (x \in H)].
-Definition cfRes phi := Cfun 1 (cfRes_subproof phi).
- -
-Lemma cfResE phi : A \subset B {in A, cfRes phi =1 phi}.
- -
-Lemma cfRes1 phi : cfRes phi 1%g = phi 1%g.
- -
-Lemma cfRes_is_linear : linear cfRes.
-Canonical cfRes_additive := Additive cfRes_is_linear.
-Canonical cfRes_linear := Linear cfRes_is_linear.
- -
-Lemma cfRes_cfun1 : cfRes 1 = 1.
- -
-Lemma cfRes_is_multiplicative : multiplicative cfRes.
-Canonical cfRes_rmorphism := AddRMorphism cfRes_is_multiplicative.
-Canonical cfRes_lrmorphism := [lrmorphism of cfRes].
- -
-End Restrict.
- -
-Notation "''Res[' H , G ]" := (@cfRes _ H G) (only parsing) : ring_scope.
-Notation "''Res[' H ]" := 'Res[H, _] : ring_scope.
-Notation "''Res'" := 'Res[_] (only parsing) : ring_scope.
- -
-Section MoreRestrict.
- -
-Variables (gT : finGroupType) (G H : {group gT}).
-Implicit Types (A : {set gT}) (phi : 'CF(G)).
- -
-Lemma cfResEout phi : ~~ (H \subset G) 'Res[H] phi = (phi 1%g)%:A.
- -
-Lemma cfResRes A phi :
-  A \subset H H \subset G 'Res[A] ('Res[H] phi) = 'Res[A] phi.
- -
-Lemma cfRes_id A psi : 'Res[A] psi = psi.
- -
-Lemma sub_cfker_Res A phi :
-  A \subset H A \subset cfker phi A \subset cfker ('Res[H, G] phi).
- -
-Lemma eq_cfker_Res phi : H \subset cfker phi cfker ('Res[H, G] phi) = H.
- -
-Lemma cfRes_sub_ker phi : H \subset cfker phi 'Res[H, G] phi = (phi 1%g)%:A.
- -
-Lemma cforder_Res phi : #['Res[H] phi]%CF %| #[phi]%CF.
- -
-End MoreRestrict.
- -
-Section Morphim.
- -
-Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).
- -
-Section Main.
- -
-Variable G : {group aT}.
-Implicit Type phi : 'CF(f @* G).
- -
-Fact cfMorph_subproof phi :
-  is_class_fun <<G>>
-    [ffun x phi (if G \subset D then f x else 1%g) *+ (x \in G)].
-Definition cfMorph phi := Cfun 1 (cfMorph_subproof phi).
- -
-Lemma cfMorphE phi x : G \subset D x \in G cfMorph phi x = phi (f x).
- -
-Lemma cfMorph1 phi : cfMorph phi 1%g = phi 1%g.
- -
-Lemma cfMorphEout phi : ~~ (G \subset D) cfMorph phi = (phi 1%g)%:A.
- -
-Lemma cfMorph_cfun1 : cfMorph 1 = 1.
- -
-Fact cfMorph_is_linear : linear cfMorph.
-Canonical cfMorph_additive := Additive cfMorph_is_linear.
-Canonical cfMorph_linear := Linear cfMorph_is_linear.
- -
-Fact cfMorph_is_multiplicative : multiplicative cfMorph.
-Canonical cfMorph_rmorphism := AddRMorphism cfMorph_is_multiplicative.
-Canonical cfMorph_lrmorphism := [lrmorphism of cfMorph].
- -
-Hypothesis sGD : G \subset D.
- -
-Lemma cfMorph_inj : injective cfMorph.
- -
-Lemma cfMorph_eq1 phi : (cfMorph phi == 1) = (phi == 1).
- -
-Lemma cfker_morph phi : cfker (cfMorph phi) = G :&: f @*^-1 (cfker phi).
- -
-Lemma cfker_morph_im phi : f @* cfker (cfMorph phi) = cfker phi.
- -
-Lemma sub_cfker_morph phi (A : {set aT}) :
-  (A \subset cfker (cfMorph phi)) = (A \subset G) && (f @* A \subset cfker phi).
- -
-Lemma sub_morphim_cfker phi (A : {set aT}) :
-  A \subset G (f @* A \subset cfker phi) = (A \subset cfker (cfMorph phi)).
- -
-Lemma cforder_morph phi : #[cfMorph phi]%CF = #[phi]%CF.
- -
-End Main.
- -
-Lemma cfResMorph (G H : {group aT}) (phi : 'CF(f @* G)) :
-  H \subset G G \subset D 'Res (cfMorph phi) = cfMorph ('Res[f @* H] phi).
- -
-End Morphim.
- -
- -
-Section Isomorphism.
- -
-Variables (aT rT : finGroupType) (G : {group aT}) (f : {morphism G >-> rT}).
-Variable R : {group rT}.
- -
-Hypothesis isoGR : isom G R f.
- -
-Let defR := isom_im isoGR.
-Let defG : G1 = G := isom_im (isom_sym isoGR).
- -
-Fact cfIsom_key : unit.
-Definition cfIsom :=
-  locked_with cfIsom_key (cfMorph \o 'Res[G1] : 'CF(G) 'CF(R)).
-Canonical cfIsom_unlockable := [unlockable of cfIsom].
- -
-Lemma cfIsomE phi x : x \in G cfIsom phi (f x) = phi x.
- -
-Lemma cfIsom1 phi : cfIsom phi 1%g = phi 1%g.
- -
-Canonical cfIsom_additive := [additive of cfIsom].
-Canonical cfIsom_linear := [linear of cfIsom].
-Canonical cfIsom_rmorphism := [rmorphism of cfIsom].
-Canonical cfIsom_lrmorphism := [lrmorphism of cfIsom].
-Lemma cfIsom_cfun1 : cfIsom 1 = 1.
- -
-Lemma cfker_isom phi : cfker (cfIsom phi) = f @* cfker phi.
- -
-End Isomorphism.
- -
- -
-Section InvMorphism.
- -
-Variables (aT rT : finGroupType) (G : {group aT}) (f : {morphism G >-> rT}).
-Variable R : {group rT}.
- -
-Hypothesis isoGR : isom G R f.
- -
-Lemma cfIsomK : cancel (cfIsom isoGR) (cfIsom (isom_sym isoGR)).
- -
-Lemma cfIsomKV : cancel (cfIsom (isom_sym isoGR)) (cfIsom isoGR).
- -
-Lemma cfIsom_inj : injective (cfIsom isoGR).
- -
-Lemma cfIsom_eq1 phi : (cfIsom isoGR phi == 1) = (phi == 1).
- -
-Lemma cforder_isom phi : #[cfIsom isoGR phi]%CF = #[phi]%CF.
- -
-End InvMorphism.
- -
- -
-Section Coset.
- -
-Variables (gT : finGroupType) (G : {group gT}) (B : {set gT}).
-Implicit Type rT : finGroupType.
- -
-Definition cfMod : 'CF(G / B) 'CF(G) := cfMorph.
- -
-Definition ffun_Quo (phi : 'CF(G)) :=
-  [ffun Hx : coset_of B
-    phi (if B \subset cfker phi then repr Hx else 1%g) *+ (Hx \in G / B)%g].
-Fact cfQuo_subproof phi : is_class_fun <<G / B>> (ffun_Quo phi).
-Definition cfQuo phi := Cfun 1 (cfQuo_subproof phi).
- -
- -
-
- -
- We specialize the cfMorph lemmas to cfMod by strengthening the domain - condition G \subset 'N(H) to H <| G; the cfMorph lemmas can be used if the - stronger results are needed. -
-
- -
-Lemma cfModE phi x : B <| G x \in G (phi %% B)%CF x = phi (coset B x).
- -
-Lemma cfMod1 phi : (phi %% B)%CF 1%g = phi 1%g.
- -
-Canonical cfMod_additive := [additive of cfMod].
-Canonical cfMod_rmorphism := [rmorphism of cfMod].
-Canonical cfMod_linear := [linear of cfMod].
-Canonical cfMod_lrmorphism := [lrmorphism of cfMod].
- -
-Lemma cfMod_cfun1 : (1 %% B)%CF = 1.
- -
-Lemma cfker_mod phi : B <| G B \subset cfker (phi %% B).
- -
-
- -
- Note that cfQuo is nondegenerate even when G does not normalize B. -
-
- -
-Lemma cfQuoEnorm (phi : 'CF(G)) x :
-  B \subset cfker phi x \in 'N_G(B) (phi / B)%CF (coset B x) = phi x.
- -
-Lemma cfQuoE (phi : 'CF(G)) x :
-  B <| G B \subset cfker phi x \in G (phi / B)%CF (coset B x) = phi x.
- -
-Lemma cfQuo1 (phi : 'CF(G)) : (phi / B)%CF 1%g = phi 1%g.
- -
-Lemma cfQuoEout (phi : 'CF(G)) :
-  ~~ (B \subset cfker phi) (phi / B)%CF = (phi 1%g)%:A.
- -
-
- -
- cfQuo is only linear on the class functions that have H in their kernel. -
-
- -
-Lemma cfQuo_cfun1 : (1 / B)%CF = 1.
- -
-
- -
- Cancellation properties -
-
- -
-Lemma cfModK : B <| G cancel cfMod cfQuo.
- -
-Lemma cfQuoK :
-  B <| G phi, B \subset cfker phi (phi / B %% B)%CF = phi.
- -
-Lemma cfMod_eq1 psi : B <| G (psi %% B == 1)%CF = (psi == 1).
- -
-Lemma cfQuo_eq1 phi :
-  B <| G B \subset cfker phi (phi / B == 1)%CF = (phi == 1).
- -
-End Coset.
- -
-Notation "phi / H" := (cfQuo H phi) : cfun_scope.
-Notation "phi %% H" := (@cfMod _ _ H phi) : cfun_scope.
- -
-Section MoreCoset.
- -
-Variables (gT : finGroupType) (G : {group gT}).
-Implicit Types (H K : {group gT}) (phi : 'CF(G)).
- -
-Lemma cfResMod H K (psi : 'CF(G / K)) :
-  H \subset G K <| G ('Res (psi %% K) = 'Res[H / K] psi %% K)%CF.
- -
-Lemma quotient_cfker_mod (A : {set gT}) K (psi : 'CF(G / K)) :
-  K <| G (cfker (psi %% K) / K)%g = cfker psi.
- -
-Lemma sub_cfker_mod (A : {set gT}) K (psi : 'CF(G / K)) :
-    K <| G A \subset 'N(K)
-  (A \subset cfker (psi %% K)) = (A / K \subset cfker psi)%g.
- -
-Lemma cfker_quo H phi :
-  H <| G H \subset cfker (phi) cfker (phi / H) = (cfker phi / H)%g.
- -
-Lemma cfQuoEker phi x :
-  x \in G (phi / cfker phi)%CF (coset (cfker phi) x) = phi x.
- -
-Lemma cfaithful_quo phi : cfaithful (phi / cfker phi).
- -
-
- -
- Note that there is no requirement that K be normal in H or G. -
-
-Lemma cfResQuo H K phi :
-     K \subset cfker phi K \subset H H \subset G
-  ('Res[H / K] (phi / K) = 'Res[H] phi / K)%CF.
- -
-Lemma cfQuoInorm K phi :
-  K \subset cfker phi (phi / K)%CF = 'Res ('Res['N_G(K)] phi / K)%CF.
- -
-Lemma cforder_mod H (psi : 'CF(G / H)) : H <| G #[psi %% H]%CF = #[psi]%CF.
- -
-Lemma cforder_quo H phi :
-  H <| G H \subset cfker phi #[phi / H]%CF = #[phi]%CF.
- -
-End MoreCoset.
- -
-Section Product.
- -
-Variable (gT : finGroupType) (G : {group gT}).
- -
-Lemma cfunM_onI A B phi psi :
-  phi \in 'CF(G, A) psi \in 'CF(G, B) phi × psi \in 'CF(G, A :&: B).
- -
-Lemma cfunM_on A phi psi :
-  phi \in 'CF(G, A) psi \in 'CF(G, A) phi × psi \in 'CF(G, A).
- -
-End Product.
- -
-Section SDproduct.
- -
-Variables (gT : finGroupType) (G K H : {group gT}).
-Hypothesis defG : K ><| H = G.
- -
-Fact cfSdprodKey : unit.
- -
-Definition cfSdprod :=
-  locked_with cfSdprodKey
-   (cfMorph \o cfIsom (tagged (sdprod_isom defG)) : 'CF(H) 'CF(G)).
-Canonical cfSdprod_unlockable := [unlockable of cfSdprod].
- -
-Canonical cfSdprod_additive := [additive of cfSdprod].
-Canonical cfSdprod_linear := [linear of cfSdprod].
-Canonical cfSdprod_rmorphism := [rmorphism of cfSdprod].
-Canonical cfSdprod_lrmorphism := [lrmorphism of cfSdprod].
- -
-Lemma cfSdprod1 phi : cfSdprod phi 1%g = phi 1%g.
- -
-Let nsKG : K <| G.
-Let sHG : H \subset G.
-Let sKG : K \subset G.
- -
-Lemma cfker_sdprod phi : K \subset cfker (cfSdprod phi).
- -
-Lemma cfSdprodEr phi : {in H, cfSdprod phi =1 phi}.
- -
-Lemma cfSdprodE phi : {in K & H, x y, cfSdprod phi (x × y)%g = phi y}.
- -
-Lemma cfSdprodK : cancel cfSdprod 'Res[H].
- -
-Lemma cfSdprod_inj : injective cfSdprod.
- -
-Lemma cfSdprod_eq1 phi : (cfSdprod phi == 1) = (phi == 1).
- -
-Lemma cfRes_sdprodK phi : K \subset cfker phi cfSdprod ('Res[H] phi) = phi.
- -
-Lemma sdprod_cfker phi : K ><| cfker phi = cfker (cfSdprod phi).
- -
-Lemma cforder_sdprod phi : #[cfSdprod phi]%CF = #[phi]%CF.
- -
-End SDproduct.
- -
-Section DProduct.
- -
-Variables (gT : finGroupType) (G K H : {group gT}).
-Hypothesis KxH : K \x H = G.
- -
-Lemma reindex_dprod R idx (op : Monoid.com_law idx) (F : gT R) :
-   \big[op/idx]_(g in G) F g =
-      \big[op/idx]_(k in K) \big[op/idx]_(h in H) F (k × h)%g.
- -
-Definition cfDprodr := cfSdprod (dprodWsd KxH).
-Definition cfDprodl := cfSdprod (dprodWsdC KxH).
-Definition cfDprod phi psi := cfDprodl phi × cfDprodr psi.
- -
-Canonical cfDprodl_additive := [additive of cfDprodl].
-Canonical cfDprodl_linear := [linear of cfDprodl].
-Canonical cfDprodl_rmorphism := [rmorphism of cfDprodl].
-Canonical cfDprodl_lrmorphism := [lrmorphism of cfDprodl].
-Canonical cfDprodr_additive := [additive of cfDprodr].
-Canonical cfDprodr_linear := [linear of cfDprodr].
-Canonical cfDprodr_rmorphism := [rmorphism of cfDprodr].
-Canonical cfDprodr_lrmorphism := [lrmorphism of cfDprodr].
- -
-Lemma cfDprodl1 phi : cfDprodl phi 1%g = phi 1%g.
-Lemma cfDprodr1 psi : cfDprodr psi 1%g = psi 1%g.
-Lemma cfDprod1 phi psi : cfDprod phi psi 1%g = phi 1%g × psi 1%g.
- -
-Lemma cfDprodl_eq1 phi : (cfDprodl phi == 1) = (phi == 1).
- Lemma cfDprodr_eq1 psi : (cfDprodr psi == 1) = (psi == 1).
- -
-Lemma cfDprod_cfun1r phi : cfDprod phi 1 = cfDprodl phi.
- Lemma cfDprod_cfun1l psi : cfDprod 1 psi = cfDprodr psi.
- Lemma cfDprod_cfun1 : cfDprod 1 1 = 1.
- Lemma cfDprod_split phi psi : cfDprod phi psi = cfDprod phi 1 × cfDprod 1 psi.
- -
-Let nsKG : K <| G.
-Let nsHG : H <| G.
-Let cKH : H \subset 'C(K).
-Let sKG := normal_sub nsKG.
-Let sHG := normal_sub nsHG.
- -
-Lemma cfDprodlK : cancel cfDprodl 'Res[K].
-Lemma cfDprodrK : cancel cfDprodr 'Res[H].
- -
-Lemma cfker_dprodl phi : cfker phi \x H = cfker (cfDprodl phi).
- -
-Lemma cfker_dprodr psi : K \x cfker psi = cfker (cfDprodr psi).
- -
-Lemma cfDprodEl phi : {in K & H, k h, cfDprodl phi (k × h)%g = phi k}.
- -
-Lemma cfDprodEr psi : {in K & H, k h, cfDprodr psi (k × h)%g = psi h}.
- -
-Lemma cfDprodE phi psi :
-  {in K & H, h k, cfDprod phi psi (h × k)%g = phi h × psi k}.
- -
-Lemma cfDprod_Resl phi psi : 'Res[K] (cfDprod phi psi) = psi 1%g *: phi.
- -
-Lemma cfDprod_Resr phi psi : 'Res[H] (cfDprod phi psi) = phi 1%g *: psi.
- -
-Lemma cfDprodKl (psi : 'CF(H)) : psi 1%g = 1 cancel (cfDprod^~ psi) 'Res.
- -
-Lemma cfDprodKr (phi : 'CF(K)) : phi 1%g = 1 cancel (cfDprod phi) 'Res.
- -
-
- -
- Note that equality holds here iff either cfker phi = K and cfker psi = H, - or else phi != 0, psi != 0 and coprime #|K : cfker phi| #|H : cfker phi|. -
-
-Lemma cfker_dprod phi psi :
-  cfker phi <*> cfker psi \subset cfker (cfDprod phi psi).
- -
-Lemma cfdot_dprod phi1 phi2 psi1 psi2 :
-  '[cfDprod phi1 psi1, cfDprod phi2 psi2] = '[phi1, phi2] × '[psi1, psi2].
- -
-Lemma cfDprodl_iso : isometry cfDprodl.
- -
-Lemma cfDprodr_iso : isometry cfDprodr.
- -
-Lemma cforder_dprodl phi : #[cfDprodl phi]%CF = #[phi]%CF.
- -
-Lemma cforder_dprodr psi : #[cfDprodr psi]%CF = #[psi]%CF.
- -
-End DProduct.
- -
-Lemma cfDprodC (gT : finGroupType) (G K H : {group gT})
-               (KxH : K \x H = G) (HxK : H \x K = G) chi psi :
-  cfDprod KxH chi psi = cfDprod HxK psi chi.
- -
-Section Bigdproduct.
- -
-Variables (gT : finGroupType) (I : finType) (P : pred I).
-Variables (A : I {group gT}) (G : {group gT}).
-Hypothesis defG : \big[dprod/1%g]_(i | P i) A i = G.
- -
-Let sAG i : P i A i \subset G.
- -
-Fact cfBigdprodi_subproof i :
-  gval (if P i then A i else 1%G) \x <<\bigcup_(j | P j && (j != i)) A j>> = G.
-Definition cfBigdprodi i := cfDprodl (cfBigdprodi_subproof i) \o 'Res[_, A i].
- -
-Canonical cfBigdprodi_additive i := [additive of @cfBigdprodi i].
-Canonical cfBigdprodi_linear i := [linear of @cfBigdprodi i].
-Canonical cfBigdprodi_rmorphism i := [rmorphism of @cfBigdprodi i].
-Canonical cfBigdprodi_lrmorphism i := [lrmorphism of @cfBigdprodi i].
- -
-Lemma cfBigdprodi1 i (phi : 'CF(A i)) : cfBigdprodi phi 1%g = phi 1%g.
- -
-Lemma cfBigdprodi_eq1 i (phi : 'CF(A i)) :
-  P i (cfBigdprodi phi == 1) = (phi == 1).
- -
-Lemma cfBigdprodiK i : P i cancel (@cfBigdprodi i) 'Res[A i].
- -
-Lemma cfBigdprodi_inj i : P i injective (@cfBigdprodi i).
- -
-Lemma cfBigdprodEi i (phi : 'CF(A i)) x :
-    P i ( j, P j x j \in A j)
-  cfBigdprodi phi (\prod_(j | P j) x j)%g = phi (x i).
- -
-Lemma cfBigdprodi_iso i : P i isometry (@cfBigdprodi i).
- -
-Definition cfBigdprod (phi : i, 'CF(A i)) :=
-  \prod_(i | P i) cfBigdprodi (phi i).
- -
-Lemma cfBigdprodE phi x :
-    ( i, P i x i \in A i)
-  cfBigdprod phi (\prod_(i | P i) x i)%g = \prod_(i | P i) phi i (x i).
- -
-Lemma cfBigdprod1 phi : cfBigdprod phi 1%g = \prod_(i | P i) phi i 1%g.
- -
-Lemma cfBigdprodK phi (Phi := cfBigdprod phi) i (a := phi i 1%g / Phi 1%g) :
-  Phi 1%g != 0 P i a != 0 a *: 'Res[A i] Phi = phi i.
- -
-Lemma cfdot_bigdprod phi psi :
-  '[cfBigdprod phi, cfBigdprod psi] = \prod_(i | P i) '[phi i, psi i].
- -
-End Bigdproduct.
- -
-Section MorphIsometry.
- -
-Variable gT : finGroupType.
-Implicit Types (D G H K : {group gT}) (aT rT : finGroupType).
- -
-Lemma cfMorph_iso aT rT (G D : {group aT}) (f : {morphism D >-> rT}) :
-  G \subset D isometry (cfMorph : 'CF(f @* G) 'CF(G)).
- -
-Lemma cfIsom_iso rT G (R : {group rT}) (f : {morphism G >-> rT}) :
-   isoG : isom G R f, isometry (cfIsom isoG).
- -
-Lemma cfMod_iso H G : H <| G isometry (@cfMod _ G H).
- -
-Lemma cfQuo_iso H G :
-  H <| G {in [pred phi | H \subset cfker phi] &, isometry (@cfQuo _ G H)}.
- -
-Lemma cfnorm_quo H G phi :
-  H <| G H \subset cfker phi '[phi / H] = '[phi]_G.
- -
-Lemma cfSdprod_iso K H G (defG : K ><| H = G) : isometry (cfSdprod defG).
- -
-End MorphIsometry.
- -
-Section Induced.
- -
-Variable gT : finGroupType.
- -
-Section Def.
- -
-Variables B A : {set gT}.
- -
-
- -
- The defalut value for the ~~ (H \subset G) case matches the one for cfRes - so that Frobenius reciprocity holds even in this degenerate case. -
-
-Definition ffun_cfInd (phi : 'CF(A)) :=
-  [ffun x if H \subset G then #|A|%:R^-1 × (\sum_(y in G) phi (x ^ y))
-                            else #|G|%:R × '[phi, 1] *+ (x == 1%g)].
- -
-Fact cfInd_subproof phi : is_class_fun G (ffun_cfInd phi).
-Definition cfInd phi := Cfun 1 (cfInd_subproof phi).
- -
-Lemma cfInd_is_linear : linear cfInd.
-Canonical cfInd_additive := Additive cfInd_is_linear.
-Canonical cfInd_linear := Linear cfInd_is_linear.
- -
-End Def.
- -
- -
-Lemma cfIndE (G H : {group gT}) phi x :
-  H \subset G 'Ind[G, H] phi x = #|H|%:R^-1 × (\sum_(y in G) phi (x ^ y)).
- -
-Variables G K H : {group gT}.
-Implicit Types (phi : 'CF(H)) (psi : 'CF(G)).
- -
-Lemma cfIndEout phi :
-  ~~ (H \subset G) 'Ind[G] phi = (#|G|%:R × '[phi, 1]) *: '1_1%G.
- -
-Lemma cfIndEsdprod (phi : 'CF(K)) x :
-  K ><| H = G 'Ind[G] phi x = \sum_(w in H) phi (x ^ w)%g.
- -
-Lemma cfInd_on A phi :
-  H \subset G phi \in 'CF(H, A) 'Ind[G] phi \in 'CF(G, class_support A G).
- -
-Lemma cfInd_id phi : 'Ind[H] phi = phi.
- -
-Lemma cfInd_normal phi : H <| G 'Ind[G] phi \in 'CF(G, H).
- -
-Lemma cfInd1 phi : H \subset G 'Ind[G] phi 1%g = #|G : H|%:R × phi 1%g.
- -
-Lemma cfInd_cfun1 : H <| G 'Ind[G, H] 1 = #|G : H|%:R *: '1_H.
- -
-Lemma cfnorm_Ind_cfun1 : H <| G '['Ind[G, H] 1] = #|G : H|%:R.
- -
-Lemma cfIndInd phi :
-  K \subset G H \subset K 'Ind[G] ('Ind[K] phi) = 'Ind[G] phi.
- -
-
- -
- This is Isaacs, Lemma (5.2). -
-
-Lemma Frobenius_reciprocity phi psi : '[phi, 'Res[H] psi] = '['Ind[G] phi, psi].
-Definition cfdot_Res_r := Frobenius_reciprocity.
- -
-Lemma cfdot_Res_l psi phi : '['Res[H] psi, phi] = '[psi, 'Ind[G] phi].
- -
-Lemma cfIndM phi psi: H \subset G
-     'Ind[G] (phi × ('Res[H] psi)) = 'Ind[G] phi × psi.
- -
-End Induced.
- -
-Notation "''Ind[' G , H ]" := (@cfInd _ G H) (only parsing) : ring_scope.
-Notation "''Ind[' G ]" := 'Ind[G, _] : ring_scope.
-Notation "''Ind'" := 'Ind[_] (only parsing) : ring_scope.
- -
-Section MorphInduced.
- -
-Variables (aT rT : finGroupType) (D G H : {group aT}) (R S : {group rT}).
- -
-Lemma cfIndMorph (f : {morphism D >-> rT}) (phi : 'CF(f @* H)) :
-    'ker f \subset H H \subset G G \subset D
-  'Ind[G] (cfMorph phi) = cfMorph ('Ind[f @* G] phi).
- -
-Variables (g : {morphism G >-> rT}) (h : {morphism H >-> rT}).
-Hypotheses (isoG : isom G R g) (isoH : isom H S h) (eq_hg : {in H, h =1 g}).
-Hypothesis sHG : H \subset G.
- -
-Lemma cfResIsom phi : 'Res[S] (cfIsom isoG phi) = cfIsom isoH ('Res[H] phi).
- -
-Lemma cfIndIsom phi : 'Ind[R] (cfIsom isoH phi) = cfIsom isoG ('Ind[G] phi).
- -
-End MorphInduced.
- -
-Section FieldAutomorphism.
- -
-Variables (u : {rmorphism algC algC}) (gT rT : finGroupType).
-Variables (G K H : {group gT}) (f : {morphism G >-> rT}) (R : {group rT}).
-Implicit Types (phi : 'CF(G)) (S : seq 'CF(G)).
- -
-Lemma cfAutZ_nat n phi : (n%:R *: phi)^u = n%:R *: phi^u.
- -
-Lemma cfAutZ_Cnat z phi : z \in Cnat (z *: phi)^u = z *: phi^u.
- -
-Lemma cfAutZ_Cint z phi : z \in Cint (z *: phi)^u = z *: phi^u.
- -
-Lemma cfAutK : cancel (@cfAut gT G u) (cfAut (algC_invaut_rmorphism u)).
- -
-Lemma cfAutVK : cancel (cfAut (algC_invaut_rmorphism u)) (@cfAut gT G u).
- -
-Lemma cfAut_inj : injective (@cfAut gT G u).
- -
-Lemma cfAut_eq1 phi : (cfAut u phi == 1) = (phi == 1).
- -
-Lemma support_cfAut phi : support phi^u =i support phi.
- -
-Lemma map_cfAut_free S : cfAut_closed u S free S free (map (cfAut u) S).
- -
-Lemma cfAut_on A phi : (phi^u \in 'CF(G, A)) = (phi \in 'CF(G, A)).
- -
-Lemma cfker_aut phi : cfker phi^u = cfker phi.
- -
-Lemma cfAut_cfuni A : ('1_A)^u = '1_A :> 'CF(G).
- -
-Lemma cforder_aut phi : #[phi^u]%CF = #[phi]%CF.
- -
-Lemma cfAutRes phi : ('Res[H] phi)^u = 'Res phi^u.
- -
-Lemma cfAutMorph (psi : 'CF(f @* H)) : (cfMorph psi)^u = cfMorph psi^u.
- -
-Lemma cfAutIsom (isoGR : isom G R f) phi :
-  (cfIsom isoGR phi)^u = cfIsom isoGR phi^u.
- -
-Lemma cfAutQuo phi : (phi / H)^u = (phi^u / H)%CF.
- -
-Lemma cfAutMod (psi : 'CF(G / H)) : (psi %% H)^u = (psi^u %% H)%CF.
- -
-Lemma cfAutInd (psi : 'CF(H)) : ('Ind[G] psi)^u = 'Ind psi^u.
- -
-Hypothesis KxH : K \x H = G.
- -
-Lemma cfAutDprodl (phi : 'CF(K)) : (cfDprodl KxH phi)^u = cfDprodl KxH phi^u.
- -
-Lemma cfAutDprodr (psi : 'CF(H)) : (cfDprodr KxH psi)^u = cfDprodr KxH psi^u.
- -
-Lemma cfAutDprod (phi : 'CF(K)) (psi : 'CF(H)) :
-  (cfDprod KxH phi psi)^u = cfDprod KxH phi^u psi^u.
- -
-End FieldAutomorphism.
- -
- -
-Definition conj_cfRes := cfAutRes conjC.
-Definition cfker_conjC := cfker_aut conjC.
-Definition conj_cfQuo := cfAutQuo conjC.
-Definition conj_cfMod := cfAutMod conjC.
-Definition conj_cfInd := cfAutInd conjC.
-Definition cfconjC_eq1 := cfAut_eq1 conjC.
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3