Library mathcomp.character.character
+ +
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.
+ Distributed under the terms of CeCILL-B. *)
+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+
++ Distributed under the terms of CeCILL-B. *)
+Require Import mathcomp.ssreflect.ssreflect.
+ +
+
+ This file contains the basic notions of character theory, based on Isaacs.
+ irr G == tuple of the elements of 'CF(G) that are irreducible
+ characters of G.
+ Nirr G == number of irreducible characters of G.
+ Iirr G == index type for the irreducible characters of G.
+ := 'I(Nirr G).
+ 'chi_i == the i-th element of irr G, for i : Iirr G.
+ 'chi[G]_i Note that 'chi_0 = 1, the principal character of G.
+ 'Chi_i == an irreducible representation that affords 'chi_i.
+ socle_of_Iirr i == the Wedderburn component of the regular representation
+ of G, corresponding to 'Chi_i.
+ Iirr_of_socle == the inverse of socle_of_Iirr (which is one-to-one).
+ phi. [A]%CF == the image of A \in group_ring G under phi : 'CF(G).
+ cfRepr rG == the character afforded by the representation rG of G.
+ cfReg G == the regular character, afforded by the regular
+ representation of G.
+ detRepr rG == the linear character afforded by the determinant of rG.
+ cfDet phi == the linear character afforded by the determinant of a
+ representation affording phi.
+ 'o(phi) == the "determinential order" of phi (the multiplicative
+ order of cfDet phi.
+ phi \is a character <=> phi : 'CF(G) is a character of G or 0.
+ i \in irr_constt phi <=> 'chi_i is an irreducible constituent of phi: phi
+ has a non-zero coordinate on 'chi_i over the basis irr G.
+ xi \is a linear_char xi <=> xi : 'CF(G) is a linear character of G.
+ 'Z(chi)%CF == the center of chi when chi is a character of G, i.e.,
+ rcenter rG where rG is a representation that affords phi.
+ If phi is not a character then 'Z(chi)%CF = cfker phi.
+ aut_Iirr u i == the index of cfAut u 'chi_i in irr G.
+ conjC_Iirr i == the index of 'chi_i^*%CF in irr G.
+ morph_Iirr i == the index of cfMorph 'chi[f @* G]_i in irr G.
+ isom_Iirr isoG i == the index of cfIsom isoG 'chi[G]_i in irr R.
+ mod_Iirr i == the index of ('chi[G / H]_i %% H)%CF in irr G.
+ quo_Iirr i == the index of ('chi[G]_i / H)%CF in irr (G / H).
+ Ind_Iirr G i == the index of 'Ind[G, H] 'chi_i, provided it is an
+ irreducible character (such as when if H is the inertia
+ group of 'chi_i).
+ Res_Iirr H i == the index of 'Res[H, G] 'chi_i, provided it is an
+ irreducible character (such as when 'chi_i is linear).
+ sdprod_Iirr defG i == the index of cfSdprod defG 'chi_i in irr G, given
+ defG : K ><| H = G.
+ And, for KxK : K \x H = G.
+ dprodl_Iirr KxH i == the index of cfDprodl KxH 'chi[K]_i in irr G.
+ dprodr_Iirr KxH j == the index of cfDprodr KxH 'chi[H]_j in irr G.
+ dprod_Iirr KxH (i, j) == the index of cfDprod KxH 'chi[K]_i 'chi[H]_j.
+ inv_dprod_Iirr KxH == the inverse of dprod_Iirr KxH.
+ The following are used to define and exploit the character table:
+ character_table G == the character table of G, whose i-th row lists the
+ values taken by 'chi_i on the conjugacy classes
+ of G; this is a square Nirr G x NirrG matrix.
+ irr_class i == the conjugacy class of G with index i : Iirr G.
+ class_Iirr xG == the index of xG \in classes G, in Iirr G.
+
+
+
+
+Set Implicit Arguments.
+ +
+Import GroupScope GRing.Theory Num.Theory.
+Local Open Scope ring_scope.
+ +
+ +
+Section AlgC.
+ +
+Variable (gT : finGroupType).
+ +
+Lemma groupC : group_closure_field algCF gT.
+ +
+End AlgC.
+ +
+Section Tensor.
+ +
+Variable (F : fieldType).
+ +
+Fixpoint trow (n1 : nat) :
+ ∀ (A : 'rV[F]_n1) m2 n2 (B : 'M[F]_(m2,n2)), 'M[F]_(m2,n1 × n2) :=
+ if n1 is n'1.+1
+ then
+ fun (A : 'M[F]_(1,(1 + n'1))) m2 n2 (B : 'M[F]_(m2,n2)) ⇒
+ (row_mx (lsubmx A 0 0 *: B) (trow (rsubmx A) B))
+ else (fun _ _ _ _ ⇒ 0).
+ +
+Lemma trow0 n1 m2 n2 B : @trow n1 0 m2 n2 B = 0.
+ +
+Definition trowb n1 m2 n2 B A := @trow n1 A m2 n2 B.
+ +
+Lemma trowbE n1 m2 n2 A B : trowb B A = @trow n1 A m2 n2 B.
+ +
+Lemma trowb_is_linear n1 m2 n2 (B : 'M_(m2,n2)) : linear (@trowb n1 m2 n2 B).
+ +
+Canonical Structure trowb_linear n1 m2 n2 B :=
+ Linear (@trowb_is_linear n1 m2 n2 B).
+ +
+Lemma trow_is_linear n1 m2 n2 (A : 'rV_n1) : linear (@trow n1 A m2 n2).
+ +
+Canonical Structure trow_linear n1 m2 n2 A :=
+ Linear (@trow_is_linear n1 m2 n2 A).
+ +
+Fixpoint tprod (m1 : nat) :
+ ∀ n1 (A : 'M[F]_(m1,n1)) m2 n2 (B : 'M[F]_(m2,n2)),
+ 'M[F]_(m1 × m2,n1 × n2) :=
+ if m1 is m'1.+1
+ return ∀ n1 (A : 'M[F]_(m1,n1)) m2 n2 (B : 'M[F]_(m2,n2)),
+ 'M[F]_(m1 × m2,n1 × n2)
+ then
+ fun n1 (A : 'M[F]_(1 + m'1,n1)) m2 n2 B ⇒
+ (col_mx (trow (usubmx A) B) (tprod (dsubmx A) B))
+ else (fun _ _ _ _ _ ⇒ 0).
+ +
+Lemma dsumx_mul m1 m2 n p A B :
+ dsubmx ((A ×m B) : 'M[F]_(m1 + m2, n)) = dsubmx (A : 'M_(m1 + m2, p)) ×m B.
+ +
+Lemma usumx_mul m1 m2 n p A B :
+ usubmx ((A ×m B) : 'M[F]_(m1 + m2, n)) = usubmx (A : 'M_(m1 + m2, p)) ×m B.
+ +
+Let trow_mul (m1 m2 n2 p2 : nat)
+ (A : 'rV_m1) (B1: 'M[F]_(m2,n2)) (B2 :'M[F]_(n2,p2)) :
+ trow A (B1 ×m B2) = B1 ×m trow A B2.
+ +
+Lemma tprodE m1 n1 p1 (A1 :'M[F]_(m1,n1)) (A2 :'M[F]_(n1,p1))
+ m2 n2 p2 (B1 :'M[F]_(m2,n2)) (B2 :'M[F]_(n2,p2)) :
+ tprod (A1 ×m A2) (B1 ×m B2) = (tprod A1 B1) ×m (tprod A2 B2).
+ +
+Let tprod_tr m1 n1 (A :'M[F]_(m1, 1 + n1)) m2 n2 (B :'M[F]_(m2, n2)) :
+ tprod A B = row_mx (trow (lsubmx A)^T B^T)^T (tprod (rsubmx A) B).
+ +
+Lemma tprod1 m n : tprod (1%:M : 'M[F]_(m,m)) (1%:M : 'M[F]_(n,n)) = 1%:M.
+ +
+Lemma mxtrace_prod m n (A :'M[F]_(m)) (B :'M[F]_(n)) :
+ \tr (tprod A B) = \tr A × \tr B.
+ +
+End Tensor.
+ +
+
+
++Set Implicit Arguments.
+ +
+Import GroupScope GRing.Theory Num.Theory.
+Local Open Scope ring_scope.
+ +
+ +
+Section AlgC.
+ +
+Variable (gT : finGroupType).
+ +
+Lemma groupC : group_closure_field algCF gT.
+ +
+End AlgC.
+ +
+Section Tensor.
+ +
+Variable (F : fieldType).
+ +
+Fixpoint trow (n1 : nat) :
+ ∀ (A : 'rV[F]_n1) m2 n2 (B : 'M[F]_(m2,n2)), 'M[F]_(m2,n1 × n2) :=
+ if n1 is n'1.+1
+ then
+ fun (A : 'M[F]_(1,(1 + n'1))) m2 n2 (B : 'M[F]_(m2,n2)) ⇒
+ (row_mx (lsubmx A 0 0 *: B) (trow (rsubmx A) B))
+ else (fun _ _ _ _ ⇒ 0).
+ +
+Lemma trow0 n1 m2 n2 B : @trow n1 0 m2 n2 B = 0.
+ +
+Definition trowb n1 m2 n2 B A := @trow n1 A m2 n2 B.
+ +
+Lemma trowbE n1 m2 n2 A B : trowb B A = @trow n1 A m2 n2 B.
+ +
+Lemma trowb_is_linear n1 m2 n2 (B : 'M_(m2,n2)) : linear (@trowb n1 m2 n2 B).
+ +
+Canonical Structure trowb_linear n1 m2 n2 B :=
+ Linear (@trowb_is_linear n1 m2 n2 B).
+ +
+Lemma trow_is_linear n1 m2 n2 (A : 'rV_n1) : linear (@trow n1 A m2 n2).
+ +
+Canonical Structure trow_linear n1 m2 n2 A :=
+ Linear (@trow_is_linear n1 m2 n2 A).
+ +
+Fixpoint tprod (m1 : nat) :
+ ∀ n1 (A : 'M[F]_(m1,n1)) m2 n2 (B : 'M[F]_(m2,n2)),
+ 'M[F]_(m1 × m2,n1 × n2) :=
+ if m1 is m'1.+1
+ return ∀ n1 (A : 'M[F]_(m1,n1)) m2 n2 (B : 'M[F]_(m2,n2)),
+ 'M[F]_(m1 × m2,n1 × n2)
+ then
+ fun n1 (A : 'M[F]_(1 + m'1,n1)) m2 n2 B ⇒
+ (col_mx (trow (usubmx A) B) (tprod (dsubmx A) B))
+ else (fun _ _ _ _ _ ⇒ 0).
+ +
+Lemma dsumx_mul m1 m2 n p A B :
+ dsubmx ((A ×m B) : 'M[F]_(m1 + m2, n)) = dsubmx (A : 'M_(m1 + m2, p)) ×m B.
+ +
+Lemma usumx_mul m1 m2 n p A B :
+ usubmx ((A ×m B) : 'M[F]_(m1 + m2, n)) = usubmx (A : 'M_(m1 + m2, p)) ×m B.
+ +
+Let trow_mul (m1 m2 n2 p2 : nat)
+ (A : 'rV_m1) (B1: 'M[F]_(m2,n2)) (B2 :'M[F]_(n2,p2)) :
+ trow A (B1 ×m B2) = B1 ×m trow A B2.
+ +
+Lemma tprodE m1 n1 p1 (A1 :'M[F]_(m1,n1)) (A2 :'M[F]_(n1,p1))
+ m2 n2 p2 (B1 :'M[F]_(m2,n2)) (B2 :'M[F]_(n2,p2)) :
+ tprod (A1 ×m A2) (B1 ×m B2) = (tprod A1 B1) ×m (tprod A2 B2).
+ +
+Let tprod_tr m1 n1 (A :'M[F]_(m1, 1 + n1)) m2 n2 (B :'M[F]_(m2, n2)) :
+ tprod A B = row_mx (trow (lsubmx A)^T B^T)^T (tprod (rsubmx A) B).
+ +
+Lemma tprod1 m n : tprod (1%:M : 'M[F]_(m,m)) (1%:M : 'M[F]_(n,n)) = 1%:M.
+ +
+Lemma mxtrace_prod m n (A :'M[F]_(m)) (B :'M[F]_(n)) :
+ \tr (tprod A B) = \tr A × \tr B.
+ +
+End Tensor.
+ +
+
+ Representation sigma type and standard representations.
+
+
+Section StandardRepresentation.
+ +
+Variables (R : fieldType) (gT : finGroupType) (G : {group gT}).
+ +
+Record representation :=
+ Representation {rdegree; mx_repr_of_repr :> reprG rdegree}.
+ +
+Lemma mx_repr0 : mx_repr G (fun _ : gT ⇒ 1%:M : 'M[R]_0).
+ +
+Definition grepr0 := Representation (MxRepresentation mx_repr0).
+ +
+Lemma add_mx_repr (rG1 rG2 : representation) :
+ mx_repr G (fun g ⇒ block_mx (rG1 g) 0 0 (rG2 g)).
+ +
+Definition dadd_grepr rG1 rG2 :=
+ Representation (MxRepresentation (add_mx_repr rG1 rG2)).
+ +
+Section DsumRepr.
+ +
+Variables (n : nat) (rG : reprG n).
+ +
+Lemma mx_rsim_dadd (U V W : 'M_n) (rU rV : representation)
+ (modU : mxmodule rG U) (modV : mxmodule rG V) (modW : mxmodule rG W) :
+ (U + V :=: W)%MS → mxdirect (U + V) →
+ mx_rsim (submod_repr modU) rU → mx_rsim (submod_repr modV) rV →
+ mx_rsim (submod_repr modW) (dadd_grepr rU rV).
+ +
+Lemma mx_rsim_dsum (I : finType) (P : pred I) U rU (W : 'M_n)
+ (modU : ∀ i, mxmodule rG (U i)) (modW : mxmodule rG W) :
+ let S := (\sum_(i | P i) U i)%MS in (S :=: W)%MS → mxdirect S →
+ (∀ i, mx_rsim (submod_repr (modU i)) (rU i : representation)) →
+ mx_rsim (submod_repr modW) (\big[dadd_grepr/grepr0]_(i | P i) rU i).
+ +
+Definition muln_grepr rW k := \big[dadd_grepr/grepr0]_(i < k) rW.
+ +
+Lemma mx_rsim_socle (sG : socleType rG) (W : sG) (rW : representation) :
+ let modW : mxmodule rG W := component_mx_module rG (socle_base W) in
+ mx_rsim (socle_repr W) rW →
+ mx_rsim (submod_repr modW) (muln_grepr rW (socle_mult W)).
+ +
+End DsumRepr.
+ +
+Section ProdRepr.
+ +
+Variables (n1 n2 : nat) (rG1 : reprG n1) (rG2 : reprG n2).
+ +
+Lemma prod_mx_repr : mx_repr G (fun g ⇒ tprod (rG1 g) (rG2 g)).
+ +
+Definition prod_repr := MxRepresentation prod_mx_repr.
+ +
+End ProdRepr.
+ +
+Lemma prod_repr_lin n2 (rG1 : reprG 1) (rG2 : reprG n2) :
+ {in G, ∀ x, let cast_n2 := esym (mul1n n2) in
+ prod_repr rG1 rG2 x = castmx (cast_n2, cast_n2) (rG1 x 0 0 *: rG2 x)}.
+ +
+End StandardRepresentation.
+ +
+ +
+Section Char.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+ +
+Fact cfRepr_subproof n (rG : mx_representation algCF G n) :
+ is_class_fun <<G>> [ffun x ⇒ \tr (rG x) *+ (x \in G)].
+Definition cfRepr n rG := Cfun 0 (@cfRepr_subproof n rG).
+ +
+Lemma cfRepr1 n rG : @cfRepr n rG 1%g = n%:R.
+ +
+Lemma cfRepr_sim n1 n2 rG1 rG2 :
+ mx_rsim rG1 rG2 → @cfRepr n1 rG1 = @cfRepr n2 rG2.
+ +
+Lemma cfRepr0 : cfRepr grepr0 = 0.
+ +
+Lemma cfRepr_dadd rG1 rG2 :
+ cfRepr (dadd_grepr rG1 rG2) = cfRepr rG1 + cfRepr rG2.
+ +
+Lemma cfRepr_dsum I r (P : pred I) rG :
+ cfRepr (\big[dadd_grepr/grepr0]_(i <- r | P i) rG i)
+ = \sum_(i <- r | P i) cfRepr (rG i).
+ +
+Lemma cfRepr_muln rG k : cfRepr (muln_grepr rG k) = cfRepr rG *+ k.
+ +
+Section StandardRepr.
+ +
+Variables (n : nat) (rG : mx_representation algCF G n).
+Let sG := DecSocleType rG.
+Let iG : irrType algCF G := DecSocleType _.
+ +
+Definition standard_irr (W : sG) := irr_comp iG (socle_repr W).
+ +
+Definition standard_socle i := pick [pred W | standard_irr W == i].
+ +
+Definition standard_irr_coef i := oapp (fun W ⇒ socle_mult W) 0%N (soc i).
+ +
+Definition standard_grepr :=
+ \big[dadd_grepr/grepr0]_i
+ muln_grepr (Representation (socle_repr i)) (standard_irr_coef i).
+ +
+Lemma mx_rsim_standard : mx_rsim rG standard_grepr.
+ +
+End StandardRepr.
+ +
+Definition cfReg (B : {set gT}) : 'CF(B) := #|B|%:R *: '1_[1].
+ +
+Lemma cfRegE x : @cfReg G x = #|G|%:R *+ (x == 1%g).
+ +
+
+
++ +
+Variables (R : fieldType) (gT : finGroupType) (G : {group gT}).
+ +
+Record representation :=
+ Representation {rdegree; mx_repr_of_repr :> reprG rdegree}.
+ +
+Lemma mx_repr0 : mx_repr G (fun _ : gT ⇒ 1%:M : 'M[R]_0).
+ +
+Definition grepr0 := Representation (MxRepresentation mx_repr0).
+ +
+Lemma add_mx_repr (rG1 rG2 : representation) :
+ mx_repr G (fun g ⇒ block_mx (rG1 g) 0 0 (rG2 g)).
+ +
+Definition dadd_grepr rG1 rG2 :=
+ Representation (MxRepresentation (add_mx_repr rG1 rG2)).
+ +
+Section DsumRepr.
+ +
+Variables (n : nat) (rG : reprG n).
+ +
+Lemma mx_rsim_dadd (U V W : 'M_n) (rU rV : representation)
+ (modU : mxmodule rG U) (modV : mxmodule rG V) (modW : mxmodule rG W) :
+ (U + V :=: W)%MS → mxdirect (U + V) →
+ mx_rsim (submod_repr modU) rU → mx_rsim (submod_repr modV) rV →
+ mx_rsim (submod_repr modW) (dadd_grepr rU rV).
+ +
+Lemma mx_rsim_dsum (I : finType) (P : pred I) U rU (W : 'M_n)
+ (modU : ∀ i, mxmodule rG (U i)) (modW : mxmodule rG W) :
+ let S := (\sum_(i | P i) U i)%MS in (S :=: W)%MS → mxdirect S →
+ (∀ i, mx_rsim (submod_repr (modU i)) (rU i : representation)) →
+ mx_rsim (submod_repr modW) (\big[dadd_grepr/grepr0]_(i | P i) rU i).
+ +
+Definition muln_grepr rW k := \big[dadd_grepr/grepr0]_(i < k) rW.
+ +
+Lemma mx_rsim_socle (sG : socleType rG) (W : sG) (rW : representation) :
+ let modW : mxmodule rG W := component_mx_module rG (socle_base W) in
+ mx_rsim (socle_repr W) rW →
+ mx_rsim (submod_repr modW) (muln_grepr rW (socle_mult W)).
+ +
+End DsumRepr.
+ +
+Section ProdRepr.
+ +
+Variables (n1 n2 : nat) (rG1 : reprG n1) (rG2 : reprG n2).
+ +
+Lemma prod_mx_repr : mx_repr G (fun g ⇒ tprod (rG1 g) (rG2 g)).
+ +
+Definition prod_repr := MxRepresentation prod_mx_repr.
+ +
+End ProdRepr.
+ +
+Lemma prod_repr_lin n2 (rG1 : reprG 1) (rG2 : reprG n2) :
+ {in G, ∀ x, let cast_n2 := esym (mul1n n2) in
+ prod_repr rG1 rG2 x = castmx (cast_n2, cast_n2) (rG1 x 0 0 *: rG2 x)}.
+ +
+End StandardRepresentation.
+ +
+ +
+Section Char.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+ +
+Fact cfRepr_subproof n (rG : mx_representation algCF G n) :
+ is_class_fun <<G>> [ffun x ⇒ \tr (rG x) *+ (x \in G)].
+Definition cfRepr n rG := Cfun 0 (@cfRepr_subproof n rG).
+ +
+Lemma cfRepr1 n rG : @cfRepr n rG 1%g = n%:R.
+ +
+Lemma cfRepr_sim n1 n2 rG1 rG2 :
+ mx_rsim rG1 rG2 → @cfRepr n1 rG1 = @cfRepr n2 rG2.
+ +
+Lemma cfRepr0 : cfRepr grepr0 = 0.
+ +
+Lemma cfRepr_dadd rG1 rG2 :
+ cfRepr (dadd_grepr rG1 rG2) = cfRepr rG1 + cfRepr rG2.
+ +
+Lemma cfRepr_dsum I r (P : pred I) rG :
+ cfRepr (\big[dadd_grepr/grepr0]_(i <- r | P i) rG i)
+ = \sum_(i <- r | P i) cfRepr (rG i).
+ +
+Lemma cfRepr_muln rG k : cfRepr (muln_grepr rG k) = cfRepr rG *+ k.
+ +
+Section StandardRepr.
+ +
+Variables (n : nat) (rG : mx_representation algCF G n).
+Let sG := DecSocleType rG.
+Let iG : irrType algCF G := DecSocleType _.
+ +
+Definition standard_irr (W : sG) := irr_comp iG (socle_repr W).
+ +
+Definition standard_socle i := pick [pred W | standard_irr W == i].
+ +
+Definition standard_irr_coef i := oapp (fun W ⇒ socle_mult W) 0%N (soc i).
+ +
+Definition standard_grepr :=
+ \big[dadd_grepr/grepr0]_i
+ muln_grepr (Representation (socle_repr i)) (standard_irr_coef i).
+ +
+Lemma mx_rsim_standard : mx_rsim rG standard_grepr.
+ +
+End StandardRepr.
+ +
+Definition cfReg (B : {set gT}) : 'CF(B) := #|B|%:R *: '1_[1].
+ +
+Lemma cfRegE x : @cfReg G x = #|G|%:R *+ (x == 1%g).
+ +
+
+ This is Isaacs, Lemma (2.10).
+
+
+Lemma cfReprReg : cfRepr (regular_repr algCF G) = cfReg G.
+ +
+Definition xcfun (chi : 'CF(G)) A :=
+ (gring_row A ×m (\col_(i < #|G|) chi (enum_val i))) 0 0.
+ +
+Lemma xcfun_is_additive phi : additive (xcfun phi).
+ Canonical xcfun_additive phi := Additive (xcfun_is_additive phi).
+ +
+Lemma xcfunZr a phi A : xcfun phi (a *: A) = a × xcfun phi A.
+ +
+
+
++ +
+Definition xcfun (chi : 'CF(G)) A :=
+ (gring_row A ×m (\col_(i < #|G|) chi (enum_val i))) 0 0.
+ +
+Lemma xcfun_is_additive phi : additive (xcfun phi).
+ Canonical xcfun_additive phi := Additive (xcfun_is_additive phi).
+ +
+Lemma xcfunZr a phi A : xcfun phi (a *: A) = a × xcfun phi A.
+ +
+
+ In order to add a second canonical structure on xcfun
+
+
+Definition xcfun_r_head k A phi := let: tt := k in xcfun phi A.
+ +
+Lemma xcfun_rE A chi : xcfun_r A chi = xcfun chi A.
+ +
+Fact xcfun_r_is_additive A : additive (xcfun_r A).
+Canonical xcfun_r_additive A := Additive (xcfun_r_is_additive A).
+ +
+Lemma xcfunZl a phi A : xcfun (a *: phi) A = a × xcfun phi A.
+ +
+Lemma xcfun_repr n rG A : xcfun (@cfRepr n rG) A = \tr (gring_op rG A).
+ +
+End Char.
+Notation xcfun_r A := (xcfun_r_head tt A).
+Notation "phi .[ A ]" := (xcfun phi A) : cfun_scope.
+ +
+Definition pred_Nirr gT B := #|@classes gT B|.-1.
+Notation Nirr G := (pred_Nirr G).+1.
+Notation Iirr G := 'I_(Nirr G).
+ +
+Section IrrClassDef.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+ +
+Let sG := DecSocleType (regular_repr algCF G).
+ +
+Lemma NirrE : Nirr G = #|classes G|.
+ +
+Fact Iirr_cast : Nirr G = #|sG|.
+ +
+Let offset := cast_ord (esym Iirr_cast) (enum_rank [1 sG]%irr).
+ +
+Definition socle_of_Iirr (i : Iirr G) : sG :=
+ enum_val (cast_ord Iirr_cast (i + offset)).
+Definition irr_of_socle (Wi : sG) : Iirr G :=
+ cast_ord (esym Iirr_cast) (enum_rank Wi) - offset.
+ +
+Lemma socle_Iirr0 : W 0 = [1 sG]%irr.
+ +
+Lemma socle_of_IirrK : cancel W irr_of_socle.
+ +
+Lemma irr_of_socleK : cancel irr_of_socle W.
+ Hint Resolve socle_of_IirrK irr_of_socleK.
+ +
+Lemma irr_of_socle_bij (A : pred (Iirr G)) : {on A, bijective irr_of_socle}.
+ +
+Lemma socle_of_Iirr_bij (A : pred sG) : {on A, bijective W}.
+ +
+End IrrClassDef.
+ +
+ +
+Notation "''Chi_' i" := (irr_repr (socle_of_Iirr i))
+ (at level 8, i at level 2, format "''Chi_' i").
+ +
+Fact irr_key : unit.
+Definition irr_def gT B : (Nirr B).-tuple 'CF(B) :=
+ let irr_of i := 'Res[B, <<B>>] (@cfRepr gT _ _ 'Chi_(inord i)) in
+ [tuple of mkseq irr_of (Nirr B)].
+Definition irr := locked_with irr_key irr_def.
+ +
+ +
+Notation "''chi_' i" := (tnth (irr _) i%R)
+ (at level 8, i at level 2, format "''chi_' i") : ring_scope.
+Notation "''chi[' G ]_ i" := (tnth (irr G) i%R)
+ (at level 8, i at level 2, only parsing) : ring_scope.
+ +
+Section IrrClass.
+ +
+Variable (gT : finGroupType) (G : {group gT}).
+Implicit Types (i : Iirr G) (B : {set gT}).
+Open Scope group_ring_scope.
+ +
+Lemma congr_irr i1 i2 : i1 = i2 → 'chi_i1 = 'chi_i2.
+ +
+Lemma Iirr1_neq0 : G :!=: 1%g → inord 1 != 0 :> Iirr G.
+ +
+Lemma has_nonprincipal_irr : G :!=: 1%g → {i : Iirr G | i != 0}.
+ +
+Lemma irrRepr i : cfRepr 'Chi_i = 'chi_i.
+ +
+Lemma irr0 : 'chi[G]_0 = 1.
+ +
+Lemma cfun1_irr : 1 \in irr G.
+ +
+Lemma mem_irr i : 'chi_i \in irr G.
+ +
+Lemma irrP xi : reflect (∃ i, xi = 'chi_i) (xi \in irr G).
+ +
+Let sG := DecSocleType (regular_repr algCF G).
+Let C'G := algC'G G.
+Let closG := @groupC _ G.
+ +
+Lemma irr1_degree i : 'chi_i 1%g = ('n_i)%:R.
+ +
+Lemma Cnat_irr1 i : 'chi_i 1%g \in Cnat.
+ +
+Lemma irr1_gt0 i : 0 < 'chi_i 1%g.
+ +
+Lemma irr1_neq0 i : 'chi_i 1%g != 0.
+ +
+Lemma irr_neq0 i : 'chi_i != 0.
+ +
+Definition cfIirr B (chi : 'CF(B)) : Iirr B := inord (index chi (irr B)).
+ +
+Lemma cfIirrE chi : chi \in irr G → 'chi_(cfIirr chi) = chi.
+ +
+Lemma cfIirrPE J (f : J → 'CF(G)) (P : pred J) :
+ (∀ j, P j → f j \in irr G) →
+ ∀ j, P j → 'chi_(cfIirr (f j)) = f j.
+ +
+
+
++ +
+Lemma xcfun_rE A chi : xcfun_r A chi = xcfun chi A.
+ +
+Fact xcfun_r_is_additive A : additive (xcfun_r A).
+Canonical xcfun_r_additive A := Additive (xcfun_r_is_additive A).
+ +
+Lemma xcfunZl a phi A : xcfun (a *: phi) A = a × xcfun phi A.
+ +
+Lemma xcfun_repr n rG A : xcfun (@cfRepr n rG) A = \tr (gring_op rG A).
+ +
+End Char.
+Notation xcfun_r A := (xcfun_r_head tt A).
+Notation "phi .[ A ]" := (xcfun phi A) : cfun_scope.
+ +
+Definition pred_Nirr gT B := #|@classes gT B|.-1.
+Notation Nirr G := (pred_Nirr G).+1.
+Notation Iirr G := 'I_(Nirr G).
+ +
+Section IrrClassDef.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+ +
+Let sG := DecSocleType (regular_repr algCF G).
+ +
+Lemma NirrE : Nirr G = #|classes G|.
+ +
+Fact Iirr_cast : Nirr G = #|sG|.
+ +
+Let offset := cast_ord (esym Iirr_cast) (enum_rank [1 sG]%irr).
+ +
+Definition socle_of_Iirr (i : Iirr G) : sG :=
+ enum_val (cast_ord Iirr_cast (i + offset)).
+Definition irr_of_socle (Wi : sG) : Iirr G :=
+ cast_ord (esym Iirr_cast) (enum_rank Wi) - offset.
+ +
+Lemma socle_Iirr0 : W 0 = [1 sG]%irr.
+ +
+Lemma socle_of_IirrK : cancel W irr_of_socle.
+ +
+Lemma irr_of_socleK : cancel irr_of_socle W.
+ Hint Resolve socle_of_IirrK irr_of_socleK.
+ +
+Lemma irr_of_socle_bij (A : pred (Iirr G)) : {on A, bijective irr_of_socle}.
+ +
+Lemma socle_of_Iirr_bij (A : pred sG) : {on A, bijective W}.
+ +
+End IrrClassDef.
+ +
+ +
+Notation "''Chi_' i" := (irr_repr (socle_of_Iirr i))
+ (at level 8, i at level 2, format "''Chi_' i").
+ +
+Fact irr_key : unit.
+Definition irr_def gT B : (Nirr B).-tuple 'CF(B) :=
+ let irr_of i := 'Res[B, <<B>>] (@cfRepr gT _ _ 'Chi_(inord i)) in
+ [tuple of mkseq irr_of (Nirr B)].
+Definition irr := locked_with irr_key irr_def.
+ +
+ +
+Notation "''chi_' i" := (tnth (irr _) i%R)
+ (at level 8, i at level 2, format "''chi_' i") : ring_scope.
+Notation "''chi[' G ]_ i" := (tnth (irr G) i%R)
+ (at level 8, i at level 2, only parsing) : ring_scope.
+ +
+Section IrrClass.
+ +
+Variable (gT : finGroupType) (G : {group gT}).
+Implicit Types (i : Iirr G) (B : {set gT}).
+Open Scope group_ring_scope.
+ +
+Lemma congr_irr i1 i2 : i1 = i2 → 'chi_i1 = 'chi_i2.
+ +
+Lemma Iirr1_neq0 : G :!=: 1%g → inord 1 != 0 :> Iirr G.
+ +
+Lemma has_nonprincipal_irr : G :!=: 1%g → {i : Iirr G | i != 0}.
+ +
+Lemma irrRepr i : cfRepr 'Chi_i = 'chi_i.
+ +
+Lemma irr0 : 'chi[G]_0 = 1.
+ +
+Lemma cfun1_irr : 1 \in irr G.
+ +
+Lemma mem_irr i : 'chi_i \in irr G.
+ +
+Lemma irrP xi : reflect (∃ i, xi = 'chi_i) (xi \in irr G).
+ +
+Let sG := DecSocleType (regular_repr algCF G).
+Let C'G := algC'G G.
+Let closG := @groupC _ G.
+ +
+Lemma irr1_degree i : 'chi_i 1%g = ('n_i)%:R.
+ +
+Lemma Cnat_irr1 i : 'chi_i 1%g \in Cnat.
+ +
+Lemma irr1_gt0 i : 0 < 'chi_i 1%g.
+ +
+Lemma irr1_neq0 i : 'chi_i 1%g != 0.
+ +
+Lemma irr_neq0 i : 'chi_i != 0.
+ +
+Definition cfIirr B (chi : 'CF(B)) : Iirr B := inord (index chi (irr B)).
+ +
+Lemma cfIirrE chi : chi \in irr G → 'chi_(cfIirr chi) = chi.
+ +
+Lemma cfIirrPE J (f : J → 'CF(G)) (P : pred J) :
+ (∀ j, P j → f j \in irr G) →
+ ∀ j, P j → 'chi_(cfIirr (f j)) = f j.
+ +
+
+ This is Isaacs, Corollary (2.7).
+
+
+
+
+ This is Isaacs, Lemma (2.11).
+
+
+Lemma cfReg_sum : cfReg G = \sum_i 'chi_i 1%g *: 'chi_i.
+ +
+Let aG := regular_repr algCF G.
+Let R_G := group_ring algCF G.
+ +
+Lemma xcfun_annihilate i j A : i != j → (A \in 'R_j)%MS → ('chi_i).[A]%CF = 0.
+ +
+Lemma xcfunG phi x : x \in G → phi.[aG x]%CF = phi x.
+ +
+Lemma xcfun_mul_id i A :
+ (A \in R_G)%MS → ('chi_i).['e_i ×m A]%CF = ('chi_i).[A]%CF.
+ +
+Lemma xcfun_id i j : ('chi_i).['e_j]%CF = 'chi_i 1%g *+ (i == j).
+ +
+Lemma irr_free : free (irr G).
+ +
+Lemma irr_inj : injective (tnth (irr G)).
+ +
+Lemma irrK : cancel (tnth (irr G)) (@cfIirr G).
+ +
+Lemma irr_eq1 i : ('chi_i == 1) = (i == 0).
+ +
+Lemma cforder_irr_eq1 i : (#['chi_i]%CF == 1%N) = (i == 0).
+ +
+Lemma irr_basis : basis_of 'CF(G)%VS (irr G).
+ +
+Lemma eq_sum_nth_irr a : \sum_i a i *: 'chi[G]_i = \sum_i a i *: (irr G)`_i.
+ +
+
+
++ +
+Let aG := regular_repr algCF G.
+Let R_G := group_ring algCF G.
+ +
+Lemma xcfun_annihilate i j A : i != j → (A \in 'R_j)%MS → ('chi_i).[A]%CF = 0.
+ +
+Lemma xcfunG phi x : x \in G → phi.[aG x]%CF = phi x.
+ +
+Lemma xcfun_mul_id i A :
+ (A \in R_G)%MS → ('chi_i).['e_i ×m A]%CF = ('chi_i).[A]%CF.
+ +
+Lemma xcfun_id i j : ('chi_i).['e_j]%CF = 'chi_i 1%g *+ (i == j).
+ +
+Lemma irr_free : free (irr G).
+ +
+Lemma irr_inj : injective (tnth (irr G)).
+ +
+Lemma irrK : cancel (tnth (irr G)) (@cfIirr G).
+ +
+Lemma irr_eq1 i : ('chi_i == 1) = (i == 0).
+ +
+Lemma cforder_irr_eq1 i : (#['chi_i]%CF == 1%N) = (i == 0).
+ +
+Lemma irr_basis : basis_of 'CF(G)%VS (irr G).
+ +
+Lemma eq_sum_nth_irr a : \sum_i a i *: 'chi[G]_i = \sum_i a i *: (irr G)`_i.
+ +
+
+ This is Isaacs, Theorem (2.8).
+
+
+Theorem cfun_irr_sum phi : {a | phi = \sum_i a i *: 'chi[G]_i}.
+ +
+Lemma cfRepr_standard n (rG : mx_representation algCF G n) :
+ cfRepr (standard_grepr rG)
+ = \sum_i (standard_irr_coef rG (W i))%:R *: 'chi_i.
+ +
+Lemma cfRepr_inj n1 n2 rG1 rG2 :
+ @cfRepr _ G n1 rG1 = @cfRepr _ G n2 rG2 → mx_rsim rG1 rG2.
+ +
+Lemma cfRepr_rsimP n1 n2 rG1 rG2 :
+ reflect (mx_rsim rG1 rG2) (@cfRepr _ G n1 rG1 == @cfRepr _ G n2 rG2).
+ +
+Lemma irr_reprP xi :
+ reflect (exists2 rG : representation _ G, mx_irreducible rG & xi = cfRepr rG)
+ (xi \in irr G).
+ +
+
+
++ +
+Lemma cfRepr_standard n (rG : mx_representation algCF G n) :
+ cfRepr (standard_grepr rG)
+ = \sum_i (standard_irr_coef rG (W i))%:R *: 'chi_i.
+ +
+Lemma cfRepr_inj n1 n2 rG1 rG2 :
+ @cfRepr _ G n1 rG1 = @cfRepr _ G n2 rG2 → mx_rsim rG1 rG2.
+ +
+Lemma cfRepr_rsimP n1 n2 rG1 rG2 :
+ reflect (mx_rsim rG1 rG2) (@cfRepr _ G n1 rG1 == @cfRepr _ G n2 rG2).
+ +
+Lemma irr_reprP xi :
+ reflect (exists2 rG : representation _ G, mx_irreducible rG & xi = cfRepr rG)
+ (xi \in irr G).
+ +
+
+ This is Isaacs, Theorem (2.12).
+
+
+Lemma Wedderburn_id_expansion i :
+ 'e_i = #|G|%:R^-1 *: \sum_(x in G) 'chi_i 1%g × 'chi_i x^-1%g *: aG x.
+ +
+End IrrClass.
+ +
+ +
+Section IsChar.
+ +
+Variable gT : finGroupType.
+ +
+Definition character {G : {set gT}} :=
+ [qualify a phi : 'CF(G) | [∀ i, coord (irr G) i phi \in Cnat]].
+Fact character_key G : pred_key (@character G).
+Canonical character_keyed G := KeyedQualifier (character_key G).
+ +
+Variable G : {group gT}.
+Implicit Types (phi chi xi : 'CF(G)) (i : Iirr G).
+ +
+Lemma irr_char i : 'chi_i \is a character.
+ +
+Lemma cfun1_char : (1 : 'CF(G)) \is a character.
+ +
+Lemma cfun0_char : (0 : 'CF(G)) \is a character.
+ +
+Fact add_char : addr_closed (@character G).
+Canonical character_addrPred := AddrPred add_char.
+ +
+Lemma char_sum_irrP {phi} :
+ reflect (∃ n, phi = \sum_i (n i)%:R *: 'chi_i) (phi \is a character).
+ +
+Lemma char_sum_irr chi :
+ chi \is a character → {r | chi = \sum_(i <- r) 'chi_i}.
+ +
+Lemma Cnat_char1 chi : chi \is a character → chi 1%g \in Cnat.
+ +
+Lemma char1_ge0 chi : chi \is a character → 0 ≤ chi 1%g.
+ +
+Lemma char1_eq0 chi : chi \is a character → (chi 1%g == 0) = (chi == 0).
+ +
+Lemma char1_gt0 chi : chi \is a character → (0 < chi 1%g) = (chi != 0).
+ +
+Lemma char_reprP phi :
+ reflect (∃ rG : representation algCF G, phi = cfRepr rG)
+ (phi \is a character).
+ +
+ +
+Lemma cfRepr_char n (rG : reprG n) : cfRepr rG \is a character.
+ +
+Lemma cfReg_char : cfReg G \is a character.
+ +
+Lemma cfRepr_prod n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) :
+ cfRepr rG1 × cfRepr rG2 = cfRepr (prod_repr rG1 rG2).
+ +
+Lemma mul_char : mulr_closed (@character G).
+Canonical char_mulrPred := MulrPred mul_char.
+Canonical char_semiringPred := SemiringPred mul_char.
+ +
+End IsChar.
+ +
+Section AutChar.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+Implicit Type u : {rmorphism algC → algC}.
+Implicit Type chi : 'CF(G).
+ +
+Lemma cfRepr_map u n (rG : mx_representation algCF G n) :
+ cfRepr (map_repr u rG) = cfAut u (cfRepr rG).
+ +
+Lemma cfAut_char u chi : (cfAut u chi \is a character) = (chi \is a character).
+ +
+Lemma cfConjC_char chi : (chi^*%CF \is a character) = (chi \is a character).
+ +
+Lemma cfAut_char1 u (chi : 'CF(G)) :
+ chi \is a character → cfAut u chi 1%g = chi 1%g.
+ +
+Lemma cfAut_irr1 u i : (cfAut u 'chi[G]_i) 1%g = 'chi_i 1%g.
+ +
+Lemma cfConjC_char1 (chi : 'CF(G)) :
+ chi \is a character → chi^*%CF 1%g = chi 1%g.
+ +
+Lemma cfConjC_irr1 u i : ('chi[G]_i)^*%CF 1%g = 'chi_i 1%g.
+ +
+End AutChar.
+ +
+Section Linear.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+ +
+Definition linear_char {B : {set gT}} :=
+ [qualify a phi : 'CF(B) | (phi \is a character) && (phi 1%g == 1)].
+ +
+Section OneChar.
+ +
+Variable xi : 'CF(G).
+Hypothesis CFxi : xi \is a linear_char.
+ +
+Lemma lin_char1: xi 1%g = 1.
+ +
+Lemma lin_charW : xi \is a character.
+ +
+Lemma cfun1_lin_char : (1 : 'CF(G)) \is a linear_char.
+ +
+Lemma lin_charM : {in G &, {morph xi : x y / (x × y)%g >-> x × y}}.
+ +
+Lemma lin_char_prod I r (P : pred I) (x : I → gT) :
+ (∀ i, P i → x i \in G) →
+ xi (\prod_(i <- r | P i) x i)%g = \prod_(i <- r | P i) xi (x i).
+ +
+Let xiMV x : x \in G → xi x × xi (x^-1)%g = 1.
+ +
+Lemma lin_char_neq0 x : x \in G → xi x != 0.
+ +
+Lemma lin_charV x : x \in G → xi x^-1%g = (xi x)^-1.
+ +
+Lemma lin_charX x n : x \in G → xi (x ^+ n)%g = xi x ^+ n.
+ +
+Lemma lin_char_unity_root x : x \in G → xi x ^+ #[x] = 1.
+ +
+Lemma normC_lin_char x : x \in G → `|xi x| = 1.
+ +
+Lemma lin_charV_conj x : x \in G → xi x^-1%g = (xi x)^*.
+ +
+Lemma lin_char_irr : xi \in irr G.
+ +
+Lemma mul_conjC_lin_char : xi × xi^*%CF = 1.
+ +
+Lemma lin_char_unitr : xi \in GRing.unit.
+ +
+Lemma invr_lin_char : xi^-1 = xi^*%CF.
+ +
+Lemma fful_lin_char_inj : cfaithful xi → {in G &, injective xi}.
+ +
+End OneChar.
+ +
+Lemma cfAut_lin_char u (xi : 'CF(G)) :
+ (cfAut u xi \is a linear_char) = (xi \is a linear_char).
+ +
+Lemma cfConjC_lin_char (xi : 'CF(G)) :
+ (xi^*%CF \is a linear_char) = (xi \is a linear_char).
+ +
+Lemma card_Iirr_abelian : abelian G → #|Iirr G| = #|G|.
+ +
+Lemma card_Iirr_cyclic : cyclic G → #|Iirr G| = #|G|.
+ +
+Lemma char_abelianP :
+ reflect (∀ i : Iirr G, 'chi_i \is a linear_char) (abelian G).
+ +
+Lemma irr_repr_lin_char (i : Iirr G) x :
+ x \in G → 'chi_i \is a linear_char →
+ irr_repr (socle_of_Iirr i) x = ('chi_i x)%:M.
+ +
+Fact linear_char_key B : pred_key (@linear_char B).
+Canonical linear_char_keted B := KeyedQualifier (linear_char_key B).
+Fact linear_char_divr : divr_closed (@linear_char G).
+Canonical lin_char_mulrPred := MulrPred linear_char_divr.
+Canonical lin_char_divrPred := DivrPred linear_char_divr.
+ +
+Lemma irr_cyclic_lin i : cyclic G → 'chi[G]_i \is a linear_char.
+ +
+Lemma irr_prime_lin i : prime #|G| → 'chi[G]_i \is a linear_char.
+ +
+End Linear.
+ +
+ +
+Section OrthogonalityRelations.
+ +
+Variables aT gT : finGroupType.
+ +
+
+
++ 'e_i = #|G|%:R^-1 *: \sum_(x in G) 'chi_i 1%g × 'chi_i x^-1%g *: aG x.
+ +
+End IrrClass.
+ +
+ +
+Section IsChar.
+ +
+Variable gT : finGroupType.
+ +
+Definition character {G : {set gT}} :=
+ [qualify a phi : 'CF(G) | [∀ i, coord (irr G) i phi \in Cnat]].
+Fact character_key G : pred_key (@character G).
+Canonical character_keyed G := KeyedQualifier (character_key G).
+ +
+Variable G : {group gT}.
+Implicit Types (phi chi xi : 'CF(G)) (i : Iirr G).
+ +
+Lemma irr_char i : 'chi_i \is a character.
+ +
+Lemma cfun1_char : (1 : 'CF(G)) \is a character.
+ +
+Lemma cfun0_char : (0 : 'CF(G)) \is a character.
+ +
+Fact add_char : addr_closed (@character G).
+Canonical character_addrPred := AddrPred add_char.
+ +
+Lemma char_sum_irrP {phi} :
+ reflect (∃ n, phi = \sum_i (n i)%:R *: 'chi_i) (phi \is a character).
+ +
+Lemma char_sum_irr chi :
+ chi \is a character → {r | chi = \sum_(i <- r) 'chi_i}.
+ +
+Lemma Cnat_char1 chi : chi \is a character → chi 1%g \in Cnat.
+ +
+Lemma char1_ge0 chi : chi \is a character → 0 ≤ chi 1%g.
+ +
+Lemma char1_eq0 chi : chi \is a character → (chi 1%g == 0) = (chi == 0).
+ +
+Lemma char1_gt0 chi : chi \is a character → (0 < chi 1%g) = (chi != 0).
+ +
+Lemma char_reprP phi :
+ reflect (∃ rG : representation algCF G, phi = cfRepr rG)
+ (phi \is a character).
+ +
+ +
+Lemma cfRepr_char n (rG : reprG n) : cfRepr rG \is a character.
+ +
+Lemma cfReg_char : cfReg G \is a character.
+ +
+Lemma cfRepr_prod n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) :
+ cfRepr rG1 × cfRepr rG2 = cfRepr (prod_repr rG1 rG2).
+ +
+Lemma mul_char : mulr_closed (@character G).
+Canonical char_mulrPred := MulrPred mul_char.
+Canonical char_semiringPred := SemiringPred mul_char.
+ +
+End IsChar.
+ +
+Section AutChar.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+Implicit Type u : {rmorphism algC → algC}.
+Implicit Type chi : 'CF(G).
+ +
+Lemma cfRepr_map u n (rG : mx_representation algCF G n) :
+ cfRepr (map_repr u rG) = cfAut u (cfRepr rG).
+ +
+Lemma cfAut_char u chi : (cfAut u chi \is a character) = (chi \is a character).
+ +
+Lemma cfConjC_char chi : (chi^*%CF \is a character) = (chi \is a character).
+ +
+Lemma cfAut_char1 u (chi : 'CF(G)) :
+ chi \is a character → cfAut u chi 1%g = chi 1%g.
+ +
+Lemma cfAut_irr1 u i : (cfAut u 'chi[G]_i) 1%g = 'chi_i 1%g.
+ +
+Lemma cfConjC_char1 (chi : 'CF(G)) :
+ chi \is a character → chi^*%CF 1%g = chi 1%g.
+ +
+Lemma cfConjC_irr1 u i : ('chi[G]_i)^*%CF 1%g = 'chi_i 1%g.
+ +
+End AutChar.
+ +
+Section Linear.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+ +
+Definition linear_char {B : {set gT}} :=
+ [qualify a phi : 'CF(B) | (phi \is a character) && (phi 1%g == 1)].
+ +
+Section OneChar.
+ +
+Variable xi : 'CF(G).
+Hypothesis CFxi : xi \is a linear_char.
+ +
+Lemma lin_char1: xi 1%g = 1.
+ +
+Lemma lin_charW : xi \is a character.
+ +
+Lemma cfun1_lin_char : (1 : 'CF(G)) \is a linear_char.
+ +
+Lemma lin_charM : {in G &, {morph xi : x y / (x × y)%g >-> x × y}}.
+ +
+Lemma lin_char_prod I r (P : pred I) (x : I → gT) :
+ (∀ i, P i → x i \in G) →
+ xi (\prod_(i <- r | P i) x i)%g = \prod_(i <- r | P i) xi (x i).
+ +
+Let xiMV x : x \in G → xi x × xi (x^-1)%g = 1.
+ +
+Lemma lin_char_neq0 x : x \in G → xi x != 0.
+ +
+Lemma lin_charV x : x \in G → xi x^-1%g = (xi x)^-1.
+ +
+Lemma lin_charX x n : x \in G → xi (x ^+ n)%g = xi x ^+ n.
+ +
+Lemma lin_char_unity_root x : x \in G → xi x ^+ #[x] = 1.
+ +
+Lemma normC_lin_char x : x \in G → `|xi x| = 1.
+ +
+Lemma lin_charV_conj x : x \in G → xi x^-1%g = (xi x)^*.
+ +
+Lemma lin_char_irr : xi \in irr G.
+ +
+Lemma mul_conjC_lin_char : xi × xi^*%CF = 1.
+ +
+Lemma lin_char_unitr : xi \in GRing.unit.
+ +
+Lemma invr_lin_char : xi^-1 = xi^*%CF.
+ +
+Lemma fful_lin_char_inj : cfaithful xi → {in G &, injective xi}.
+ +
+End OneChar.
+ +
+Lemma cfAut_lin_char u (xi : 'CF(G)) :
+ (cfAut u xi \is a linear_char) = (xi \is a linear_char).
+ +
+Lemma cfConjC_lin_char (xi : 'CF(G)) :
+ (xi^*%CF \is a linear_char) = (xi \is a linear_char).
+ +
+Lemma card_Iirr_abelian : abelian G → #|Iirr G| = #|G|.
+ +
+Lemma card_Iirr_cyclic : cyclic G → #|Iirr G| = #|G|.
+ +
+Lemma char_abelianP :
+ reflect (∀ i : Iirr G, 'chi_i \is a linear_char) (abelian G).
+ +
+Lemma irr_repr_lin_char (i : Iirr G) x :
+ x \in G → 'chi_i \is a linear_char →
+ irr_repr (socle_of_Iirr i) x = ('chi_i x)%:M.
+ +
+Fact linear_char_key B : pred_key (@linear_char B).
+Canonical linear_char_keted B := KeyedQualifier (linear_char_key B).
+Fact linear_char_divr : divr_closed (@linear_char G).
+Canonical lin_char_mulrPred := MulrPred linear_char_divr.
+Canonical lin_char_divrPred := DivrPred linear_char_divr.
+ +
+Lemma irr_cyclic_lin i : cyclic G → 'chi[G]_i \is a linear_char.
+ +
+Lemma irr_prime_lin i : prime #|G| → 'chi[G]_i \is a linear_char.
+ +
+End Linear.
+ +
+ +
+Section OrthogonalityRelations.
+ +
+Variables aT gT : finGroupType.
+ +
+
+ This is Isaacs, Lemma (2.15)
+
+
+Lemma repr_rsim_diag (G : {group gT}) f (rG : mx_representation algCF G f) x :
+ x \in G → let chi := cfRepr rG in
+ ∃ e,
+ [/\ (*a*) exists2 B, B \in unitmx & rG x = invmx B ×m diag_mx e ×m B,
+ (*b*) (∀ i, e 0 i ^+ #[x] = 1) ∧ (∀ i, `|e 0 i| = 1),
+ (*c*) chi x = \sum_i e 0 i ∧ `|chi x| ≤ chi 1%g
+ & (*d*) chi x^-1%g = (chi x)^*].
+ +
+Variables (A : {group aT}) (G : {group gT}).
+ +
+
+
++ x \in G → let chi := cfRepr rG in
+ ∃ e,
+ [/\ (*a*) exists2 B, B \in unitmx & rG x = invmx B ×m diag_mx e ×m B,
+ (*b*) (∀ i, e 0 i ^+ #[x] = 1) ∧ (∀ i, `|e 0 i| = 1),
+ (*c*) chi x = \sum_i e 0 i ∧ `|chi x| ≤ chi 1%g
+ & (*d*) chi x^-1%g = (chi x)^*].
+ +
+Variables (A : {group aT}) (G : {group gT}).
+ +
+
+ This is Isaacs, Lemma (2.15) (d).
+
+
+Lemma char_inv (chi : 'CF(G)) x : chi \is a character → chi x^-1%g = (chi x)^*.
+ +
+Lemma irr_inv i x : 'chi[G]_i x^-1%g = ('chi_i x)^*.
+ +
+
+
++ +
+Lemma irr_inv i x : 'chi[G]_i x^-1%g = ('chi_i x)^*.
+ +
+
+ This is Isaacs, Theorem (2.13).
+
+
+Theorem generalized_orthogonality_relation y (i j : Iirr G) :
+ #|G|%:R^-1 × (\sum_(x in G) 'chi_i (x × y)%g × 'chi_j x^-1%g)
+ = (i == j)%:R × ('chi_i y / 'chi_i 1%g).
+ +
+
+
++ #|G|%:R^-1 × (\sum_(x in G) 'chi_i (x × y)%g × 'chi_j x^-1%g)
+ = (i == j)%:R × ('chi_i y / 'chi_i 1%g).
+ +
+
+ This is Isaacs, Corollary (2.14).
+
+
+Corollary first_orthogonality_relation (i j : Iirr G) :
+ #|G|%:R^-1 × (\sum_(x in G) 'chi_i x × 'chi_j x^-1%g) = (i == j)%:R.
+ +
+
+
++ #|G|%:R^-1 × (\sum_(x in G) 'chi_i x × 'chi_j x^-1%g) = (i == j)%:R.
+ +
+
+ The character table.
+
+
+
+
+Definition irr_class i := enum_val (cast_ord (NirrE G) i).
+Definition class_Iirr xG :=
+ cast_ord (esym (NirrE G)) (enum_rank_in (classes1 G) xG).
+ +
+ +
+Definition character_table := \matrix_(i, j) 'chi[G]_i (g j).
+ +
+Lemma irr_classP i : c i \in classes G.
+ +
+Lemma repr_irr_classK i : g i ^: G = c i.
+ +
+Lemma irr_classK : cancel c iC.
+ +
+Lemma class_IirrK : {in classes G, cancel iC c}.
+ +
+Lemma reindex_irr_class R idx (op : @Monoid.com_law R idx) F :
+ \big[op/idx]_(xG in classes G) F xG = \big[op/idx]_i F (c i).
+ +
+
+
++Definition irr_class i := enum_val (cast_ord (NirrE G) i).
+Definition class_Iirr xG :=
+ cast_ord (esym (NirrE G)) (enum_rank_in (classes1 G) xG).
+ +
+ +
+Definition character_table := \matrix_(i, j) 'chi[G]_i (g j).
+ +
+Lemma irr_classP i : c i \in classes G.
+ +
+Lemma repr_irr_classK i : g i ^: G = c i.
+ +
+Lemma irr_classK : cancel c iC.
+ +
+Lemma class_IirrK : {in classes G, cancel iC c}.
+ +
+Lemma reindex_irr_class R idx (op : @Monoid.com_law R idx) F :
+ \big[op/idx]_(xG in classes G) F xG = \big[op/idx]_i F (c i).
+ +
+
+ The explicit value of the inverse is needed for the proof of the second
+ orthogonality relation.
+
+
+Let X' := \matrix_(i, j) (#|'C_G[g i]|%:R^-1 × ('chi[G]_j (g i))^*).
+Let XX'_1: X ×m X' = 1%:M.
+ +
+Lemma character_table_unit : X \in unitmx.
+ Let uX := character_table_unit.
+ +
+
+
++Let XX'_1: X ×m X' = 1%:M.
+ +
+Lemma character_table_unit : X \in unitmx.
+ Let uX := character_table_unit.
+ +
+
+ This is Isaacs, Theorem (2.18).
+
+
+Theorem second_orthogonality_relation x y :
+ y \in G →
+ \sum_i 'chi[G]_i x × ('chi_i y)^* = #|'C_G[x]|%:R *+ (x \in y ^: G).
+ +
+Lemma eq_irr_mem_classP x y :
+ y \in G → reflect (∀ i, 'chi[G]_i x = 'chi_i y) (x \in y ^: G).
+ +
+
+
++ y \in G →
+ \sum_i 'chi[G]_i x × ('chi_i y)^* = #|'C_G[x]|%:R *+ (x \in y ^: G).
+ +
+Lemma eq_irr_mem_classP x y :
+ y \in G → reflect (∀ i, 'chi[G]_i x = 'chi_i y) (x \in y ^: G).
+ +
+
+ This is Isaacs, Theorem (6.32) (due to Brauer).
+
+
+Lemma card_afix_irr_classes (ito : action A (Iirr G)) (cto : action A _) a :
+ a \in A → [acts A, on classes G | cto] →
+ (∀ i x y, x \in G → y \in cto (x ^: G) a →
+ 'chi_i x = 'chi_(ito i a) y) →
+ #|'Fix_ito[a]| = #|'Fix_(classes G | cto)[a]|.
+ +
+End OrthogonalityRelations.
+ +
+ +
+Section InnerProduct.
+ +
+Variable (gT : finGroupType) (G : {group gT}).
+ +
+Lemma cfdot_irr i j : '['chi_i, 'chi_j]_G = (i == j)%:R.
+ +
+Lemma cfnorm_irr i : '['chi[G]_i] = 1.
+ +
+Lemma irr_orthonormal : orthonormal (irr G).
+ +
+Lemma coord_cfdot phi i : coord (irr G) i phi = '[phi, 'chi_i].
+ +
+Lemma cfun_sum_cfdot phi : phi = \sum_i '[phi, 'chi_i]_G *: 'chi_i.
+ +
+Lemma cfdot_sum_irr phi psi :
+ '[phi, psi]_G = \sum_i '[phi, 'chi_i] × '[psi, 'chi_i]^*.
+ +
+Lemma Cnat_cfdot_char_irr i phi :
+ phi \is a character → '[phi, 'chi_i]_G \in Cnat.
+ +
+Lemma cfdot_char_r phi chi :
+ chi \is a character → '[phi, chi]_G = \sum_i '[phi, 'chi_i] × '[chi, 'chi_i].
+ +
+Lemma Cnat_cfdot_char chi xi :
+ chi \is a character → xi \is a character → '[chi, xi]_G \in Cnat.
+ +
+Lemma cfdotC_char chi xi :
+ chi \is a character→ xi \is a character → '[chi, xi]_G = '[xi, chi].
+ +
+Lemma irrEchar chi : (chi \in irr G) = (chi \is a character) && ('[chi] == 1).
+ +
+Lemma irrWchar chi : chi \in irr G → chi \is a character.
+ +
+Lemma irrWnorm chi : chi \in irr G → '[chi] = 1.
+ +
+Lemma mul_lin_irr xi chi :
+ xi \is a linear_char → chi \in irr G → xi × chi \in irr G.
+ +
+Lemma eq_scaled_irr a b i j :
+ (a *: 'chi[G]_i == b *: 'chi_j) = (a == b) && ((a == 0) || (i == j)).
+ +
+Lemma eq_signed_irr (s t : bool) i j :
+ ((-1) ^+ s *: 'chi[G]_i == (-1) ^+ t *: 'chi_j) = (s == t) && (i == j).
+ +
+Lemma eq_scale_irr a (i j : Iirr G) :
+ (a *: 'chi_i == a *: 'chi_j) = (a == 0) || (i == j).
+ +
+Lemma eq_addZ_irr a b (i j r t : Iirr G) :
+ (a *: 'chi_i + b *: 'chi_j == a *: 'chi_r + b *: 'chi_t)
+ = [|| [&& (a == 0) || (i == r) & (b == 0) || (j == t)],
+ [&& i == t, j == r & a == b] | [&& i == j, r == t & a == - b]].
+ +
+Lemma eq_subZnat_irr (a b : nat) (i j r t : Iirr G) :
+ (a%:R *: 'chi_i - b%:R *: 'chi_j == a%:R *: 'chi_r - b%:R *: 'chi_t)
+ = [|| a == 0%N | i == r] && [|| b == 0%N | j == t]
+ || [&& i == j, r == t & a == b].
+ +
+End InnerProduct.
+ +
+Section IrrConstt.
+ +
+Variable (gT : finGroupType) (G H : {group gT}).
+ +
+Lemma char1_ge_norm (chi : 'CF(G)) x :
+ chi \is a character → `|chi x| ≤ chi 1%g.
+ +
+Lemma max_cfRepr_norm_scalar n (rG : mx_representation algCF G n) x :
+ x \in G → `|cfRepr rG x| = cfRepr rG 1%g →
+ exists2 c, `|c| = 1 & rG x = c%:M.
+ +
+Lemma max_cfRepr_mx1 n (rG : mx_representation algCF G n) x :
+ x \in G → cfRepr rG x = cfRepr rG 1%g → rG x = 1%:M.
+ +
+Definition irr_constt (B : {set gT}) phi := [pred i | '[phi, 'chi_i]_B != 0].
+ +
+Lemma irr_consttE i phi : (i \in irr_constt phi) = ('[phi, 'chi_i]_G != 0).
+ +
+Lemma constt_charP (i : Iirr G) chi :
+ chi \is a character →
+ reflect (exists2 chi', chi' \is a character & chi = 'chi_i + chi')
+ (i \in irr_constt chi).
+ +
+Lemma cfun_sum_constt (phi : 'CF(G)) :
+ phi = \sum_(i in irr_constt phi) '[phi, 'chi_i] *: 'chi_i.
+ +
+Lemma neq0_has_constt (phi : 'CF(G)) :
+ phi != 0 → ∃ i, i \in irr_constt phi.
+ +
+Lemma constt_irr i : irr_constt 'chi[G]_i =i pred1 i.
+ +
+Lemma char1_ge_constt (i : Iirr G) chi :
+ chi \is a character → i \in irr_constt chi → 'chi_i 1%g ≤ chi 1%g.
+ +
+Lemma constt_ortho_char (phi psi : 'CF(G)) i j :
+ phi \is a character → psi \is a character →
+ i \in irr_constt phi → j \in irr_constt psi →
+ '[phi, psi] = 0 → '['chi_i, 'chi_j] = 0.
+ +
+End IrrConstt.
+ +
+ +
+Section Kernel.
+ +
+Variable (gT : finGroupType) (G : {group gT}).
+Implicit Types (phi chi xi : 'CF(G)) (H : {group gT}).
+ +
+Lemma cfker_repr n (rG : mx_representation algCF G n) :
+ cfker (cfRepr rG) = rker rG.
+ +
+Lemma cfkerEchar chi :
+ chi \is a character → cfker chi = [set x in G | chi x == chi 1%g].
+ +
+Lemma cfker_nzcharE chi :
+ chi \is a character → chi != 0 → cfker chi = [set x | chi x == chi 1%g].
+ +
+Lemma cfkerEirr i : cfker 'chi[G]_i = [set x | 'chi_i x == 'chi_i 1%g].
+ +
+Lemma cfker_irr0 : cfker 'chi[G]_0 = G.
+ +
+Lemma cfaithful_reg : cfaithful (cfReg G).
+ +
+Lemma cfkerE chi :
+ chi \is a character →
+ cfker chi = G :&: \bigcap_(i in irr_constt chi) cfker 'chi_i.
+ +
+Lemma TI_cfker_irr : \bigcap_i cfker 'chi[G]_i = [1].
+ +
+Lemma cfker_constt i chi :
+ chi \is a character → i \in irr_constt chi →
+ cfker chi \subset cfker 'chi[G]_i.
+ +
+Section KerLin.
+ +
+Variable xi : 'CF(G).
+Hypothesis lin_xi : xi \is a linear_char.
+Let Nxi: xi \is a character.
+ +
+Lemma lin_char_der1 : G^`(1)%g \subset cfker xi.
+ +
+Lemma cforder_lin_char : #[xi]%CF = exponent (G / cfker xi)%g.
+ +
+Lemma cforder_lin_char_dvdG : #[xi]%CF %| #|G|.
+ +
+Lemma cforder_lin_char_gt0 : (0 < #[xi]%CF)%N.
+ +
+End KerLin.
+ +
+End Kernel.
+ +
+Section Restrict.
+ +
+Variable (gT : finGroupType) (G H : {group gT}).
+ +
+Lemma cfRepr_sub n (rG : mx_representation algCF G n) (sHG : H \subset G) :
+ cfRepr (subg_repr rG sHG) = 'Res[H] (cfRepr rG).
+ +
+Lemma cfRes_char chi : chi \is a character → 'Res[H, G] chi \is a character.
+ +
+Lemma cfRes_eq0 phi : phi \is a character → ('Res[H, G] phi == 0) = (phi == 0).
+ +
+Lemma cfRes_lin_char chi :
+ chi \is a linear_char → 'Res[H, G] chi \is a linear_char.
+ +
+Lemma Res_irr_neq0 i : 'Res[H, G] 'chi_i != 0.
+ +
+Lemma cfRes_lin_lin (chi : 'CF(G)) :
+ chi \is a character → 'Res[H] chi \is a linear_char → chi \is a linear_char.
+ +
+Lemma cfRes_irr_irr chi :
+ chi \is a character → 'Res[H] chi \in irr H → chi \in irr G.
+ +
+Definition Res_Iirr (A B : {set gT}) i := cfIirr ('Res[B, A] 'chi_i).
+ +
+Lemma Res_Iirr0 : Res_Iirr H (0 : Iirr G) = 0.
+ +
+Lemma lin_Res_IirrE i : 'chi[G]_i 1%g = 1 → 'chi_(Res_Iirr H i) = 'Res 'chi_i.
+ +
+End Restrict.
+ +
+ +
+Section MoreConstt.
+ +
+Variables (gT : finGroupType) (G H : {group gT}).
+ +
+Lemma constt_Ind_Res i j :
+ i \in irr_constt ('Ind[G] 'chi_j) = (j \in irr_constt ('Res[H] 'chi_i)).
+ +
+Lemma cfdot_Res_ge_constt i j psi :
+ psi \is a character → j \in irr_constt psi →
+ '['Res[H, G] 'chi_j, 'chi_i] ≤ '['Res[H] psi, 'chi_i].
+ +
+Lemma constt_Res_trans j psi :
+ psi \is a character → j \in irr_constt psi →
+ {subset irr_constt ('Res[H, G] 'chi_j) ≤ irr_constt ('Res[H] psi)}.
+ +
+End MoreConstt.
+ +
+Section Morphim.
+ +
+Variables (aT rT : finGroupType) (G D : {group aT}) (f : {morphism D >-> rT}).
+Implicit Type chi : 'CF(f @* G).
+ +
+Lemma cfRepr_morphim n (rfG : mx_representation algCF (f @* G) n) sGD :
+ cfRepr (morphim_repr rfG sGD) = cfMorph (cfRepr rfG).
+ +
+Lemma cfMorph_char chi : chi \is a character → cfMorph chi \is a character.
+ +
+Lemma cfMorph_lin_char chi :
+ chi \is a linear_char → cfMorph chi \is a linear_char.
+ +
+Lemma cfMorph_charE chi :
+ G \subset D → (cfMorph chi \is a character) = (chi \is a character).
+ +
+Lemma cfMorph_lin_charE chi :
+ G \subset D → (cfMorph chi \is a linear_char) = (chi \is a linear_char).
+ +
+Lemma cfMorph_irr chi :
+ G \subset D → (cfMorph chi \in irr G) = (chi \in irr (f @* G)).
+ +
+Definition morph_Iirr i := cfIirr (cfMorph 'chi[f @* G]_i).
+ +
+Lemma morph_Iirr0 : morph_Iirr 0 = 0.
+ +
+Hypothesis sGD : G \subset D.
+ +
+Lemma morph_IirrE i : 'chi_(morph_Iirr i) = cfMorph 'chi_i.
+ +
+Lemma morph_Iirr_inj : injective morph_Iirr.
+ +
+Lemma morph_Iirr_eq0 i : (morph_Iirr i == 0) = (i == 0).
+ +
+End Morphim.
+ +
+Section Isom.
+ +
+Variables (aT rT : finGroupType) (G : {group aT}) (f : {morphism G >-> rT}).
+Variables (R : {group rT}) (isoGR : isom G R f).
+Implicit Type chi : 'CF(G).
+ +
+Lemma cfIsom_char chi :
+ (cfIsom isoGR chi \is a character) = (chi \is a character).
+ +
+Lemma cfIsom_lin_char chi :
+ (cfIsom isoGR chi \is a linear_char) = (chi \is a linear_char).
+ +
+Lemma cfIsom_irr chi : (cfIsom isoGR chi \in irr R) = (chi \in irr G).
+ +
+Definition isom_Iirr i := cfIirr (cfIsom isoGR 'chi_i).
+ +
+Lemma isom_IirrE i : 'chi_(isom_Iirr i) = cfIsom isoGR 'chi_i.
+ +
+Lemma isom_Iirr_inj : injective isom_Iirr.
+ +
+Lemma isom_Iirr_eq0 i : (isom_Iirr i == 0) = (i == 0).
+ +
+Lemma isom_Iirr0 : isom_Iirr 0 = 0.
+ +
+End Isom.
+ +
+ +
+Section IsomInv.
+ +
+Variables (aT rT : finGroupType) (G : {group aT}) (f : {morphism G >-> rT}).
+Variables (R : {group rT}) (isoGR : isom G R f).
+ +
+Lemma isom_IirrK : cancel (isom_Iirr isoGR) (isom_Iirr (isom_sym isoGR)).
+ +
+Lemma isom_IirrKV : cancel (isom_Iirr (isom_sym isoGR)) (isom_Iirr isoGR).
+ +
+End IsomInv.
+ +
+Section Sdprod.
+ +
+Variables (gT : finGroupType) (K H G : {group gT}).
+Hypothesis defG : K ><| H = G.
+Let nKG: G \subset 'N(K).
+ +
+Lemma cfSdprod_char chi :
+ (cfSdprod defG chi \is a character) = (chi \is a character).
+ +
+Lemma cfSdprod_lin_char chi :
+ (cfSdprod defG chi \is a linear_char) = (chi \is a linear_char).
+ +
+Lemma cfSdprod_irr chi : (cfSdprod defG chi \in irr G) = (chi \in irr H).
+ +
+Definition sdprod_Iirr j := cfIirr (cfSdprod defG 'chi_j).
+ +
+Lemma sdprod_IirrE j : 'chi_(sdprod_Iirr j) = cfSdprod defG 'chi_j.
+ +
+Lemma sdprod_IirrK : cancel sdprod_Iirr (Res_Iirr H).
+ +
+Lemma sdprod_Iirr_inj : injective sdprod_Iirr.
+ +
+Lemma sdprod_Iirr_eq0 i : (sdprod_Iirr i == 0) = (i == 0).
+ +
+Lemma sdprod_Iirr0 : sdprod_Iirr 0 = 0.
+ +
+Lemma Res_sdprod_irr phi :
+ K \subset cfker phi → phi \in irr G → 'Res phi \in irr H.
+ +
+Lemma sdprod_Res_IirrE i :
+ K \subset cfker 'chi[G]_i → 'chi_(Res_Iirr H i) = 'Res 'chi_i.
+ +
+Lemma sdprod_Res_IirrK i :
+ K \subset cfker 'chi_i → sdprod_Iirr (Res_Iirr H i) = i.
+ +
+End Sdprod.
+ +
+ +
+Section DProd.
+ +
+Variables (gT : finGroupType) (G K H : {group gT}).
+Hypothesis KxH : K \x H = G.
+ +
+Lemma cfDprodKl_abelian j : abelian H → cancel ((cfDprod KxH)^~ 'chi_j) 'Res.
+ +
+Lemma cfDprodKr_abelian i : abelian K → cancel (cfDprod KxH 'chi_i) 'Res.
+ +
+Lemma cfDprodl_char phi :
+ (cfDprodl KxH phi \is a character) = (phi \is a character).
+ +
+Lemma cfDprodr_char psi :
+ (cfDprodr KxH psi \is a character) = (psi \is a character).
+ +
+Lemma cfDprod_char phi psi :
+ phi \is a character → psi \is a character →
+ cfDprod KxH phi psi \is a character.
+ +
+Lemma cfDprod_eq1 phi psi :
+ phi \is a character → psi \is a character →
+ (cfDprod KxH phi psi == 1) = (phi == 1) && (psi == 1).
+ +
+Lemma cfDprodl_lin_char phi :
+ (cfDprodl KxH phi \is a linear_char) = (phi \is a linear_char).
+ +
+Lemma cfDprodr_lin_char psi :
+ (cfDprodr KxH psi \is a linear_char) = (psi \is a linear_char).
+ +
+Lemma cfDprod_lin_char phi psi :
+ phi \is a linear_char → psi \is a linear_char →
+ cfDprod KxH phi psi \is a linear_char.
+ +
+Lemma cfDprodl_irr chi : (cfDprodl KxH chi \in irr G) = (chi \in irr K).
+ +
+Lemma cfDprodr_irr chi : (cfDprodr KxH chi \in irr G) = (chi \in irr H).
+ +
+Definition dprodl_Iirr i := cfIirr (cfDprodl KxH 'chi_i).
+ +
+Lemma dprodl_IirrE i : 'chi_(dprodl_Iirr i) = cfDprodl KxH 'chi_i.
+ Lemma dprodl_IirrK : cancel dprodl_Iirr (Res_Iirr K).
+ Lemma dprodl_Iirr_eq0 i : (dprodl_Iirr i == 0) = (i == 0).
+ Lemma dprodl_Iirr0 : dprodl_Iirr 0 = 0.
+ +
+Definition dprodr_Iirr j := cfIirr (cfDprodr KxH 'chi_j).
+ +
+Lemma dprodr_IirrE j : 'chi_(dprodr_Iirr j) = cfDprodr KxH 'chi_j.
+ Lemma dprodr_IirrK : cancel dprodr_Iirr (Res_Iirr H).
+ Lemma dprodr_Iirr_eq0 j : (dprodr_Iirr j == 0) = (j == 0).
+ Lemma dprodr_Iirr0 : dprodr_Iirr 0 = 0.
+ +
+Lemma cfDprod_irr i j : cfDprod KxH 'chi_i 'chi_j \in irr G.
+ +
+Definition dprod_Iirr ij := cfIirr (cfDprod KxH 'chi_ij.1 'chi_ij.2).
+ +
+Lemma dprod_IirrE i j : 'chi_(dprod_Iirr (i, j)) = cfDprod KxH 'chi_i 'chi_j.
+ +
+Lemma dprod_IirrEl i : 'chi_(dprod_Iirr (i, 0)) = cfDprodl KxH 'chi_i.
+ +
+Lemma dprod_IirrEr j : 'chi_(dprod_Iirr (0, j)) = cfDprodr KxH 'chi_j.
+ +
+Lemma dprod_Iirr_inj : injective dprod_Iirr.
+ +
+Lemma dprod_Iirr0 : dprod_Iirr (0, 0) = 0.
+ +
+Lemma dprod_Iirr0l j : dprod_Iirr (0, j) = dprodr_Iirr j.
+ +
+Lemma dprod_Iirr0r i : dprod_Iirr (i, 0) = dprodl_Iirr i.
+ +
+Lemma dprod_Iirr_eq0 i j : (dprod_Iirr (i, j) == 0) = (i == 0) && (j == 0).
+ +
+Lemma cfdot_dprod_irr i1 i2 j1 j2 :
+ '['chi_(dprod_Iirr (i1, j1)), 'chi_(dprod_Iirr (i2, j2))]
+ = ((i1 == i2) && (j1 == j2))%:R.
+ +
+Lemma dprod_Iirr_onto k : k \in codom dprod_Iirr.
+ +
+Definition inv_dprod_Iirr i := iinv (dprod_Iirr_onto i).
+ +
+Lemma dprod_IirrK : cancel dprod_Iirr inv_dprod_Iirr.
+ +
+Lemma inv_dprod_IirrK : cancel inv_dprod_Iirr dprod_Iirr.
+ +
+Lemma inv_dprod_Iirr0 : inv_dprod_Iirr 0 = (0, 0).
+ +
+End DProd.
+ +
+ +
+Lemma dprod_IirrC (gT : finGroupType) (G K H : {group gT})
+ (KxH : K \x H = G) (HxK : H \x K = G) i j :
+ dprod_Iirr KxH (i, j) = dprod_Iirr HxK (j, i).
+ +
+Section BigDprod.
+ +
+Variables (gT : finGroupType) (I : finType) (P : pred I).
+Variables (A : I → {group gT}) (G : {group gT}).
+Hypothesis defG : \big[dprod/1%g]_(i | P i) A i = G.
+ +
+Let sAG i : P i → A i \subset G.
+ +
+Lemma cfBigdprodi_char i (phi : 'CF(A i)) :
+ phi \is a character → cfBigdprodi defG phi \is a character.
+ +
+Lemma cfBigdprodi_charE i (phi : 'CF(A i)) :
+ P i → (cfBigdprodi defG phi \is a character) = (phi \is a character).
+ +
+Lemma cfBigdprod_char phi :
+ (∀ i, P i → phi i \is a character) →
+ cfBigdprod defG phi \is a character.
+ +
+Lemma cfBigdprodi_lin_char i (phi : 'CF(A i)) :
+ phi \is a linear_char → cfBigdprodi defG phi \is a linear_char.
+ +
+Lemma cfBigdprodi_lin_charE i (phi : 'CF(A i)) :
+ P i → (cfBigdprodi defG phi \is a linear_char) = (phi \is a linear_char).
+ +
+Lemma cfBigdprod_lin_char phi :
+ (∀ i, P i → phi i \is a linear_char) →
+ cfBigdprod defG phi \is a linear_char.
+ +
+Lemma cfBigdprodi_irr i chi :
+ P i → (cfBigdprodi defG chi \in irr G) = (chi \in irr (A i)).
+ +
+Lemma cfBigdprod_irr chi :
+ (∀ i, P i → chi i \in irr (A i)) → cfBigdprod defG chi \in irr G.
+ +
+Lemma cfBigdprod_eq1 phi :
+ (∀ i, P i → phi i \is a character) →
+ (cfBigdprod defG phi == 1) = [∀ (i | P i), phi i == 1].
+ +
+Lemma cfBigdprod_Res_lin chi :
+ chi \is a linear_char → cfBigdprod defG (fun i ⇒ 'Res[A i] chi) = chi.
+ +
+Lemma cfBigdprodKlin phi :
+ (∀ i, P i → phi i \is a linear_char) →
+ ∀ i, P i → 'Res (cfBigdprod defG phi) = phi i.
+ +
+Lemma cfBigdprodKabelian Iphi (phi := fun i ⇒ 'chi_(Iphi i)) :
+ abelian G → ∀ i, P i → 'Res (cfBigdprod defG phi) = 'chi_(Iphi i).
+ +
+End BigDprod.
+ +
+Section Aut.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+Implicit Type u : {rmorphism algC → algC}.
+ +
+Lemma conjC_charAut u (chi : 'CF(G)) x :
+ chi \is a character → (u (chi x))^* = u (chi x)^*.
+ +
+Lemma conjC_irrAut u i x : (u ('chi[G]_i x))^* = u ('chi_i x)^*.
+ +
+Lemma cfdot_aut_char u (phi chi : 'CF(G)) :
+ chi \is a character → '[cfAut u phi, cfAut u chi] = u '[phi, chi].
+ +
+Lemma cfdot_aut_irr u phi i :
+ '[cfAut u phi, cfAut u 'chi[G]_i] = u '[phi, 'chi_i].
+ +
+Lemma cfAut_irr u chi : (cfAut u chi \in irr G) = (chi \in irr G).
+ +
+Lemma cfConjC_irr i : (('chi_i)^*)%CF \in irr G.
+ +
+Lemma irr_aut_closed u : cfAut_closed u (irr G).
+ +
+Definition aut_Iirr u i := cfIirr (cfAut u 'chi[G]_i).
+ +
+Lemma aut_IirrE u i : 'chi_(aut_Iirr u i) = cfAut u 'chi_i.
+ +
+Definition conjC_Iirr := aut_Iirr conjC.
+ +
+Lemma conjC_IirrE i : 'chi[G]_(conjC_Iirr i) = ('chi_i)^*%CF.
+ +
+Lemma conjC_IirrK : involutive conjC_Iirr.
+ +
+Lemma aut_Iirr0 u : aut_Iirr u 0 = 0 :> Iirr G.
+ +
+Lemma conjC_Iirr0 : conjC_Iirr 0 = 0 :> Iirr G.
+ +
+Lemma aut_Iirr_eq0 u i : (aut_Iirr u i == 0) = (i == 0).
+ +
+Lemma conjC_Iirr_eq0 i : (conjC_Iirr i == 0 :> Iirr G) = (i == 0).
+ +
+Lemma aut_Iirr_inj u : injective (aut_Iirr u).
+ +
+End Aut.
+ +
+ +
+Section Coset.
+ +
+Variable (gT : finGroupType).
+ +
+Implicit Types G H : {group gT}.
+ +
+Lemma cfQuo_char G H (chi : 'CF(G)) :
+ chi \is a character → (chi / H)%CF \is a character.
+ +
+Lemma cfQuo_lin_char G H (chi : 'CF(G)) :
+ chi \is a linear_char → (chi / H)%CF \is a linear_char.
+ +
+Lemma cfMod_char G H (chi : 'CF(G / H)) :
+ chi \is a character → (chi %% H)%CF \is a character.
+ +
+Lemma cfMod_lin_char G H (chi : 'CF(G / H)) :
+ chi \is a linear_char → (chi %% H)%CF \is a linear_char.
+ +
+Lemma cfMod_charE G H (chi : 'CF(G / H)) :
+ H <| G → (chi %% H \is a character)%CF = (chi \is a character).
+ +
+Lemma cfMod_lin_charE G H (chi : 'CF(G / H)) :
+ H <| G → (chi %% H \is a linear_char)%CF = (chi \is a linear_char).
+ +
+Lemma cfQuo_charE G H (chi : 'CF(G)) :
+ H <| G → H \subset cfker chi →
+ (chi / H \is a character)%CF = (chi \is a character).
+ +
+Lemma cfQuo_lin_charE G H (chi : 'CF(G)) :
+ H <| G → H \subset cfker chi →
+ (chi / H \is a linear_char)%CF = (chi \is a linear_char).
+ +
+Lemma cfMod_irr G H chi :
+ H <| G → (chi %% H \in irr G)%CF = (chi \in irr (G / H)).
+ +
+Definition mod_Iirr G H i := cfIirr ('chi[G / H]_i %% H)%CF.
+ +
+Lemma mod_Iirr0 G H : mod_Iirr (0 : Iirr (G / H)) = 0.
+ +
+Lemma mod_IirrE G H i : H <| G → 'chi_(mod_Iirr i) = ('chi[G / H]_i %% H)%CF.
+ +
+Lemma mod_Iirr_eq0 G H i :
+ H <| G → (mod_Iirr i == 0) = (i == 0 :> Iirr (G / H)).
+ +
+Lemma cfQuo_irr G H chi :
+ H <| G → H \subset cfker chi →
+ ((chi / H)%CF \in irr (G / H)) = (chi \in irr G).
+ +
+Definition quo_Iirr G H i := cfIirr ('chi[G]_i / H)%CF.
+ +
+Lemma quo_Iirr0 G H : quo_Iirr H (0 : Iirr G) = 0.
+ +
+Lemma quo_IirrE G H i :
+ H <| G → H \subset cfker 'chi[G]_i → 'chi_(quo_Iirr H i) = ('chi_i / H)%CF.
+ +
+Lemma quo_Iirr_eq0 G H i :
+ H <| G → H \subset cfker 'chi[G]_i → (quo_Iirr H i == 0) = (i == 0).
+ +
+Lemma mod_IirrK G H : H <| G → cancel (@mod_Iirr G H) (@quo_Iirr G H).
+ +
+Lemma quo_IirrK G H i :
+ H <| G → H \subset cfker 'chi[G]_i → mod_Iirr (quo_Iirr H i) = i.
+ +
+Lemma quo_IirrKeq G H :
+ H <| G →
+ ∀ i, (mod_Iirr (quo_Iirr H i) == i) = (H \subset cfker 'chi[G]_i).
+ +
+Lemma mod_Iirr_bij H G :
+ H <| G → {on [pred i | H \subset cfker 'chi_i], bijective (@mod_Iirr G H)}.
+ +
+Lemma sum_norm_irr_quo H G x :
+ x \in G → H <| G →
+ \sum_i `|'chi[G / H]_i (coset H x)| ^+ 2
+ = \sum_(i | H \subset cfker 'chi_i) `|'chi[G]_i x| ^+ 2.
+ +
+Lemma cap_cfker_normal G H :
+ H <| G → \bigcap_(i | H \subset cfker 'chi[G]_i) (cfker 'chi_i) = H.
+ +
+Lemma cfker_reg_quo G H : H <| G → cfker (cfReg (G / H)%g %% H) = H.
+ +
+End Coset.
+ +
+Section DerivedGroup.
+ +
+Variable gT : finGroupType.
+Implicit Types G H : {group gT}.
+ +
+Lemma lin_irr_der1 G i :
+ ('chi_i \is a linear_char) = (G^`(1)%g \subset cfker 'chi[G]_i).
+ +
+Lemma subGcfker G i : (G \subset cfker 'chi[G]_i) = (i == 0).
+ +
+Lemma irr_prime_injP G i :
+ prime #|G| → reflect {in G &, injective 'chi[G]_i} (i != 0).
+ +
+
+
++ a \in A → [acts A, on classes G | cto] →
+ (∀ i x y, x \in G → y \in cto (x ^: G) a →
+ 'chi_i x = 'chi_(ito i a) y) →
+ #|'Fix_ito[a]| = #|'Fix_(classes G | cto)[a]|.
+ +
+End OrthogonalityRelations.
+ +
+ +
+Section InnerProduct.
+ +
+Variable (gT : finGroupType) (G : {group gT}).
+ +
+Lemma cfdot_irr i j : '['chi_i, 'chi_j]_G = (i == j)%:R.
+ +
+Lemma cfnorm_irr i : '['chi[G]_i] = 1.
+ +
+Lemma irr_orthonormal : orthonormal (irr G).
+ +
+Lemma coord_cfdot phi i : coord (irr G) i phi = '[phi, 'chi_i].
+ +
+Lemma cfun_sum_cfdot phi : phi = \sum_i '[phi, 'chi_i]_G *: 'chi_i.
+ +
+Lemma cfdot_sum_irr phi psi :
+ '[phi, psi]_G = \sum_i '[phi, 'chi_i] × '[psi, 'chi_i]^*.
+ +
+Lemma Cnat_cfdot_char_irr i phi :
+ phi \is a character → '[phi, 'chi_i]_G \in Cnat.
+ +
+Lemma cfdot_char_r phi chi :
+ chi \is a character → '[phi, chi]_G = \sum_i '[phi, 'chi_i] × '[chi, 'chi_i].
+ +
+Lemma Cnat_cfdot_char chi xi :
+ chi \is a character → xi \is a character → '[chi, xi]_G \in Cnat.
+ +
+Lemma cfdotC_char chi xi :
+ chi \is a character→ xi \is a character → '[chi, xi]_G = '[xi, chi].
+ +
+Lemma irrEchar chi : (chi \in irr G) = (chi \is a character) && ('[chi] == 1).
+ +
+Lemma irrWchar chi : chi \in irr G → chi \is a character.
+ +
+Lemma irrWnorm chi : chi \in irr G → '[chi] = 1.
+ +
+Lemma mul_lin_irr xi chi :
+ xi \is a linear_char → chi \in irr G → xi × chi \in irr G.
+ +
+Lemma eq_scaled_irr a b i j :
+ (a *: 'chi[G]_i == b *: 'chi_j) = (a == b) && ((a == 0) || (i == j)).
+ +
+Lemma eq_signed_irr (s t : bool) i j :
+ ((-1) ^+ s *: 'chi[G]_i == (-1) ^+ t *: 'chi_j) = (s == t) && (i == j).
+ +
+Lemma eq_scale_irr a (i j : Iirr G) :
+ (a *: 'chi_i == a *: 'chi_j) = (a == 0) || (i == j).
+ +
+Lemma eq_addZ_irr a b (i j r t : Iirr G) :
+ (a *: 'chi_i + b *: 'chi_j == a *: 'chi_r + b *: 'chi_t)
+ = [|| [&& (a == 0) || (i == r) & (b == 0) || (j == t)],
+ [&& i == t, j == r & a == b] | [&& i == j, r == t & a == - b]].
+ +
+Lemma eq_subZnat_irr (a b : nat) (i j r t : Iirr G) :
+ (a%:R *: 'chi_i - b%:R *: 'chi_j == a%:R *: 'chi_r - b%:R *: 'chi_t)
+ = [|| a == 0%N | i == r] && [|| b == 0%N | j == t]
+ || [&& i == j, r == t & a == b].
+ +
+End InnerProduct.
+ +
+Section IrrConstt.
+ +
+Variable (gT : finGroupType) (G H : {group gT}).
+ +
+Lemma char1_ge_norm (chi : 'CF(G)) x :
+ chi \is a character → `|chi x| ≤ chi 1%g.
+ +
+Lemma max_cfRepr_norm_scalar n (rG : mx_representation algCF G n) x :
+ x \in G → `|cfRepr rG x| = cfRepr rG 1%g →
+ exists2 c, `|c| = 1 & rG x = c%:M.
+ +
+Lemma max_cfRepr_mx1 n (rG : mx_representation algCF G n) x :
+ x \in G → cfRepr rG x = cfRepr rG 1%g → rG x = 1%:M.
+ +
+Definition irr_constt (B : {set gT}) phi := [pred i | '[phi, 'chi_i]_B != 0].
+ +
+Lemma irr_consttE i phi : (i \in irr_constt phi) = ('[phi, 'chi_i]_G != 0).
+ +
+Lemma constt_charP (i : Iirr G) chi :
+ chi \is a character →
+ reflect (exists2 chi', chi' \is a character & chi = 'chi_i + chi')
+ (i \in irr_constt chi).
+ +
+Lemma cfun_sum_constt (phi : 'CF(G)) :
+ phi = \sum_(i in irr_constt phi) '[phi, 'chi_i] *: 'chi_i.
+ +
+Lemma neq0_has_constt (phi : 'CF(G)) :
+ phi != 0 → ∃ i, i \in irr_constt phi.
+ +
+Lemma constt_irr i : irr_constt 'chi[G]_i =i pred1 i.
+ +
+Lemma char1_ge_constt (i : Iirr G) chi :
+ chi \is a character → i \in irr_constt chi → 'chi_i 1%g ≤ chi 1%g.
+ +
+Lemma constt_ortho_char (phi psi : 'CF(G)) i j :
+ phi \is a character → psi \is a character →
+ i \in irr_constt phi → j \in irr_constt psi →
+ '[phi, psi] = 0 → '['chi_i, 'chi_j] = 0.
+ +
+End IrrConstt.
+ +
+ +
+Section Kernel.
+ +
+Variable (gT : finGroupType) (G : {group gT}).
+Implicit Types (phi chi xi : 'CF(G)) (H : {group gT}).
+ +
+Lemma cfker_repr n (rG : mx_representation algCF G n) :
+ cfker (cfRepr rG) = rker rG.
+ +
+Lemma cfkerEchar chi :
+ chi \is a character → cfker chi = [set x in G | chi x == chi 1%g].
+ +
+Lemma cfker_nzcharE chi :
+ chi \is a character → chi != 0 → cfker chi = [set x | chi x == chi 1%g].
+ +
+Lemma cfkerEirr i : cfker 'chi[G]_i = [set x | 'chi_i x == 'chi_i 1%g].
+ +
+Lemma cfker_irr0 : cfker 'chi[G]_0 = G.
+ +
+Lemma cfaithful_reg : cfaithful (cfReg G).
+ +
+Lemma cfkerE chi :
+ chi \is a character →
+ cfker chi = G :&: \bigcap_(i in irr_constt chi) cfker 'chi_i.
+ +
+Lemma TI_cfker_irr : \bigcap_i cfker 'chi[G]_i = [1].
+ +
+Lemma cfker_constt i chi :
+ chi \is a character → i \in irr_constt chi →
+ cfker chi \subset cfker 'chi[G]_i.
+ +
+Section KerLin.
+ +
+Variable xi : 'CF(G).
+Hypothesis lin_xi : xi \is a linear_char.
+Let Nxi: xi \is a character.
+ +
+Lemma lin_char_der1 : G^`(1)%g \subset cfker xi.
+ +
+Lemma cforder_lin_char : #[xi]%CF = exponent (G / cfker xi)%g.
+ +
+Lemma cforder_lin_char_dvdG : #[xi]%CF %| #|G|.
+ +
+Lemma cforder_lin_char_gt0 : (0 < #[xi]%CF)%N.
+ +
+End KerLin.
+ +
+End Kernel.
+ +
+Section Restrict.
+ +
+Variable (gT : finGroupType) (G H : {group gT}).
+ +
+Lemma cfRepr_sub n (rG : mx_representation algCF G n) (sHG : H \subset G) :
+ cfRepr (subg_repr rG sHG) = 'Res[H] (cfRepr rG).
+ +
+Lemma cfRes_char chi : chi \is a character → 'Res[H, G] chi \is a character.
+ +
+Lemma cfRes_eq0 phi : phi \is a character → ('Res[H, G] phi == 0) = (phi == 0).
+ +
+Lemma cfRes_lin_char chi :
+ chi \is a linear_char → 'Res[H, G] chi \is a linear_char.
+ +
+Lemma Res_irr_neq0 i : 'Res[H, G] 'chi_i != 0.
+ +
+Lemma cfRes_lin_lin (chi : 'CF(G)) :
+ chi \is a character → 'Res[H] chi \is a linear_char → chi \is a linear_char.
+ +
+Lemma cfRes_irr_irr chi :
+ chi \is a character → 'Res[H] chi \in irr H → chi \in irr G.
+ +
+Definition Res_Iirr (A B : {set gT}) i := cfIirr ('Res[B, A] 'chi_i).
+ +
+Lemma Res_Iirr0 : Res_Iirr H (0 : Iirr G) = 0.
+ +
+Lemma lin_Res_IirrE i : 'chi[G]_i 1%g = 1 → 'chi_(Res_Iirr H i) = 'Res 'chi_i.
+ +
+End Restrict.
+ +
+ +
+Section MoreConstt.
+ +
+Variables (gT : finGroupType) (G H : {group gT}).
+ +
+Lemma constt_Ind_Res i j :
+ i \in irr_constt ('Ind[G] 'chi_j) = (j \in irr_constt ('Res[H] 'chi_i)).
+ +
+Lemma cfdot_Res_ge_constt i j psi :
+ psi \is a character → j \in irr_constt psi →
+ '['Res[H, G] 'chi_j, 'chi_i] ≤ '['Res[H] psi, 'chi_i].
+ +
+Lemma constt_Res_trans j psi :
+ psi \is a character → j \in irr_constt psi →
+ {subset irr_constt ('Res[H, G] 'chi_j) ≤ irr_constt ('Res[H] psi)}.
+ +
+End MoreConstt.
+ +
+Section Morphim.
+ +
+Variables (aT rT : finGroupType) (G D : {group aT}) (f : {morphism D >-> rT}).
+Implicit Type chi : 'CF(f @* G).
+ +
+Lemma cfRepr_morphim n (rfG : mx_representation algCF (f @* G) n) sGD :
+ cfRepr (morphim_repr rfG sGD) = cfMorph (cfRepr rfG).
+ +
+Lemma cfMorph_char chi : chi \is a character → cfMorph chi \is a character.
+ +
+Lemma cfMorph_lin_char chi :
+ chi \is a linear_char → cfMorph chi \is a linear_char.
+ +
+Lemma cfMorph_charE chi :
+ G \subset D → (cfMorph chi \is a character) = (chi \is a character).
+ +
+Lemma cfMorph_lin_charE chi :
+ G \subset D → (cfMorph chi \is a linear_char) = (chi \is a linear_char).
+ +
+Lemma cfMorph_irr chi :
+ G \subset D → (cfMorph chi \in irr G) = (chi \in irr (f @* G)).
+ +
+Definition morph_Iirr i := cfIirr (cfMorph 'chi[f @* G]_i).
+ +
+Lemma morph_Iirr0 : morph_Iirr 0 = 0.
+ +
+Hypothesis sGD : G \subset D.
+ +
+Lemma morph_IirrE i : 'chi_(morph_Iirr i) = cfMorph 'chi_i.
+ +
+Lemma morph_Iirr_inj : injective morph_Iirr.
+ +
+Lemma morph_Iirr_eq0 i : (morph_Iirr i == 0) = (i == 0).
+ +
+End Morphim.
+ +
+Section Isom.
+ +
+Variables (aT rT : finGroupType) (G : {group aT}) (f : {morphism G >-> rT}).
+Variables (R : {group rT}) (isoGR : isom G R f).
+Implicit Type chi : 'CF(G).
+ +
+Lemma cfIsom_char chi :
+ (cfIsom isoGR chi \is a character) = (chi \is a character).
+ +
+Lemma cfIsom_lin_char chi :
+ (cfIsom isoGR chi \is a linear_char) = (chi \is a linear_char).
+ +
+Lemma cfIsom_irr chi : (cfIsom isoGR chi \in irr R) = (chi \in irr G).
+ +
+Definition isom_Iirr i := cfIirr (cfIsom isoGR 'chi_i).
+ +
+Lemma isom_IirrE i : 'chi_(isom_Iirr i) = cfIsom isoGR 'chi_i.
+ +
+Lemma isom_Iirr_inj : injective isom_Iirr.
+ +
+Lemma isom_Iirr_eq0 i : (isom_Iirr i == 0) = (i == 0).
+ +
+Lemma isom_Iirr0 : isom_Iirr 0 = 0.
+ +
+End Isom.
+ +
+ +
+Section IsomInv.
+ +
+Variables (aT rT : finGroupType) (G : {group aT}) (f : {morphism G >-> rT}).
+Variables (R : {group rT}) (isoGR : isom G R f).
+ +
+Lemma isom_IirrK : cancel (isom_Iirr isoGR) (isom_Iirr (isom_sym isoGR)).
+ +
+Lemma isom_IirrKV : cancel (isom_Iirr (isom_sym isoGR)) (isom_Iirr isoGR).
+ +
+End IsomInv.
+ +
+Section Sdprod.
+ +
+Variables (gT : finGroupType) (K H G : {group gT}).
+Hypothesis defG : K ><| H = G.
+Let nKG: G \subset 'N(K).
+ +
+Lemma cfSdprod_char chi :
+ (cfSdprod defG chi \is a character) = (chi \is a character).
+ +
+Lemma cfSdprod_lin_char chi :
+ (cfSdprod defG chi \is a linear_char) = (chi \is a linear_char).
+ +
+Lemma cfSdprod_irr chi : (cfSdprod defG chi \in irr G) = (chi \in irr H).
+ +
+Definition sdprod_Iirr j := cfIirr (cfSdprod defG 'chi_j).
+ +
+Lemma sdprod_IirrE j : 'chi_(sdprod_Iirr j) = cfSdprod defG 'chi_j.
+ +
+Lemma sdprod_IirrK : cancel sdprod_Iirr (Res_Iirr H).
+ +
+Lemma sdprod_Iirr_inj : injective sdprod_Iirr.
+ +
+Lemma sdprod_Iirr_eq0 i : (sdprod_Iirr i == 0) = (i == 0).
+ +
+Lemma sdprod_Iirr0 : sdprod_Iirr 0 = 0.
+ +
+Lemma Res_sdprod_irr phi :
+ K \subset cfker phi → phi \in irr G → 'Res phi \in irr H.
+ +
+Lemma sdprod_Res_IirrE i :
+ K \subset cfker 'chi[G]_i → 'chi_(Res_Iirr H i) = 'Res 'chi_i.
+ +
+Lemma sdprod_Res_IirrK i :
+ K \subset cfker 'chi_i → sdprod_Iirr (Res_Iirr H i) = i.
+ +
+End Sdprod.
+ +
+ +
+Section DProd.
+ +
+Variables (gT : finGroupType) (G K H : {group gT}).
+Hypothesis KxH : K \x H = G.
+ +
+Lemma cfDprodKl_abelian j : abelian H → cancel ((cfDprod KxH)^~ 'chi_j) 'Res.
+ +
+Lemma cfDprodKr_abelian i : abelian K → cancel (cfDprod KxH 'chi_i) 'Res.
+ +
+Lemma cfDprodl_char phi :
+ (cfDprodl KxH phi \is a character) = (phi \is a character).
+ +
+Lemma cfDprodr_char psi :
+ (cfDprodr KxH psi \is a character) = (psi \is a character).
+ +
+Lemma cfDprod_char phi psi :
+ phi \is a character → psi \is a character →
+ cfDprod KxH phi psi \is a character.
+ +
+Lemma cfDprod_eq1 phi psi :
+ phi \is a character → psi \is a character →
+ (cfDprod KxH phi psi == 1) = (phi == 1) && (psi == 1).
+ +
+Lemma cfDprodl_lin_char phi :
+ (cfDprodl KxH phi \is a linear_char) = (phi \is a linear_char).
+ +
+Lemma cfDprodr_lin_char psi :
+ (cfDprodr KxH psi \is a linear_char) = (psi \is a linear_char).
+ +
+Lemma cfDprod_lin_char phi psi :
+ phi \is a linear_char → psi \is a linear_char →
+ cfDprod KxH phi psi \is a linear_char.
+ +
+Lemma cfDprodl_irr chi : (cfDprodl KxH chi \in irr G) = (chi \in irr K).
+ +
+Lemma cfDprodr_irr chi : (cfDprodr KxH chi \in irr G) = (chi \in irr H).
+ +
+Definition dprodl_Iirr i := cfIirr (cfDprodl KxH 'chi_i).
+ +
+Lemma dprodl_IirrE i : 'chi_(dprodl_Iirr i) = cfDprodl KxH 'chi_i.
+ Lemma dprodl_IirrK : cancel dprodl_Iirr (Res_Iirr K).
+ Lemma dprodl_Iirr_eq0 i : (dprodl_Iirr i == 0) = (i == 0).
+ Lemma dprodl_Iirr0 : dprodl_Iirr 0 = 0.
+ +
+Definition dprodr_Iirr j := cfIirr (cfDprodr KxH 'chi_j).
+ +
+Lemma dprodr_IirrE j : 'chi_(dprodr_Iirr j) = cfDprodr KxH 'chi_j.
+ Lemma dprodr_IirrK : cancel dprodr_Iirr (Res_Iirr H).
+ Lemma dprodr_Iirr_eq0 j : (dprodr_Iirr j == 0) = (j == 0).
+ Lemma dprodr_Iirr0 : dprodr_Iirr 0 = 0.
+ +
+Lemma cfDprod_irr i j : cfDprod KxH 'chi_i 'chi_j \in irr G.
+ +
+Definition dprod_Iirr ij := cfIirr (cfDprod KxH 'chi_ij.1 'chi_ij.2).
+ +
+Lemma dprod_IirrE i j : 'chi_(dprod_Iirr (i, j)) = cfDprod KxH 'chi_i 'chi_j.
+ +
+Lemma dprod_IirrEl i : 'chi_(dprod_Iirr (i, 0)) = cfDprodl KxH 'chi_i.
+ +
+Lemma dprod_IirrEr j : 'chi_(dprod_Iirr (0, j)) = cfDprodr KxH 'chi_j.
+ +
+Lemma dprod_Iirr_inj : injective dprod_Iirr.
+ +
+Lemma dprod_Iirr0 : dprod_Iirr (0, 0) = 0.
+ +
+Lemma dprod_Iirr0l j : dprod_Iirr (0, j) = dprodr_Iirr j.
+ +
+Lemma dprod_Iirr0r i : dprod_Iirr (i, 0) = dprodl_Iirr i.
+ +
+Lemma dprod_Iirr_eq0 i j : (dprod_Iirr (i, j) == 0) = (i == 0) && (j == 0).
+ +
+Lemma cfdot_dprod_irr i1 i2 j1 j2 :
+ '['chi_(dprod_Iirr (i1, j1)), 'chi_(dprod_Iirr (i2, j2))]
+ = ((i1 == i2) && (j1 == j2))%:R.
+ +
+Lemma dprod_Iirr_onto k : k \in codom dprod_Iirr.
+ +
+Definition inv_dprod_Iirr i := iinv (dprod_Iirr_onto i).
+ +
+Lemma dprod_IirrK : cancel dprod_Iirr inv_dprod_Iirr.
+ +
+Lemma inv_dprod_IirrK : cancel inv_dprod_Iirr dprod_Iirr.
+ +
+Lemma inv_dprod_Iirr0 : inv_dprod_Iirr 0 = (0, 0).
+ +
+End DProd.
+ +
+ +
+Lemma dprod_IirrC (gT : finGroupType) (G K H : {group gT})
+ (KxH : K \x H = G) (HxK : H \x K = G) i j :
+ dprod_Iirr KxH (i, j) = dprod_Iirr HxK (j, i).
+ +
+Section BigDprod.
+ +
+Variables (gT : finGroupType) (I : finType) (P : pred I).
+Variables (A : I → {group gT}) (G : {group gT}).
+Hypothesis defG : \big[dprod/1%g]_(i | P i) A i = G.
+ +
+Let sAG i : P i → A i \subset G.
+ +
+Lemma cfBigdprodi_char i (phi : 'CF(A i)) :
+ phi \is a character → cfBigdprodi defG phi \is a character.
+ +
+Lemma cfBigdprodi_charE i (phi : 'CF(A i)) :
+ P i → (cfBigdprodi defG phi \is a character) = (phi \is a character).
+ +
+Lemma cfBigdprod_char phi :
+ (∀ i, P i → phi i \is a character) →
+ cfBigdprod defG phi \is a character.
+ +
+Lemma cfBigdprodi_lin_char i (phi : 'CF(A i)) :
+ phi \is a linear_char → cfBigdprodi defG phi \is a linear_char.
+ +
+Lemma cfBigdprodi_lin_charE i (phi : 'CF(A i)) :
+ P i → (cfBigdprodi defG phi \is a linear_char) = (phi \is a linear_char).
+ +
+Lemma cfBigdprod_lin_char phi :
+ (∀ i, P i → phi i \is a linear_char) →
+ cfBigdprod defG phi \is a linear_char.
+ +
+Lemma cfBigdprodi_irr i chi :
+ P i → (cfBigdprodi defG chi \in irr G) = (chi \in irr (A i)).
+ +
+Lemma cfBigdprod_irr chi :
+ (∀ i, P i → chi i \in irr (A i)) → cfBigdprod defG chi \in irr G.
+ +
+Lemma cfBigdprod_eq1 phi :
+ (∀ i, P i → phi i \is a character) →
+ (cfBigdprod defG phi == 1) = [∀ (i | P i), phi i == 1].
+ +
+Lemma cfBigdprod_Res_lin chi :
+ chi \is a linear_char → cfBigdprod defG (fun i ⇒ 'Res[A i] chi) = chi.
+ +
+Lemma cfBigdprodKlin phi :
+ (∀ i, P i → phi i \is a linear_char) →
+ ∀ i, P i → 'Res (cfBigdprod defG phi) = phi i.
+ +
+Lemma cfBigdprodKabelian Iphi (phi := fun i ⇒ 'chi_(Iphi i)) :
+ abelian G → ∀ i, P i → 'Res (cfBigdprod defG phi) = 'chi_(Iphi i).
+ +
+End BigDprod.
+ +
+Section Aut.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+Implicit Type u : {rmorphism algC → algC}.
+ +
+Lemma conjC_charAut u (chi : 'CF(G)) x :
+ chi \is a character → (u (chi x))^* = u (chi x)^*.
+ +
+Lemma conjC_irrAut u i x : (u ('chi[G]_i x))^* = u ('chi_i x)^*.
+ +
+Lemma cfdot_aut_char u (phi chi : 'CF(G)) :
+ chi \is a character → '[cfAut u phi, cfAut u chi] = u '[phi, chi].
+ +
+Lemma cfdot_aut_irr u phi i :
+ '[cfAut u phi, cfAut u 'chi[G]_i] = u '[phi, 'chi_i].
+ +
+Lemma cfAut_irr u chi : (cfAut u chi \in irr G) = (chi \in irr G).
+ +
+Lemma cfConjC_irr i : (('chi_i)^*)%CF \in irr G.
+ +
+Lemma irr_aut_closed u : cfAut_closed u (irr G).
+ +
+Definition aut_Iirr u i := cfIirr (cfAut u 'chi[G]_i).
+ +
+Lemma aut_IirrE u i : 'chi_(aut_Iirr u i) = cfAut u 'chi_i.
+ +
+Definition conjC_Iirr := aut_Iirr conjC.
+ +
+Lemma conjC_IirrE i : 'chi[G]_(conjC_Iirr i) = ('chi_i)^*%CF.
+ +
+Lemma conjC_IirrK : involutive conjC_Iirr.
+ +
+Lemma aut_Iirr0 u : aut_Iirr u 0 = 0 :> Iirr G.
+ +
+Lemma conjC_Iirr0 : conjC_Iirr 0 = 0 :> Iirr G.
+ +
+Lemma aut_Iirr_eq0 u i : (aut_Iirr u i == 0) = (i == 0).
+ +
+Lemma conjC_Iirr_eq0 i : (conjC_Iirr i == 0 :> Iirr G) = (i == 0).
+ +
+Lemma aut_Iirr_inj u : injective (aut_Iirr u).
+ +
+End Aut.
+ +
+ +
+Section Coset.
+ +
+Variable (gT : finGroupType).
+ +
+Implicit Types G H : {group gT}.
+ +
+Lemma cfQuo_char G H (chi : 'CF(G)) :
+ chi \is a character → (chi / H)%CF \is a character.
+ +
+Lemma cfQuo_lin_char G H (chi : 'CF(G)) :
+ chi \is a linear_char → (chi / H)%CF \is a linear_char.
+ +
+Lemma cfMod_char G H (chi : 'CF(G / H)) :
+ chi \is a character → (chi %% H)%CF \is a character.
+ +
+Lemma cfMod_lin_char G H (chi : 'CF(G / H)) :
+ chi \is a linear_char → (chi %% H)%CF \is a linear_char.
+ +
+Lemma cfMod_charE G H (chi : 'CF(G / H)) :
+ H <| G → (chi %% H \is a character)%CF = (chi \is a character).
+ +
+Lemma cfMod_lin_charE G H (chi : 'CF(G / H)) :
+ H <| G → (chi %% H \is a linear_char)%CF = (chi \is a linear_char).
+ +
+Lemma cfQuo_charE G H (chi : 'CF(G)) :
+ H <| G → H \subset cfker chi →
+ (chi / H \is a character)%CF = (chi \is a character).
+ +
+Lemma cfQuo_lin_charE G H (chi : 'CF(G)) :
+ H <| G → H \subset cfker chi →
+ (chi / H \is a linear_char)%CF = (chi \is a linear_char).
+ +
+Lemma cfMod_irr G H chi :
+ H <| G → (chi %% H \in irr G)%CF = (chi \in irr (G / H)).
+ +
+Definition mod_Iirr G H i := cfIirr ('chi[G / H]_i %% H)%CF.
+ +
+Lemma mod_Iirr0 G H : mod_Iirr (0 : Iirr (G / H)) = 0.
+ +
+Lemma mod_IirrE G H i : H <| G → 'chi_(mod_Iirr i) = ('chi[G / H]_i %% H)%CF.
+ +
+Lemma mod_Iirr_eq0 G H i :
+ H <| G → (mod_Iirr i == 0) = (i == 0 :> Iirr (G / H)).
+ +
+Lemma cfQuo_irr G H chi :
+ H <| G → H \subset cfker chi →
+ ((chi / H)%CF \in irr (G / H)) = (chi \in irr G).
+ +
+Definition quo_Iirr G H i := cfIirr ('chi[G]_i / H)%CF.
+ +
+Lemma quo_Iirr0 G H : quo_Iirr H (0 : Iirr G) = 0.
+ +
+Lemma quo_IirrE G H i :
+ H <| G → H \subset cfker 'chi[G]_i → 'chi_(quo_Iirr H i) = ('chi_i / H)%CF.
+ +
+Lemma quo_Iirr_eq0 G H i :
+ H <| G → H \subset cfker 'chi[G]_i → (quo_Iirr H i == 0) = (i == 0).
+ +
+Lemma mod_IirrK G H : H <| G → cancel (@mod_Iirr G H) (@quo_Iirr G H).
+ +
+Lemma quo_IirrK G H i :
+ H <| G → H \subset cfker 'chi[G]_i → mod_Iirr (quo_Iirr H i) = i.
+ +
+Lemma quo_IirrKeq G H :
+ H <| G →
+ ∀ i, (mod_Iirr (quo_Iirr H i) == i) = (H \subset cfker 'chi[G]_i).
+ +
+Lemma mod_Iirr_bij H G :
+ H <| G → {on [pred i | H \subset cfker 'chi_i], bijective (@mod_Iirr G H)}.
+ +
+Lemma sum_norm_irr_quo H G x :
+ x \in G → H <| G →
+ \sum_i `|'chi[G / H]_i (coset H x)| ^+ 2
+ = \sum_(i | H \subset cfker 'chi_i) `|'chi[G]_i x| ^+ 2.
+ +
+Lemma cap_cfker_normal G H :
+ H <| G → \bigcap_(i | H \subset cfker 'chi[G]_i) (cfker 'chi_i) = H.
+ +
+Lemma cfker_reg_quo G H : H <| G → cfker (cfReg (G / H)%g %% H) = H.
+ +
+End Coset.
+ +
+Section DerivedGroup.
+ +
+Variable gT : finGroupType.
+Implicit Types G H : {group gT}.
+ +
+Lemma lin_irr_der1 G i :
+ ('chi_i \is a linear_char) = (G^`(1)%g \subset cfker 'chi[G]_i).
+ +
+Lemma subGcfker G i : (G \subset cfker 'chi[G]_i) = (i == 0).
+ +
+Lemma irr_prime_injP G i :
+ prime #|G| → reflect {in G &, injective 'chi[G]_i} (i != 0).
+ +
+
+ This is Isaacs (2.23)(a).
+
+
+Lemma cap_cfker_lin_irr G :
+ \bigcap_(i | 'chi[G]_i \is a linear_char) (cfker 'chi_i) = G^`(1)%g.
+ +
+
+
++ \bigcap_(i | 'chi[G]_i \is a linear_char) (cfker 'chi_i) = G^`(1)%g.
+ +
+
+ This is Isaacs (2.23)(b)
+
+
+
+
+ Alternative: use the equivalent result in modular representation theory
+transitivity #|@socle_of_Iirr _ G @^-1: linear_irr _|; last first.
+ rewrite (on_card_preimset (socle_of_Iirr_bij _)).
+ by rewrite card_linear_irr ?algC'G; last apply: groupC.
+by apply: eq_card => i; rewrite !inE /lin_char irr_char irr1_degree -eqC_nat.
+
+
+
+
+
+
+
++
+ A non-trivial solvable group has a nonprincipal linear character.
+
+
+Lemma solvable_has_lin_char G :
+ G :!=: 1%g → solvable G →
+ exists2 i, 'chi[G]_i \is a linear_char & 'chi_i != 1.
+ +
+
+
++ G :!=: 1%g → solvable G →
+ exists2 i, 'chi[G]_i \is a linear_char & 'chi_i != 1.
+ +
+
+ A combinatorial group isommorphic to the linear characters.
+
+
+Lemma lin_char_group G :
+ {linG : finGroupType & {cF : linG → 'CF(G) |
+ [/\ injective cF, #|linG| = #|G : G^`(1)|,
+ ∀ u, cF u \is a linear_char
+ & ∀ phi, phi \is a linear_char → ∃ u, phi = cF u]
+ & [/\ cF 1%g = 1%R,
+ {morph cF : u v / (u × v)%g >-> (u × v)%R},
+ ∀ k, {morph cF : u / (u^+ k)%g >-> u ^+ k},
+ {morph cF: u / u^-1%g >-> u^-1%CF}
+ & {mono cF: u / #[u]%g >-> #[u]%CF} ]}}.
+ +
+Lemma cfExp_prime_transitive G (i j : Iirr G) :
+ prime #|G| → i != 0 → j != 0 →
+ exists2 k, coprime k #['chi_i]%CF & 'chi_j = 'chi_i ^+ k.
+ +
+
+
++ {linG : finGroupType & {cF : linG → 'CF(G) |
+ [/\ injective cF, #|linG| = #|G : G^`(1)|,
+ ∀ u, cF u \is a linear_char
+ & ∀ phi, phi \is a linear_char → ∃ u, phi = cF u]
+ & [/\ cF 1%g = 1%R,
+ {morph cF : u v / (u × v)%g >-> (u × v)%R},
+ ∀ k, {morph cF : u / (u^+ k)%g >-> u ^+ k},
+ {morph cF: u / u^-1%g >-> u^-1%CF}
+ & {mono cF: u / #[u]%g >-> #[u]%CF} ]}}.
+ +
+Lemma cfExp_prime_transitive G (i j : Iirr G) :
+ prime #|G| → i != 0 → j != 0 →
+ exists2 k, coprime k #['chi_i]%CF & 'chi_j = 'chi_i ^+ k.
+ +
+
+ This is Isaacs (2.24).
+
+
+Lemma card_subcent1_coset G H x :
+ x \in G → H <| G → (#|'C_(G / H)[coset H x]| ≤ #|'C_G[x]|)%N.
+ +
+End DerivedGroup.
+ +
+ +
+
+
++ x \in G → H <| G → (#|'C_(G / H)[coset H x]| ≤ #|'C_G[x]|)%N.
+ +
+End DerivedGroup.
+ +
+ +
+
+ Determinant characters and determinential order.
+
+
+Section DetOrder.
+ +
+Variables (gT : finGroupType) (G : {group gT}).
+ +
+Section DetRepr.
+ +
+Variables (n : nat) (rG : mx_representation [fieldType of algC] G n).
+ +
+Definition det_repr_mx x : 'M_1 := (\det (rG x))%:M.
+ +
+Fact det_is_repr : mx_repr G det_repr_mx.
+ +
+Canonical det_repr := MxRepresentation det_is_repr.
+Definition detRepr := cfRepr det_repr.
+ +
+Lemma detRepr_lin_char : detRepr \is a linear_char.
+ +
+End DetRepr.
+ +
+Definition cfDet phi := \prod_i detRepr 'Chi_i ^+ truncC '[phi, 'chi[G]_i].
+ +
+Lemma cfDet_lin_char phi : cfDet phi \is a linear_char.
+ +
+Lemma cfDetD :
+ {in character &, {morph cfDet : phi psi / phi + psi >-> phi × psi}}.
+ +
+Lemma cfDet0 : cfDet 0 = 1.
+ +
+Lemma cfDetMn k :
+ {in character, {morph cfDet : phi / phi *+ k >-> phi ^+ k}}.
+ +
+Lemma cfDetRepr n rG : cfDet (cfRepr rG) = @detRepr n rG.
+ +
+Lemma cfDet_id xi : xi \is a linear_char → cfDet xi = xi.
+ +
+Definition cfDet_order phi := #[cfDet phi]%CF.
+ +
+Definition cfDet_order_lin xi :
+ xi \is a linear_char → cfDet_order xi = #[xi]%CF.
+ +
+Definition cfDet_order_dvdG phi : cfDet_order phi %| #|G|.
+ +
+End DetOrder.
+ +
+Notation "''o' ( phi )" := (cfDet_order phi)
+ (at level 8, format "''o' ( phi )") : cfun_scope.
+ +
+Section CfDetOps.
+ +
+Implicit Types gT aT rT : finGroupType.
+ +
+Lemma cfDetRes gT (G H : {group gT}) phi :
+ phi \is a character → cfDet ('Res[H, G] phi) = 'Res (cfDet phi).
+ +
+Lemma cfDetMorph aT rT (D G : {group aT}) (f : {morphism D >-> rT})
+ (phi : 'CF(f @* G)) :
+ phi \is a character → cfDet (cfMorph phi) = cfMorph (cfDet phi).
+ +
+Lemma cfDetIsom aT rT (G : {group aT}) (R : {group rT})
+ (f : {morphism G >-> rT}) (isoGR : isom G R f) phi :
+ cfDet (cfIsom isoGR phi) = cfIsom isoGR (cfDet phi).
+ +
+Lemma cfDet_mul_lin gT (G : {group gT}) (lambda phi : 'CF(G)) :
+ lambda \is a linear_char → phi \is a character →
+ cfDet (lambda × phi) = lambda ^+ truncC (phi 1%g) × cfDet phi.
+ +
+End CfDetOps.
+ +
+Definition cfcenter (gT : finGroupType) (G : {set gT}) (phi : 'CF(G)) :=
+ if phi \is a character then [set g in G | `|phi g| == phi 1%g] else cfker phi.
+ +
+Notation "''Z' ( phi )" := (cfcenter phi) : cfun_scope.
+ +
+Section Center.
+ +
+Variable (gT : finGroupType) (G : {group gT}).
+Implicit Types (phi chi : 'CF(G)) (H : {group gT}).
+ +
+
+
++ +
+Variables (gT : finGroupType) (G : {group gT}).
+ +
+Section DetRepr.
+ +
+Variables (n : nat) (rG : mx_representation [fieldType of algC] G n).
+ +
+Definition det_repr_mx x : 'M_1 := (\det (rG x))%:M.
+ +
+Fact det_is_repr : mx_repr G det_repr_mx.
+ +
+Canonical det_repr := MxRepresentation det_is_repr.
+Definition detRepr := cfRepr det_repr.
+ +
+Lemma detRepr_lin_char : detRepr \is a linear_char.
+ +
+End DetRepr.
+ +
+Definition cfDet phi := \prod_i detRepr 'Chi_i ^+ truncC '[phi, 'chi[G]_i].
+ +
+Lemma cfDet_lin_char phi : cfDet phi \is a linear_char.
+ +
+Lemma cfDetD :
+ {in character &, {morph cfDet : phi psi / phi + psi >-> phi × psi}}.
+ +
+Lemma cfDet0 : cfDet 0 = 1.
+ +
+Lemma cfDetMn k :
+ {in character, {morph cfDet : phi / phi *+ k >-> phi ^+ k}}.
+ +
+Lemma cfDetRepr n rG : cfDet (cfRepr rG) = @detRepr n rG.
+ +
+Lemma cfDet_id xi : xi \is a linear_char → cfDet xi = xi.
+ +
+Definition cfDet_order phi := #[cfDet phi]%CF.
+ +
+Definition cfDet_order_lin xi :
+ xi \is a linear_char → cfDet_order xi = #[xi]%CF.
+ +
+Definition cfDet_order_dvdG phi : cfDet_order phi %| #|G|.
+ +
+End DetOrder.
+ +
+Notation "''o' ( phi )" := (cfDet_order phi)
+ (at level 8, format "''o' ( phi )") : cfun_scope.
+ +
+Section CfDetOps.
+ +
+Implicit Types gT aT rT : finGroupType.
+ +
+Lemma cfDetRes gT (G H : {group gT}) phi :
+ phi \is a character → cfDet ('Res[H, G] phi) = 'Res (cfDet phi).
+ +
+Lemma cfDetMorph aT rT (D G : {group aT}) (f : {morphism D >-> rT})
+ (phi : 'CF(f @* G)) :
+ phi \is a character → cfDet (cfMorph phi) = cfMorph (cfDet phi).
+ +
+Lemma cfDetIsom aT rT (G : {group aT}) (R : {group rT})
+ (f : {morphism G >-> rT}) (isoGR : isom G R f) phi :
+ cfDet (cfIsom isoGR phi) = cfIsom isoGR (cfDet phi).
+ +
+Lemma cfDet_mul_lin gT (G : {group gT}) (lambda phi : 'CF(G)) :
+ lambda \is a linear_char → phi \is a character →
+ cfDet (lambda × phi) = lambda ^+ truncC (phi 1%g) × cfDet phi.
+ +
+End CfDetOps.
+ +
+Definition cfcenter (gT : finGroupType) (G : {set gT}) (phi : 'CF(G)) :=
+ if phi \is a character then [set g in G | `|phi g| == phi 1%g] else cfker phi.
+ +
+Notation "''Z' ( phi )" := (cfcenter phi) : cfun_scope.
+ +
+Section Center.
+ +
+Variable (gT : finGroupType) (G : {group gT}).
+Implicit Types (phi chi : 'CF(G)) (H : {group gT}).
+ +
+
+ This is Isaacs (2.27)(a).
+
+
+
+
+ This is part of Isaacs (2.27)(b).
+
+
+Fact cfcenter_group_set phi : group_set ('Z(phi))%CF.
+Canonical cfcenter_group f := Group (cfcenter_group_set f).
+ +
+Lemma char_cfcenterE chi x :
+ chi \is a character → x \in G →
+ (x \in ('Z(chi))%CF) = (`|chi x| == chi 1%g).
+ +
+Lemma irr_cfcenterE i x :
+ x \in G → (x \in 'Z('chi[G]_i)%CF) = (`|'chi_i x| == 'chi_i 1%g).
+ +
+
+
++Canonical cfcenter_group f := Group (cfcenter_group_set f).
+ +
+Lemma char_cfcenterE chi x :
+ chi \is a character → x \in G →
+ (x \in ('Z(chi))%CF) = (`|chi x| == chi 1%g).
+ +
+Lemma irr_cfcenterE i x :
+ x \in G → (x \in 'Z('chi[G]_i)%CF) = (`|'chi_i x| == 'chi_i 1%g).
+ +
+
+ This is also Isaacs (2.27)(b).
+
+
+Lemma cfcenter_sub phi : ('Z(phi))%CF \subset G.
+ +
+Lemma cfker_center_normal phi : cfker phi <| 'Z(phi)%CF.
+ +
+Lemma cfcenter_normal phi : 'Z(phi)%CF <| G.
+ +
+
+
++ +
+Lemma cfker_center_normal phi : cfker phi <| 'Z(phi)%CF.
+ +
+Lemma cfcenter_normal phi : 'Z(phi)%CF <| G.
+ +
+
+ This is Isaacs (2.27)(c).
+
+
+Lemma cfcenter_Res chi :
+ exists2 chi1, chi1 \is a linear_char & 'Res['Z(chi)%CF] chi = chi 1%g *: chi1.
+ +
+
+
++ exists2 chi1, chi1 \is a linear_char & 'Res['Z(chi)%CF] chi = chi 1%g *: chi1.
+ +
+
+ This is Isaacs (2.27)(d).
+
+
+
+
+ This is Isaacs (2.27)(e).
+
+
+
+
+ This is Isaacs (2.27)(f).
+
+
+Lemma cfcenter_eq_center (i : Iirr G) :
+ ('Z('chi_i)%CF / cfker 'chi_i)%g = 'Z(G / cfker 'chi_i)%g.
+ +
+
+
++ ('Z('chi_i)%CF / cfker 'chi_i)%g = 'Z(G / cfker 'chi_i)%g.
+ +
+
+ This is Isaacs (2.28).
+
+
+
+
+ This is Isaacs (2.29).
+
+
+Lemma cfnorm_Res_lerif H phi :
+ H \subset G →
+ '['Res[H] phi] ≤ #|G : H|%:R × '[phi] ?= iff (phi \in 'CF(G, H)).
+ +
+
+
++ H \subset G →
+ '['Res[H] phi] ≤ #|G : H|%:R × '[phi] ?= iff (phi \in 'CF(G, H)).
+ +
+
+ This is Isaacs (2.30).
+
+
+Lemma irr1_bound (i : Iirr G) :
+ ('chi_i 1%g) ^+ 2 ≤ #|G : 'Z('chi_i)%CF|%:R
+ ?= iff ('chi_i \in 'CF(G, 'Z('chi_i)%CF)).
+ +
+
+
++ ('chi_i 1%g) ^+ 2 ≤ #|G : 'Z('chi_i)%CF|%:R
+ ?= iff ('chi_i \in 'CF(G, 'Z('chi_i)%CF)).
+ +
+
+ This is Isaacs (2.31).
+
+
+Lemma irr1_abelian_bound (i : Iirr G) :
+ abelian (G / 'Z('chi_i)%CF) → ('chi_i 1%g) ^+ 2 = #|G : 'Z('chi_i)%CF|%:R.
+ +
+
+
++ abelian (G / 'Z('chi_i)%CF) → ('chi_i 1%g) ^+ 2 = #|G : 'Z('chi_i)%CF|%:R.
+ +
+
+ This is Isaacs (2.32)(a).
+
+
+Lemma irr_faithful_center i : cfaithful 'chi[G]_i → cyclic 'Z(G).
+ +
+Lemma cfcenter_fful_irr i : cfaithful 'chi[G]_i → 'Z('chi_i)%CF = 'Z(G).
+ +
+
+
++ +
+Lemma cfcenter_fful_irr i : cfaithful 'chi[G]_i → 'Z('chi_i)%CF = 'Z(G).
+ +
+
+ This is Isaacs (2.32)(b).
+
+
+Lemma pgroup_cyclic_faithful (p : nat) :
+ p.-group G → cyclic 'Z(G) → ∃ i, cfaithful 'chi[G]_i.
+ +
+End Center.
+ +
+Section Induced.
+ +
+Variables (gT : finGroupType) (G H : {group gT}).
+Implicit Types (phi : 'CF(G)) (chi : 'CF(H)).
+ +
+Lemma cfInd_char chi : chi \is a character → 'Ind[G] chi \is a character.
+ +
+Lemma cfInd_eq0 chi :
+ H \subset G → chi \is a character → ('Ind[G] chi == 0) = (chi == 0).
+ +
+Lemma Ind_irr_neq0 i : H \subset G → 'Ind[G, H] 'chi_i != 0.
+ +
+Definition Ind_Iirr (A B : {set gT}) i := cfIirr ('Ind[B, A] 'chi_i).
+ +
+Lemma constt_cfRes_irr i : {j | j \in irr_constt ('Res[H, G] 'chi_i)}.
+ +
+Lemma constt_cfInd_irr i :
+ H \subset G → {j | j \in irr_constt ('Ind[G, H] 'chi_i)}.
+ +
+Lemma cfker_Res phi :
+ H \subset G → phi \is a character → cfker ('Res[H] phi) = H :&: cfker phi.
+ +
+
+
++ p.-group G → cyclic 'Z(G) → ∃ i, cfaithful 'chi[G]_i.
+ +
+End Center.
+ +
+Section Induced.
+ +
+Variables (gT : finGroupType) (G H : {group gT}).
+Implicit Types (phi : 'CF(G)) (chi : 'CF(H)).
+ +
+Lemma cfInd_char chi : chi \is a character → 'Ind[G] chi \is a character.
+ +
+Lemma cfInd_eq0 chi :
+ H \subset G → chi \is a character → ('Ind[G] chi == 0) = (chi == 0).
+ +
+Lemma Ind_irr_neq0 i : H \subset G → 'Ind[G, H] 'chi_i != 0.
+ +
+Definition Ind_Iirr (A B : {set gT}) i := cfIirr ('Ind[B, A] 'chi_i).
+ +
+Lemma constt_cfRes_irr i : {j | j \in irr_constt ('Res[H, G] 'chi_i)}.
+ +
+Lemma constt_cfInd_irr i :
+ H \subset G → {j | j \in irr_constt ('Ind[G, H] 'chi_i)}.
+ +
+Lemma cfker_Res phi :
+ H \subset G → phi \is a character → cfker ('Res[H] phi) = H :&: cfker phi.
+ +
+
+ This is Isaacs Lemma (5.11).
+
+
+