From 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Wed, 16 Oct 2019 11:26:43 +0200 Subject: removing everything but index which redirects to the new page --- docs/htmldoc/mathcomp.character.character.html | 2209 ------------------------ 1 file changed, 2209 deletions(-) delete mode 100644 docs/htmldoc/mathcomp.character.character.html (limited to 'docs/htmldoc/mathcomp.character.character.html') diff --git a/docs/htmldoc/mathcomp.character.character.html b/docs/htmldoc/mathcomp.character.character.html deleted file mode 100644 index 54edc9e..0000000 --- a/docs/htmldoc/mathcomp.character.character.html +++ /dev/null @@ -1,2209 +0,0 @@ - - - - - -mathcomp.character.character - - - - -
- - - -
- -

Library mathcomp.character.character

- -
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  
- Distributed under the terms of CeCILL-B.                                  *)

- -
-
- -
- This file contains the basic notions of character theory, based on Isaacs. - irr G == tuple of the elements of 'CF(G) that are irreducible - characters of G. - Nirr G == number of irreducible characters of G. - Iirr G == index type for the irreducible characters of G. - := 'I(Nirr G). - 'chi_i == the i-th element of irr G, for i : Iirr G. - 'chi[G]_i Note that 'chi_0 = 1, the principal character of G. - 'Chi_i == an irreducible representation that affords 'chi_i. - socle_of_Iirr i == the Wedderburn component of the regular representation - of G, corresponding to 'Chi_i. - Iirr_of_socle == the inverse of socle_of_Iirr (which is one-to-one). - phi. [A]%CF == the image of A \in group_ring G under phi : 'CF(G). - cfRepr rG == the character afforded by the representation rG of G. - cfReg G == the regular character, afforded by the regular - representation of G. - detRepr rG == the linear character afforded by the determinant of rG. - cfDet phi == the linear character afforded by the determinant of a - representation affording phi. - 'o(phi) == the "determinential order" of phi (the multiplicative - order of cfDet phi. - phi \is a character <=> phi : 'CF(G) is a character of G or 0. - i \in irr_constt phi <=> 'chi_i is an irreducible constituent of phi: phi - has a non-zero coordinate on 'chi_i over the basis irr G. - xi \is a linear_char xi <=> xi : 'CF(G) is a linear character of G. - 'Z(chi)%CF == the center of chi when chi is a character of G, i.e., - rcenter rG where rG is a representation that affords phi. - If phi is not a character then 'Z(chi)%CF = cfker phi. - aut_Iirr u i == the index of cfAut u 'chi_i in irr G. - conjC_Iirr i == the index of 'chi_i^*%CF in irr G. - morph_Iirr i == the index of cfMorph 'chi[f @* G]_i in irr G. - isom_Iirr isoG i == the index of cfIsom isoG 'chi[G]_i in irr R. - mod_Iirr i == the index of ('chi[G / H]_i %% H)%CF in irr G. - quo_Iirr i == the index of ('chi[G]_i / H)%CF in irr (G / H). - Ind_Iirr G i == the index of 'Ind[G, H] 'chi_i, provided it is an - irreducible character (such as when if H is the inertia - group of 'chi_i). - Res_Iirr H i == the index of 'Res[H, G] 'chi_i, provided it is an - irreducible character (such as when 'chi_i is linear). - sdprod_Iirr defG i == the index of cfSdprod defG 'chi_i in irr G, given - defG : K ><| H = G. - And, for KxK : K \x H = G. - dprodl_Iirr KxH i == the index of cfDprodl KxH 'chi[K]_i in irr G. - dprodr_Iirr KxH j == the index of cfDprodr KxH 'chi[H]_j in irr G. - dprod_Iirr KxH (i, j) == the index of cfDprod KxH 'chi[K]_i 'chi[H]_j. - inv_dprod_Iirr KxH == the inverse of dprod_Iirr KxH. - The following are used to define and exploit the character table: - character_table G == the character table of G, whose i-th row lists the - values taken by 'chi_i on the conjugacy classes - of G; this is a square Nirr G x NirrG matrix. - irr_class i == the conjugacy class of G with index i : Iirr G. - class_Iirr xG == the index of xG \in classes G, in Iirr G. -
-
- -
-Set Implicit Arguments.
- -
-Import GroupScope GRing.Theory Num.Theory.
-Local Open Scope ring_scope.
- -
- -
-Section AlgC.
- -
-Variable (gT : finGroupType).
- -
-Lemma groupC : group_closure_field algCF gT.
- -
-End AlgC.
- -
-Section Tensor.
- -
-Variable (F : fieldType).
- -
-Fixpoint trow (n1 : nat) :
-   (A : 'rV[F]_n1) m2 n2 (B : 'M[F]_(m2,n2)), 'M[F]_(m2,n1 × n2) :=
-  if n1 is n'1.+1
-  then
-    fun (A : 'M[F]_(1,(1 + n'1))) m2 n2 (B : 'M[F]_(m2,n2)) ⇒
-       (row_mx (lsubmx A 0 0 *: B) (trow (rsubmx A) B))
-   else (fun _ _ _ _ ⇒ 0).
- -
-Lemma trow0 n1 m2 n2 B : @trow n1 0 m2 n2 B = 0.
- -
-Definition trowb n1 m2 n2 B A := @trow n1 A m2 n2 B.
- -
-Lemma trowbE n1 m2 n2 A B : trowb B A = @trow n1 A m2 n2 B.
- -
-Lemma trowb_is_linear n1 m2 n2 (B : 'M_(m2,n2)) : linear (@trowb n1 m2 n2 B).
- -
-Canonical Structure trowb_linear n1 m2 n2 B :=
-  Linear (@trowb_is_linear n1 m2 n2 B).
- -
-Lemma trow_is_linear n1 m2 n2 (A : 'rV_n1) : linear (@trow n1 A m2 n2).
- -
-Canonical Structure trow_linear n1 m2 n2 A :=
-  Linear (@trow_is_linear n1 m2 n2 A).
- -
-Fixpoint tprod (m1 : nat) :
-   n1 (A : 'M[F]_(m1,n1)) m2 n2 (B : 'M[F]_(m2,n2)),
-        'M[F]_(m1 × m2,n1 × n2) :=
-  if m1 is m'1.+1
-    return n1 (A : 'M[F]_(m1,n1)) m2 n2 (B : 'M[F]_(m2,n2)),
-           'M[F]_(m1 × m2,n1 × n2)
-  then
-    fun n1 (A : 'M[F]_(1 + m'1,n1)) m2 n2 B
-        (col_mx (trow (usubmx A) B) (tprod (dsubmx A) B))
-   else (fun _ _ _ _ _ ⇒ 0).
- -
-Lemma dsumx_mul m1 m2 n p A B :
-  dsubmx ((A ×m B) : 'M[F]_(m1 + m2, n)) = dsubmx (A : 'M_(m1 + m2, p)) ×m B.
- -
-Lemma usumx_mul m1 m2 n p A B :
-  usubmx ((A ×m B) : 'M[F]_(m1 + m2, n)) = usubmx (A : 'M_(m1 + m2, p)) ×m B.
- -
-Let trow_mul (m1 m2 n2 p2 : nat)
-         (A : 'rV_m1) (B1: 'M[F]_(m2,n2)) (B2 :'M[F]_(n2,p2)) :
-  trow A (B1 ×m B2) = B1 ×m trow A B2.
- -
-Lemma tprodE m1 n1 p1 (A1 :'M[F]_(m1,n1)) (A2 :'M[F]_(n1,p1))
-             m2 n2 p2 (B1 :'M[F]_(m2,n2)) (B2 :'M[F]_(n2,p2)) :
-  tprod (A1 ×m A2) (B1 ×m B2) = (tprod A1 B1) ×m (tprod A2 B2).
- -
-Let tprod_tr m1 n1 (A :'M[F]_(m1, 1 + n1)) m2 n2 (B :'M[F]_(m2, n2)) :
-  tprod A B = row_mx (trow (lsubmx A)^T B^T)^T (tprod (rsubmx A) B).
- -
-Lemma tprod1 m n : tprod (1%:M : 'M[F]_(m,m)) (1%:M : 'M[F]_(n,n)) = 1%:M.
- -
-Lemma mxtrace_prod m n (A :'M[F]_(m)) (B :'M[F]_(n)) :
-  \tr (tprod A B) = \tr A × \tr B.
- -
-End Tensor.
- -
-
- -
- Representation sigma type and standard representations. -
-
-Section StandardRepresentation.
- -
-Variables (R : fieldType) (gT : finGroupType) (G : {group gT}).
- -
-Record representation :=
-  Representation {rdegree; mx_repr_of_repr :> reprG rdegree}.
- -
-Lemma mx_repr0 : mx_repr G (fun _ : gT ⇒ 1%:M : 'M[R]_0).
- -
-Definition grepr0 := Representation (MxRepresentation mx_repr0).
- -
-Lemma add_mx_repr (rG1 rG2 : representation) :
-  mx_repr G (fun gblock_mx (rG1 g) 0 0 (rG2 g)).
- -
-Definition dadd_grepr rG1 rG2 :=
-  Representation (MxRepresentation (add_mx_repr rG1 rG2)).
- -
-Section DsumRepr.
- -
-Variables (n : nat) (rG : reprG n).
- -
-Lemma mx_rsim_dadd (U V W : 'M_n) (rU rV : representation)
-    (modU : mxmodule rG U) (modV : mxmodule rG V) (modW : mxmodule rG W) :
-    (U + V :=: W)%MS mxdirect (U + V)
-    mx_rsim (submod_repr modU) rU mx_rsim (submod_repr modV) rV
-  mx_rsim (submod_repr modW) (dadd_grepr rU rV).
- -
-Lemma mx_rsim_dsum (I : finType) (P : pred I) U rU (W : 'M_n)
-    (modU : i, mxmodule rG (U i)) (modW : mxmodule rG W) :
-    let S := (\sum_(i | P i) U i)%MS in (S :=: W)%MS mxdirect S
-    ( i, mx_rsim (submod_repr (modU i)) (rU i : representation))
-  mx_rsim (submod_repr modW) (\big[dadd_grepr/grepr0]_(i | P i) rU i).
- -
-Definition muln_grepr rW k := \big[dadd_grepr/grepr0]_(i < k) rW.
- -
-Lemma mx_rsim_socle (sG : socleType rG) (W : sG) (rW : representation) :
-    let modW : mxmodule rG W := component_mx_module rG (socle_base W) in
-    mx_rsim (socle_repr W) rW
-  mx_rsim (submod_repr modW) (muln_grepr rW (socle_mult W)).
- -
-End DsumRepr.
- -
-Section ProdRepr.
- -
-Variables (n1 n2 : nat) (rG1 : reprG n1) (rG2 : reprG n2).
- -
-Lemma prod_mx_repr : mx_repr G (fun gtprod (rG1 g) (rG2 g)).
- -
-Definition prod_repr := MxRepresentation prod_mx_repr.
- -
-End ProdRepr.
- -
-Lemma prod_repr_lin n2 (rG1 : reprG 1) (rG2 : reprG n2) :
-  {in G, x, let cast_n2 := esym (mul1n n2) in
-      prod_repr rG1 rG2 x = castmx (cast_n2, cast_n2) (rG1 x 0 0 *: rG2 x)}.
- -
-End StandardRepresentation.
- -
- -
-Section Char.
- -
-Variables (gT : finGroupType) (G : {group gT}).
- -
-Fact cfRepr_subproof n (rG : mx_representation algCF G n) :
-  is_class_fun <<G>> [ffun x \tr (rG x) *+ (x \in G)].
-Definition cfRepr n rG := Cfun 0 (@cfRepr_subproof n rG).
- -
-Lemma cfRepr1 n rG : @cfRepr n rG 1%g = n%:R.
- -
-Lemma cfRepr_sim n1 n2 rG1 rG2 :
-  mx_rsim rG1 rG2 @cfRepr n1 rG1 = @cfRepr n2 rG2.
- -
-Lemma cfRepr0 : cfRepr grepr0 = 0.
- -
-Lemma cfRepr_dadd rG1 rG2 :
-  cfRepr (dadd_grepr rG1 rG2) = cfRepr rG1 + cfRepr rG2.
- -
-Lemma cfRepr_dsum I r (P : pred I) rG :
-  cfRepr (\big[dadd_grepr/grepr0]_(i <- r | P i) rG i)
-    = \sum_(i <- r | P i) cfRepr (rG i).
- -
-Lemma cfRepr_muln rG k : cfRepr (muln_grepr rG k) = cfRepr rG *+ k.
- -
-Section StandardRepr.
- -
-Variables (n : nat) (rG : mx_representation algCF G n).
-Let sG := DecSocleType rG.
-Let iG : irrType algCF G := DecSocleType _.
- -
-Definition standard_irr (W : sG) := irr_comp iG (socle_repr W).
- -
-Definition standard_socle i := pick [pred W | standard_irr W == i].
- -
-Definition standard_irr_coef i := oapp (fun Wsocle_mult W) 0%N (soc i).
- -
-Definition standard_grepr :=
-  \big[dadd_grepr/grepr0]_i
-     muln_grepr (Representation (socle_repr i)) (standard_irr_coef i).
- -
-Lemma mx_rsim_standard : mx_rsim rG standard_grepr.
- -
-End StandardRepr.
- -
-Definition cfReg (B : {set gT}) : 'CF(B) := #|B|%:R *: '1_[1].
- -
-Lemma cfRegE x : @cfReg G x = #|G|%:R *+ (x == 1%g).
- -
-
- -
- This is Isaacs, Lemma (2.10). -
-
-Lemma cfReprReg : cfRepr (regular_repr algCF G) = cfReg G.
- -
-Definition xcfun (chi : 'CF(G)) A :=
-  (gring_row A ×m (\col_(i < #|G|) chi (enum_val i))) 0 0.
- -
-Lemma xcfun_is_additive phi : additive (xcfun phi).
- Canonical xcfun_additive phi := Additive (xcfun_is_additive phi).
- -
-Lemma xcfunZr a phi A : xcfun phi (a *: A) = a × xcfun phi A.
- -
-
- -
- In order to add a second canonical structure on xcfun -
-
-Definition xcfun_r_head k A phi := let: tt := k in xcfun phi A.
- -
-Lemma xcfun_rE A chi : xcfun_r A chi = xcfun chi A.
- -
-Fact xcfun_r_is_additive A : additive (xcfun_r A).
-Canonical xcfun_r_additive A := Additive (xcfun_r_is_additive A).
- -
-Lemma xcfunZl a phi A : xcfun (a *: phi) A = a × xcfun phi A.
- -
-Lemma xcfun_repr n rG A : xcfun (@cfRepr n rG) A = \tr (gring_op rG A).
- -
-End Char.
-Notation xcfun_r A := (xcfun_r_head tt A).
-Notation "phi .[ A ]" := (xcfun phi A) : cfun_scope.
- -
-Definition pred_Nirr gT B := #|@classes gT B|.-1.
-Notation Nirr G := (pred_Nirr G).+1.
-Notation Iirr G := 'I_(Nirr G).
- -
-Section IrrClassDef.
- -
-Variables (gT : finGroupType) (G : {group gT}).
- -
-Let sG := DecSocleType (regular_repr algCF G).
- -
-Lemma NirrE : Nirr G = #|classes G|.
- -
-Fact Iirr_cast : Nirr G = #|sG|.
- -
-Let offset := cast_ord (esym Iirr_cast) (enum_rank [1 sG]%irr).
- -
-Definition socle_of_Iirr (i : Iirr G) : sG :=
-  enum_val (cast_ord Iirr_cast (i + offset)).
-Definition irr_of_socle (Wi : sG) : Iirr G :=
-  cast_ord (esym Iirr_cast) (enum_rank Wi) - offset.
- -
-Lemma socle_Iirr0 : W 0 = [1 sG]%irr.
- -
-Lemma socle_of_IirrK : cancel W irr_of_socle.
- -
-Lemma irr_of_socleK : cancel irr_of_socle W.
- Hint Resolve socle_of_IirrK irr_of_socleK : core.
- -
-Lemma irr_of_socle_bij (A : {pred (Iirr G)}) : {on A, bijective irr_of_socle}.
- -
-Lemma socle_of_Iirr_bij (A : {pred sG}) : {on A, bijective W}.
- -
-End IrrClassDef.
- -
- -
-Notation "''Chi_' i" := (irr_repr (socle_of_Iirr i))
-  (at level 8, i at level 2, format "''Chi_' i").
- -
-Fact irr_key : unit.
-Definition irr_def gT B : (Nirr B).-tuple 'CF(B) :=
-   let irr_of i := 'Res[B, <<B>>] (@cfRepr gT _ _ 'Chi_(inord i)) in
-   [tuple of mkseq irr_of (Nirr B)].
-Definition irr := locked_with irr_key irr_def.
- -
- -
-Notation "''chi_' i" := (tnth (irr _) i%R)
-  (at level 8, i at level 2, format "''chi_' i") : ring_scope.
-Notation "''chi[' G ]_ i" := (tnth (irr G) i%R)
-  (at level 8, i at level 2, only parsing) : ring_scope.
- -
-Section IrrClass.
- -
-Variable (gT : finGroupType) (G : {group gT}).
-Implicit Types (i : Iirr G) (B : {set gT}).
-Open Scope group_ring_scope.
- -
-Lemma congr_irr i1 i2 : i1 = i2 'chi_i1 = 'chi_i2.
- -
-Lemma Iirr1_neq0 : G :!=: 1%g inord 1 != 0 :> Iirr G.
- -
-Lemma has_nonprincipal_irr : G :!=: 1%g {i : Iirr G | i != 0}.
- -
-Lemma irrRepr i : cfRepr 'Chi_i = 'chi_i.
- -
-Lemma irr0 : 'chi[G]_0 = 1.
- -
-Lemma cfun1_irr : 1 \in irr G.
- -
-Lemma mem_irr i : 'chi_i \in irr G.
- -
-Lemma irrP xi : reflect ( i, xi = 'chi_i) (xi \in irr G).
- -
-Let sG := DecSocleType (regular_repr algCF G).
-Let C'G := algC'G G.
-Let closG := @groupC _ G.
- -
-Lemma irr1_degree i : 'chi_i 1%g = ('n_i)%:R.
- -
-Lemma Cnat_irr1 i : 'chi_i 1%g \in Cnat.
- -
-Lemma irr1_gt0 i : 0 < 'chi_i 1%g.
- -
-Lemma irr1_neq0 i : 'chi_i 1%g != 0.
- -
-Lemma irr_neq0 i : 'chi_i != 0.
- -
-
-Definition cfIirr : B, 'CF(B) Iirr B :=
-  locked_with cfIirr_key (fun B chiinord (index chi (irr B))).
- -
-Lemma cfIirrE chi : chi \in irr G 'chi_(cfIirr chi) = chi.
- -
-Lemma cfIirrPE J (f : J 'CF(G)) (P : pred J) :
-    ( j, P j f j \in irr G)
-   j, P j 'chi_(cfIirr (f j)) = f j.
- -
-
- -
- This is Isaacs, Corollary (2.7). -
-
-Corollary irr_sum_square : \sum_i ('chi[G]_i 1%g) ^+ 2 = #|G|%:R.
- -
-
- -
- This is Isaacs, Lemma (2.11). -
-
-Lemma cfReg_sum : cfReg G = \sum_i 'chi_i 1%g *: 'chi_i.
- -
-Let aG := regular_repr algCF G.
-Let R_G := group_ring algCF G.
- -
-Lemma xcfun_annihilate i j A : i != j (A \in 'R_j)%MS ('chi_i).[A]%CF = 0.
- -
-Lemma xcfunG phi x : x \in G phi.[aG x]%CF = phi x.
- -
-Lemma xcfun_mul_id i A :
-  (A \in R_G)%MS ('chi_i).['e_i ×m A]%CF = ('chi_i).[A]%CF.
- -
-Lemma xcfun_id i j : ('chi_i).['e_j]%CF = 'chi_i 1%g *+ (i == j).
- -
-Lemma irr_free : free (irr G).
- -
-Lemma irr_inj : injective (tnth (irr G)).
- -
-Lemma irrK : cancel (tnth (irr G)) (@cfIirr G).
- -
-Lemma irr_eq1 i : ('chi_i == 1) = (i == 0).
- -
-Lemma cforder_irr_eq1 i : (#['chi_i]%CF == 1%N) = (i == 0).
- -
-Lemma irr_basis : basis_of 'CF(G)%VS (irr G).
- -
-Lemma eq_sum_nth_irr a : \sum_i a i *: 'chi[G]_i = \sum_i a i *: (irr G)`_i.
- -
-
- -
- This is Isaacs, Theorem (2.8). -
-
-Theorem cfun_irr_sum phi : {a | phi = \sum_i a i *: 'chi[G]_i}.
- -
-Lemma cfRepr_standard n (rG : mx_representation algCF G n) :
-  cfRepr (standard_grepr rG)
-    = \sum_i (standard_irr_coef rG (W i))%:R *: 'chi_i.
- -
-Lemma cfRepr_inj n1 n2 rG1 rG2 :
-  @cfRepr _ G n1 rG1 = @cfRepr _ G n2 rG2 mx_rsim rG1 rG2.
- -
-Lemma cfRepr_rsimP n1 n2 rG1 rG2 :
-  reflect (mx_rsim rG1 rG2) (@cfRepr _ G n1 rG1 == @cfRepr _ G n2 rG2).
- -
-Lemma irr_reprP xi :
-  reflect (exists2 rG : representation _ G, mx_irreducible rG & xi = cfRepr rG)
-          (xi \in irr G).
- -
-
- -
- This is Isaacs, Theorem (2.12). -
-
-Lemma Wedderburn_id_expansion i :
-  'e_i = #|G|%:R^-1 *: \sum_(x in G) 'chi_i 1%g × 'chi_i x^-1%g *: aG x.
- -
-End IrrClass.
- -
- -
-Section IsChar.
- -
-Variable gT : finGroupType.
- -
-Definition character {G : {set gT}} :=
-  [qualify a phi : 'CF(G) | [ i, coord (irr G) i phi \in Cnat]].
-Fact character_key G : pred_key (@character G).
-Canonical character_keyed G := KeyedQualifier (character_key G).
- -
-Variable G : {group gT}.
-Implicit Types (phi chi xi : 'CF(G)) (i : Iirr G).
- -
-Lemma irr_char i : 'chi_i \is a character.
- -
-Lemma cfun1_char : (1 : 'CF(G)) \is a character.
- -
-Lemma cfun0_char : (0 : 'CF(G)) \is a character.
- -
-Fact add_char : addr_closed (@character G).
-Canonical character_addrPred := AddrPred add_char.
- -
-Lemma char_sum_irrP {phi} :
-  reflect ( n, phi = \sum_i (n i)%:R *: 'chi_i) (phi \is a character).
- -
-Lemma char_sum_irr chi :
-  chi \is a character {r | chi = \sum_(i <- r) 'chi_i}.
- -
-Lemma Cnat_char1 chi : chi \is a character chi 1%g \in Cnat.
- -
-Lemma char1_ge0 chi : chi \is a character 0 chi 1%g.
- -
-Lemma char1_eq0 chi : chi \is a character (chi 1%g == 0) = (chi == 0).
- -
-Lemma char1_gt0 chi : chi \is a character (0 < chi 1%g) = (chi != 0).
- -
-Lemma char_reprP phi :
-  reflect ( rG : representation algCF G, phi = cfRepr rG)
-          (phi \is a character).
- -
- -
-Lemma cfRepr_char n (rG : reprG n) : cfRepr rG \is a character.
- -
-Lemma cfReg_char : cfReg G \is a character.
- -
-Lemma cfRepr_prod n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) :
-  cfRepr rG1 × cfRepr rG2 = cfRepr (prod_repr rG1 rG2).
- -
-Lemma mul_char : mulr_closed (@character G).
-Canonical char_mulrPred := MulrPred mul_char.
-Canonical char_semiringPred := SemiringPred mul_char.
- -
-End IsChar.
- -
-Section AutChar.
- -
-Variables (gT : finGroupType) (G : {group gT}).
-Implicit Type u : {rmorphism algC algC}.
-Implicit Type chi : 'CF(G).
- -
-Lemma cfRepr_map u n (rG : mx_representation algCF G n) :
-  cfRepr (map_repr u rG) = cfAut u (cfRepr rG).
- -
-Lemma cfAut_char u chi : (cfAut u chi \is a character) = (chi \is a character).
- -
-Lemma cfConjC_char chi : (chi^*%CF \is a character) = (chi \is a character).
- -
-Lemma cfAut_char1 u (chi : 'CF(G)) :
-  chi \is a character cfAut u chi 1%g = chi 1%g.
- -
-Lemma cfAut_irr1 u i : (cfAut u 'chi[G]_i) 1%g = 'chi_i 1%g.
- -
-Lemma cfConjC_char1 (chi : 'CF(G)) :
-  chi \is a character chi^*%CF 1%g = chi 1%g.
- -
-Lemma cfConjC_irr1 u i : ('chi[G]_i)^*%CF 1%g = 'chi_i 1%g.
- -
-End AutChar.
- -
-Section Linear.
- -
-Variables (gT : finGroupType) (G : {group gT}).
- -
-Definition linear_char {B : {set gT}} :=
-  [qualify a phi : 'CF(B) | (phi \is a character) && (phi 1%g == 1)].
- -
-Section OneChar.
- -
-Variable xi : 'CF(G).
-Hypothesis CFxi : xi \is a linear_char.
- -
-Lemma lin_char1: xi 1%g = 1.
- -
-Lemma lin_charW : xi \is a character.
- -
-Lemma cfun1_lin_char : (1 : 'CF(G)) \is a linear_char.
- -
-Lemma lin_charM : {in G &, {morph xi : x y / (x × y)%g >-> x × y}}.
- -
-Lemma lin_char_prod I r (P : pred I) (x : I gT) :
-    ( i, P i x i \in G)
-  xi (\prod_(i <- r | P i) x i)%g = \prod_(i <- r | P i) xi (x i).
- -
-Let xiMV x : x \in G xi x × xi (x^-1)%g = 1.
- -
-Lemma lin_char_neq0 x : x \in G xi x != 0.
- -
-Lemma lin_charV x : x \in G xi x^-1%g = (xi x)^-1.
- -
-Lemma lin_charX x n : x \in G xi (x ^+ n)%g = xi x ^+ n.
- -
-Lemma lin_char_unity_root x : x \in G xi x ^+ #[x] = 1.
- -
-Lemma normC_lin_char x : x \in G `|xi x| = 1.
- -
-Lemma lin_charV_conj x : x \in G xi x^-1%g = (xi x)^*.
- -
-Lemma lin_char_irr : xi \in irr G.
- -
-Lemma mul_conjC_lin_char : xi × xi^*%CF = 1.
- -
-Lemma lin_char_unitr : xi \in GRing.unit.
- -
-Lemma invr_lin_char : xi^-1 = xi^*%CF.
- -
-Lemma fful_lin_char_inj : cfaithful xi {in G &, injective xi}.
- -
-End OneChar.
- -
-Lemma cfAut_lin_char u (xi : 'CF(G)) :
-  (cfAut u xi \is a linear_char) = (xi \is a linear_char).
- -
-Lemma cfConjC_lin_char (xi : 'CF(G)) :
-  (xi^*%CF \is a linear_char) = (xi \is a linear_char).
- -
-Lemma card_Iirr_abelian : abelian G #|Iirr G| = #|G|.
- -
-Lemma card_Iirr_cyclic : cyclic G #|Iirr G| = #|G|.
- -
-Lemma char_abelianP :
-  reflect ( i : Iirr G, 'chi_i \is a linear_char) (abelian G).
- -
-Lemma irr_repr_lin_char (i : Iirr G) x :
-    x \in G 'chi_i \is a linear_char
-  irr_repr (socle_of_Iirr i) x = ('chi_i x)%:M.
- -
-Fact linear_char_key B : pred_key (@linear_char B).
-Canonical linear_char_keted B := KeyedQualifier (linear_char_key B).
-Fact linear_char_divr : divr_closed (@linear_char G).
-Canonical lin_char_mulrPred := MulrPred linear_char_divr.
-Canonical lin_char_divrPred := DivrPred linear_char_divr.
- -
-Lemma irr_cyclic_lin i : cyclic G 'chi[G]_i \is a linear_char.
- -
-Lemma irr_prime_lin i : prime #|G| 'chi[G]_i \is a linear_char.
- -
-End Linear.
- -
- -
-Section OrthogonalityRelations.
- -
-Variables aT gT : finGroupType.
- -
-
- -
- This is Isaacs, Lemma (2.15) -
-
-Lemma repr_rsim_diag (G : {group gT}) f (rG : mx_representation algCF G f) x :
-    x \in G let chi := cfRepr rG in
-   e,
[/\ (*a*) exists2 B, B \in unitmx & rG x = invmx B ×m diag_mx e ×m B,
-     (*b*) ( i, e 0 i ^+ #[x] = 1) ( i, `|e 0 i| = 1),
-     (*c*) chi x = \sum_i e 0 i `|chi x| chi 1%g
-   & (*d*) chi x^-1%g = (chi x)^*].
- -
-Variables (A : {group aT}) (G : {group gT}).
- -
-
- -
- This is Isaacs, Lemma (2.15) (d). -
-
-Lemma char_inv (chi : 'CF(G)) x : chi \is a character chi x^-1%g = (chi x)^*.
- -
-Lemma irr_inv i x : 'chi[G]_i x^-1%g = ('chi_i x)^*.
- -
-
- -
- This is Isaacs, Theorem (2.13). -
-
-Theorem generalized_orthogonality_relation y (i j : Iirr G) :
-  #|G|%:R^-1 × (\sum_(x in G) 'chi_i (x × y)%g × 'chi_j x^-1%g)
-    = (i == j)%:R × ('chi_i y / 'chi_i 1%g).
- -
-
- -
- This is Isaacs, Corollary (2.14). -
- - -
- The character table. -
-
- -
-Definition irr_class i := enum_val (cast_ord (NirrE G) i).
-Definition class_Iirr xG :=
-  cast_ord (esym (NirrE G)) (enum_rank_in (classes1 G) xG).
- -
- -
-Definition character_table := \matrix_(i, j) 'chi[G]_i (g j).
- -
-Lemma irr_classP i : c i \in classes G.
- -
-Lemma repr_irr_classK i : g i ^: G = c i.
- -
-Lemma irr_classK : cancel c iC.
- -
-Lemma class_IirrK : {in classes G, cancel iC c}.
- -
-Lemma reindex_irr_class R idx (op : @Monoid.com_law R idx) F :
-  \big[op/idx]_(xG in classes G) F xG = \big[op/idx]_i F (c i).
- -
-
- -
- The explicit value of the inverse is needed for the proof of the second - orthogonality relation. -
- - -
- This is Isaacs, Theorem (2.18). -
-
-Theorem second_orthogonality_relation x y :
-    y \in G
-  \sum_i 'chi[G]_i x × ('chi_i y)^* = #|'C_G[x]|%:R *+ (x \in y ^: G).
- -
-Lemma eq_irr_mem_classP x y :
-  y \in G reflect ( i, 'chi[G]_i x = 'chi_i y) (x \in y ^: G).
- -
-
- -
- This is Isaacs, Theorem (6.32) (due to Brauer). -
-
-Lemma card_afix_irr_classes (ito : action A (Iirr G)) (cto : action A _) a :
-    a \in A [acts A, on classes G | cto]
-    ( i x y, x \in G y \in cto (x ^: G) a
-      'chi_i x = 'chi_(ito i a) y)
-  #|'Fix_ito[a]| = #|'Fix_(classes G | cto)[a]|.
- -
-End OrthogonalityRelations.
- -
- -
-Section InnerProduct.
- -
-Variable (gT : finGroupType) (G : {group gT}).
- -
-Lemma cfdot_irr i j : '['chi_i, 'chi_j]_G = (i == j)%:R.
- -
-Lemma cfnorm_irr i : '['chi[G]_i] = 1.
- -
-Lemma irr_orthonormal : orthonormal (irr G).
- -
-Lemma coord_cfdot phi i : coord (irr G) i phi = '[phi, 'chi_i].
- -
-Lemma cfun_sum_cfdot phi : phi = \sum_i '[phi, 'chi_i]_G *: 'chi_i.
- -
-Lemma cfdot_sum_irr phi psi :
-  '[phi, psi]_G = \sum_i '[phi, 'chi_i] × '[psi, 'chi_i]^*.
- -
-Lemma Cnat_cfdot_char_irr i phi :
-  phi \is a character '[phi, 'chi_i]_G \in Cnat.
- -
-Lemma cfdot_char_r phi chi :
-  chi \is a character '[phi, chi]_G = \sum_i '[phi, 'chi_i] × '[chi, 'chi_i].
- -
-Lemma Cnat_cfdot_char chi xi :
-  chi \is a character xi \is a character '[chi, xi]_G \in Cnat.
- -
-Lemma cfdotC_char chi xi :
-  chi \is a character xi \is a character '[chi, xi]_G = '[xi, chi].
- -
-Lemma irrEchar chi : (chi \in irr G) = (chi \is a character) && ('[chi] == 1).
- -
-Lemma irrWchar chi : chi \in irr G chi \is a character.
- -
-Lemma irrWnorm chi : chi \in irr G '[chi] = 1.
- -
-Lemma mul_lin_irr xi chi :
-  xi \is a linear_char chi \in irr G xi × chi \in irr G.
- -
-Lemma eq_scaled_irr a b i j :
-  (a *: 'chi[G]_i == b *: 'chi_j) = (a == b) && ((a == 0) || (i == j)).
- -
-Lemma eq_signed_irr (s t : bool) i j :
-  ((-1) ^+ s *: 'chi[G]_i == (-1) ^+ t *: 'chi_j) = (s == t) && (i == j).
- -
-Lemma eq_scale_irr a (i j : Iirr G) :
-  (a *: 'chi_i == a *: 'chi_j) = (a == 0) || (i == j).
- -
-Lemma eq_addZ_irr a b (i j r t : Iirr G) :
-  (a *: 'chi_i + b *: 'chi_j == a *: 'chi_r + b *: 'chi_t)
-   = [|| [&& (a == 0) || (i == r) & (b == 0) || (j == t)],
-         [&& i == t, j == r & a == b] | [&& i == j, r == t & a == - b]].
- -
-Lemma eq_subZnat_irr (a b : nat) (i j r t : Iirr G) :
-  (a%:R *: 'chi_i - b%:R *: 'chi_j == a%:R *: 'chi_r - b%:R *: 'chi_t)
-     = [|| a == 0%N | i == r] && [|| b == 0%N | j == t]
-      || [&& i == j, r == t & a == b].
- -
-End InnerProduct.
- -
-Section IrrConstt.
- -
-Variable (gT : finGroupType) (G H : {group gT}).
- -
-Lemma char1_ge_norm (chi : 'CF(G)) x :
-  chi \is a character `|chi x| chi 1%g.
- -
-Lemma max_cfRepr_norm_scalar n (rG : mx_representation algCF G n) x :
-     x \in G `|cfRepr rG x| = cfRepr rG 1%g
-   exists2 c, `|c| = 1 & rG x = c%:M.
- -
-Lemma max_cfRepr_mx1 n (rG : mx_representation algCF G n) x :
-   x \in G cfRepr rG x = cfRepr rG 1%g rG x = 1%:M.
- -
-Definition irr_constt (B : {set gT}) phi := [pred i | '[phi, 'chi_i]_B != 0].
- -
-Lemma irr_consttE i phi : (i \in irr_constt phi) = ('[phi, 'chi_i]_G != 0).
- -
-Lemma constt_charP (i : Iirr G) chi :
-    chi \is a character
-  reflect (exists2 chi', chi' \is a character & chi = 'chi_i + chi')
-          (i \in irr_constt chi).
- -
-Lemma cfun_sum_constt (phi : 'CF(G)) :
-  phi = \sum_(i in irr_constt phi) '[phi, 'chi_i] *: 'chi_i.
- -
-Lemma neq0_has_constt (phi : 'CF(G)) :
-  phi != 0 i, i \in irr_constt phi.
- -
-Lemma constt_irr i : irr_constt 'chi[G]_i =i pred1 i.
- -
-Lemma char1_ge_constt (i : Iirr G) chi :
-  chi \is a character i \in irr_constt chi 'chi_i 1%g chi 1%g.
- -
-Lemma constt_ortho_char (phi psi : 'CF(G)) i j :
-     phi \is a character psi \is a character
-     i \in irr_constt phi j \in irr_constt psi
-  '[phi, psi] = 0 '['chi_i, 'chi_j] = 0.
- -
-End IrrConstt.
- -
- -
-Section Kernel.
- -
-Variable (gT : finGroupType) (G : {group gT}).
-Implicit Types (phi chi xi : 'CF(G)) (H : {group gT}).
- -
-Lemma cfker_repr n (rG : mx_representation algCF G n) :
-  cfker (cfRepr rG) = rker rG.
- -
-Lemma cfkerEchar chi :
-  chi \is a character cfker chi = [set x in G | chi x == chi 1%g].
- -
-Lemma cfker_nzcharE chi :
-  chi \is a character chi != 0 cfker chi = [set x | chi x == chi 1%g].
- -
-Lemma cfkerEirr i : cfker 'chi[G]_i = [set x | 'chi_i x == 'chi_i 1%g].
- -
-Lemma cfker_irr0 : cfker 'chi[G]_0 = G.
- -
-Lemma cfaithful_reg : cfaithful (cfReg G).
- -
-Lemma cfkerE chi :
-    chi \is a character
-  cfker chi = G :&: \bigcap_(i in irr_constt chi) cfker 'chi_i.
- -
-Lemma TI_cfker_irr : \bigcap_i cfker 'chi[G]_i = [1].
- -
-Lemma cfker_constt i chi :
-    chi \is a character i \in irr_constt chi
-  cfker chi \subset cfker 'chi[G]_i.
- -
-Section KerLin.
- -
-Variable xi : 'CF(G).
-Hypothesis lin_xi : xi \is a linear_char.
-Let Nxi: xi \is a character.
- -
-Lemma lin_char_der1 : G^`(1)%g \subset cfker xi.
- -
-Lemma cforder_lin_char : #[xi]%CF = exponent (G / cfker xi)%g.
- -
-Lemma cforder_lin_char_dvdG : #[xi]%CF %| #|G|.
- -
-Lemma cforder_lin_char_gt0 : (0 < #[xi]%CF)%N.
- -
-End KerLin.
- -
-End Kernel.
- -
-Section Restrict.
- -
-Variable (gT : finGroupType) (G H : {group gT}).
- -
-Lemma cfRepr_sub n (rG : mx_representation algCF G n) (sHG : H \subset G) :
-  cfRepr (subg_repr rG sHG) = 'Res[H] (cfRepr rG).
- -
-Lemma cfRes_char chi : chi \is a character 'Res[H, G] chi \is a character.
- -
-Lemma cfRes_eq0 phi : phi \is a character ('Res[H, G] phi == 0) = (phi == 0).
- -
-Lemma cfRes_lin_char chi :
-  chi \is a linear_char 'Res[H, G] chi \is a linear_char.
- -
-Lemma Res_irr_neq0 i : 'Res[H, G] 'chi_i != 0.
- -
-Lemma cfRes_lin_lin (chi : 'CF(G)) :
-  chi \is a character 'Res[H] chi \is a linear_char chi \is a linear_char.
- -
-Lemma cfRes_irr_irr chi :
-  chi \is a character 'Res[H] chi \in irr H chi \in irr G.
- -
-Definition Res_Iirr (A B : {set gT}) i := cfIirr ('Res[B, A] 'chi_i).
- -
-Lemma Res_Iirr0 : Res_Iirr H (0 : Iirr G) = 0.
- -
-Lemma lin_Res_IirrE i : 'chi[G]_i 1%g = 1 'chi_(Res_Iirr H i) = 'Res 'chi_i.
- -
-End Restrict.
- -
- -
-Section MoreConstt.
- -
-Variables (gT : finGroupType) (G H : {group gT}).
- -
-Lemma constt_Ind_Res i j :
-  i \in irr_constt ('Ind[G] 'chi_j) = (j \in irr_constt ('Res[H] 'chi_i)).
- -
-Lemma cfdot_Res_ge_constt i j psi :
-    psi \is a character j \in irr_constt psi
-  '['Res[H, G] 'chi_j, 'chi_i] '['Res[H] psi, 'chi_i].
- -
-Lemma constt_Res_trans j psi :
-    psi \is a character j \in irr_constt psi
-  {subset irr_constt ('Res[H, G] 'chi_j) irr_constt ('Res[H] psi)}.
- -
-End MoreConstt.
- -
-Section Morphim.
- -
-Variables (aT rT : finGroupType) (G D : {group aT}) (f : {morphism D >-> rT}).
-Implicit Type chi : 'CF(f @* G).
- -
-Lemma cfRepr_morphim n (rfG : mx_representation algCF (f @* G) n) sGD :
-  cfRepr (morphim_repr rfG sGD) = cfMorph (cfRepr rfG).
- -
-Lemma cfMorph_char chi : chi \is a character cfMorph chi \is a character.
- -
-Lemma cfMorph_lin_char chi :
-  chi \is a linear_char cfMorph chi \is a linear_char.
- -
-Lemma cfMorph_charE chi :
-  G \subset D (cfMorph chi \is a character) = (chi \is a character).
- -
-Lemma cfMorph_lin_charE chi :
-  G \subset D (cfMorph chi \is a linear_char) = (chi \is a linear_char).
- -
-Lemma cfMorph_irr chi :
-  G \subset D (cfMorph chi \in irr G) = (chi \in irr (f @* G)).
- -
-Definition morph_Iirr i := cfIirr (cfMorph 'chi[f @* G]_i).
- -
-Lemma morph_Iirr0 : morph_Iirr 0 = 0.
- -
-Hypothesis sGD : G \subset D.
- -
-Lemma morph_IirrE i : 'chi_(morph_Iirr i) = cfMorph 'chi_i.
- -
-Lemma morph_Iirr_inj : injective morph_Iirr.
- -
-Lemma morph_Iirr_eq0 i : (morph_Iirr i == 0) = (i == 0).
- -
-End Morphim.
- -
-Section Isom.
- -
-Variables (aT rT : finGroupType) (G : {group aT}) (f : {morphism G >-> rT}).
-Variables (R : {group rT}) (isoGR : isom G R f).
-Implicit Type chi : 'CF(G).
- -
-Lemma cfIsom_char chi :
-  (cfIsom isoGR chi \is a character) = (chi \is a character).
- -
-Lemma cfIsom_lin_char chi :
-  (cfIsom isoGR chi \is a linear_char) = (chi \is a linear_char).
- -
-Lemma cfIsom_irr chi : (cfIsom isoGR chi \in irr R) = (chi \in irr G).
- -
-Definition isom_Iirr i := cfIirr (cfIsom isoGR 'chi_i).
- -
-Lemma isom_IirrE i : 'chi_(isom_Iirr i) = cfIsom isoGR 'chi_i.
- -
-Lemma isom_Iirr_inj : injective isom_Iirr.
- -
-Lemma isom_Iirr_eq0 i : (isom_Iirr i == 0) = (i == 0).
- -
-Lemma isom_Iirr0 : isom_Iirr 0 = 0.
- -
-End Isom.
- -
- -
-Section IsomInv.
- -
-Variables (aT rT : finGroupType) (G : {group aT}) (f : {morphism G >-> rT}).
-Variables (R : {group rT}) (isoGR : isom G R f).
- -
-Lemma isom_IirrK : cancel (isom_Iirr isoGR) (isom_Iirr (isom_sym isoGR)).
- -
-Lemma isom_IirrKV : cancel (isom_Iirr (isom_sym isoGR)) (isom_Iirr isoGR).
- -
-End IsomInv.
- -
-Section Sdprod.
- -
-Variables (gT : finGroupType) (K H G : {group gT}).
-Hypothesis defG : K ><| H = G.
-Let nKG: G \subset 'N(K).
- -
-Lemma cfSdprod_char chi :
(cfSdprod defG chi \is a character) = (chi \is a character).
- -
-Lemma cfSdprod_lin_char chi :
(cfSdprod defG chi \is a linear_char) = (chi \is a linear_char).
- -
-Lemma cfSdprod_irr chi : (cfSdprod defG chi \in irr G) = (chi \in irr H).
- -
-Definition sdprod_Iirr j := cfIirr (cfSdprod defG 'chi_j).
- -
-Lemma sdprod_IirrE j : 'chi_(sdprod_Iirr j) = cfSdprod defG 'chi_j.
- -
-Lemma sdprod_IirrK : cancel sdprod_Iirr (Res_Iirr H).
- -
-Lemma sdprod_Iirr_inj : injective sdprod_Iirr.
- -
-Lemma sdprod_Iirr_eq0 i : (sdprod_Iirr i == 0) = (i == 0).
- -
-Lemma sdprod_Iirr0 : sdprod_Iirr 0 = 0.
- -
-Lemma Res_sdprod_irr phi :
-  K \subset cfker phi phi \in irr G 'Res phi \in irr H.
- -
-Lemma sdprod_Res_IirrE i :
-  K \subset cfker 'chi[G]_i 'chi_(Res_Iirr H i) = 'Res 'chi_i.
- -
-Lemma sdprod_Res_IirrK i :
-  K \subset cfker 'chi_i sdprod_Iirr (Res_Iirr H i) = i.
- -
-End Sdprod.
- -
- -
-Section DProd.
- -
-Variables (gT : finGroupType) (G K H : {group gT}).
-Hypothesis KxH : K \x H = G.
- -
-Lemma cfDprodKl_abelian j : abelian H cancel ((cfDprod KxH)^~ 'chi_j) 'Res.
- -
-Lemma cfDprodKr_abelian i : abelian K cancel (cfDprod KxH 'chi_i) 'Res.
- -
-Lemma cfDprodl_char phi :
-  (cfDprodl KxH phi \is a character) = (phi \is a character).
- -
-Lemma cfDprodr_char psi :
-  (cfDprodr KxH psi \is a character) = (psi \is a character).
- -
-Lemma cfDprod_char phi psi :
-     phi \is a character psi \is a character
-  cfDprod KxH phi psi \is a character.
- -
-Lemma cfDprod_eq1 phi psi :
-    phi \is a character psi \is a character
-  (cfDprod KxH phi psi == 1) = (phi == 1) && (psi == 1).
- -
-Lemma cfDprodl_lin_char phi :
-  (cfDprodl KxH phi \is a linear_char) = (phi \is a linear_char).
- -
-Lemma cfDprodr_lin_char psi :
-  (cfDprodr KxH psi \is a linear_char) = (psi \is a linear_char).
- -
-Lemma cfDprod_lin_char phi psi :
-     phi \is a linear_char psi \is a linear_char
-  cfDprod KxH phi psi \is a linear_char.
- -
-Lemma cfDprodl_irr chi : (cfDprodl KxH chi \in irr G) = (chi \in irr K).
- -
-Lemma cfDprodr_irr chi : (cfDprodr KxH chi \in irr G) = (chi \in irr H).
- -
-Definition dprodl_Iirr i := cfIirr (cfDprodl KxH 'chi_i).
- -
-Lemma dprodl_IirrE i : 'chi_(dprodl_Iirr i) = cfDprodl KxH 'chi_i.
- Lemma dprodl_IirrK : cancel dprodl_Iirr (Res_Iirr K).
- Lemma dprodl_Iirr_eq0 i : (dprodl_Iirr i == 0) = (i == 0).
- Lemma dprodl_Iirr0 : dprodl_Iirr 0 = 0.
- -
-Definition dprodr_Iirr j := cfIirr (cfDprodr KxH 'chi_j).
- -
-Lemma dprodr_IirrE j : 'chi_(dprodr_Iirr j) = cfDprodr KxH 'chi_j.
- Lemma dprodr_IirrK : cancel dprodr_Iirr (Res_Iirr H).
- Lemma dprodr_Iirr_eq0 j : (dprodr_Iirr j == 0) = (j == 0).
- Lemma dprodr_Iirr0 : dprodr_Iirr 0 = 0.
- -
-Lemma cfDprod_irr i j : cfDprod KxH 'chi_i 'chi_j \in irr G.
- -
-Definition dprod_Iirr ij := cfIirr (cfDprod KxH 'chi_ij.1 'chi_ij.2).
- -
-Lemma dprod_IirrE i j : 'chi_(dprod_Iirr (i, j)) = cfDprod KxH 'chi_i 'chi_j.
- -
-Lemma dprod_IirrEl i : 'chi_(dprod_Iirr (i, 0)) = cfDprodl KxH 'chi_i.
- -
-Lemma dprod_IirrEr j : 'chi_(dprod_Iirr (0, j)) = cfDprodr KxH 'chi_j.
- -
-Lemma dprod_Iirr_inj : injective dprod_Iirr.
- -
-Lemma dprod_Iirr0 : dprod_Iirr (0, 0) = 0.
- -
-Lemma dprod_Iirr0l j : dprod_Iirr (0, j) = dprodr_Iirr j.
- -
-Lemma dprod_Iirr0r i : dprod_Iirr (i, 0) = dprodl_Iirr i.
- -
-Lemma dprod_Iirr_eq0 i j : (dprod_Iirr (i, j) == 0) = (i == 0) && (j == 0).
- -
-Lemma cfdot_dprod_irr i1 i2 j1 j2 :
-  '['chi_(dprod_Iirr (i1, j1)), 'chi_(dprod_Iirr (i2, j2))]
-     = ((i1 == i2) && (j1 == j2))%:R.
- -
-Lemma dprod_Iirr_onto k : k \in codom dprod_Iirr.
- -
-Definition inv_dprod_Iirr i := iinv (dprod_Iirr_onto i).
- -
-Lemma dprod_IirrK : cancel dprod_Iirr inv_dprod_Iirr.
- -
-Lemma inv_dprod_IirrK : cancel inv_dprod_Iirr dprod_Iirr.
- -
-Lemma inv_dprod_Iirr0 : inv_dprod_Iirr 0 = (0, 0).
- -
-End DProd.
- -
- -
-Lemma dprod_IirrC (gT : finGroupType) (G K H : {group gT})
-                  (KxH : K \x H = G) (HxK : H \x K = G) i j :
-  dprod_Iirr KxH (i, j) = dprod_Iirr HxK (j, i).
- -
-Section BigDprod.
- -
-Variables (gT : finGroupType) (I : finType) (P : pred I).
-Variables (A : I {group gT}) (G : {group gT}).
-Hypothesis defG : \big[dprod/1%g]_(i | P i) A i = G.
- -
-Let sAG i : P i A i \subset G.
- -
-Lemma cfBigdprodi_char i (phi : 'CF(A i)) :
-  phi \is a character cfBigdprodi defG phi \is a character.
- -
-Lemma cfBigdprodi_charE i (phi : 'CF(A i)) :
-  P i (cfBigdprodi defG phi \is a character) = (phi \is a character).
- -
-Lemma cfBigdprod_char phi :
-    ( i, P i phi i \is a character)
-  cfBigdprod defG phi \is a character.
- -
-Lemma cfBigdprodi_lin_char i (phi : 'CF(A i)) :
-  phi \is a linear_char cfBigdprodi defG phi \is a linear_char.
- -
-Lemma cfBigdprodi_lin_charE i (phi : 'CF(A i)) :
-  P i (cfBigdprodi defG phi \is a linear_char) = (phi \is a linear_char).
- -
-Lemma cfBigdprod_lin_char phi :
-    ( i, P i phi i \is a linear_char)
-  cfBigdprod defG phi \is a linear_char.
- -
-Lemma cfBigdprodi_irr i chi :
-  P i (cfBigdprodi defG chi \in irr G) = (chi \in irr (A i)).
- -
-Lemma cfBigdprod_irr chi :
-  ( i, P i chi i \in irr (A i)) cfBigdprod defG chi \in irr G.
- -
-Lemma cfBigdprod_eq1 phi :
-    ( i, P i phi i \is a character)
-  (cfBigdprod defG phi == 1) = [ (i | P i), phi i == 1].
- -
-Lemma cfBigdprod_Res_lin chi :
-  chi \is a linear_char cfBigdprod defG (fun i'Res[A i] chi) = chi.
- -
-Lemma cfBigdprodKlin phi :
-  ( i, P i phi i \is a linear_char)
-   i, P i 'Res (cfBigdprod defG phi) = phi i.
- -
-Lemma cfBigdprodKabelian Iphi (phi := fun i'chi_(Iphi i)) :
-  abelian G i, P i 'Res (cfBigdprod defG phi) = 'chi_(Iphi i).
- -
-End BigDprod.
- -
-Section Aut.
- -
-Variables (gT : finGroupType) (G : {group gT}).
-Implicit Type u : {rmorphism algC algC}.
- -
-Lemma conjC_charAut u (chi : 'CF(G)) x :
-  chi \is a character (u (chi x))^* = u (chi x)^*.
- -
-Lemma conjC_irrAut u i x : (u ('chi[G]_i x))^* = u ('chi_i x)^*.
- -
-Lemma cfdot_aut_char u (phi chi : 'CF(G)) :
-  chi \is a character '[cfAut u phi, cfAut u chi] = u '[phi, chi].
- -
-Lemma cfdot_aut_irr u phi i :
-  '[cfAut u phi, cfAut u 'chi[G]_i] = u '[phi, 'chi_i].
- -
-Lemma cfAut_irr u chi : (cfAut u chi \in irr G) = (chi \in irr G).
- -
-Lemma cfConjC_irr i : (('chi_i)^*)%CF \in irr G.
- -
-Lemma irr_aut_closed u : cfAut_closed u (irr G).
- -
-Definition aut_Iirr u i := cfIirr (cfAut u 'chi[G]_i).
- -
-Lemma aut_IirrE u i : 'chi_(aut_Iirr u i) = cfAut u 'chi_i.
- -
-Definition conjC_Iirr := aut_Iirr conjC.
- -
-Lemma conjC_IirrE i : 'chi[G]_(conjC_Iirr i) = ('chi_i)^*%CF.
- -
-Lemma conjC_IirrK : involutive conjC_Iirr.
- -
-Lemma aut_Iirr0 u : aut_Iirr u 0 = 0 :> Iirr G.
- -
-Lemma conjC_Iirr0 : conjC_Iirr 0 = 0 :> Iirr G.
- -
-Lemma aut_Iirr_eq0 u i : (aut_Iirr u i == 0) = (i == 0).
- -
-Lemma conjC_Iirr_eq0 i : (conjC_Iirr i == 0 :> Iirr G) = (i == 0).
- -
-Lemma aut_Iirr_inj u : injective (aut_Iirr u).
- -
-End Aut.
- -
- -
-Section Coset.
- -
-Variable (gT : finGroupType).
- -
-Implicit Types G H : {group gT}.
- -
-Lemma cfQuo_char G H (chi : 'CF(G)) :
-  chi \is a character (chi / H)%CF \is a character.
- -
-Lemma cfQuo_lin_char G H (chi : 'CF(G)) :
-  chi \is a linear_char (chi / H)%CF \is a linear_char.
- -
-Lemma cfMod_char G H (chi : 'CF(G / H)) :
-  chi \is a character (chi %% H)%CF \is a character.
- -
-Lemma cfMod_lin_char G H (chi : 'CF(G / H)) :
-  chi \is a linear_char (chi %% H)%CF \is a linear_char.
- -
-Lemma cfMod_charE G H (chi : 'CF(G / H)) :
-  H <| G (chi %% H \is a character)%CF = (chi \is a character).
- -
-Lemma cfMod_lin_charE G H (chi : 'CF(G / H)) :
-  H <| G (chi %% H \is a linear_char)%CF = (chi \is a linear_char).
- -
-Lemma cfQuo_charE G H (chi : 'CF(G)) :
-   H <| G H \subset cfker chi
- (chi / H \is a character)%CF = (chi \is a character).
- -
-Lemma cfQuo_lin_charE G H (chi : 'CF(G)) :
-   H <| G H \subset cfker chi
- (chi / H \is a linear_char)%CF = (chi \is a linear_char).
- -
-Lemma cfMod_irr G H chi :
-  H <| G (chi %% H \in irr G)%CF = (chi \in irr (G / H)).
- -
-Definition mod_Iirr G H i := cfIirr ('chi[G / H]_i %% H)%CF.
- -
-Lemma mod_Iirr0 G H : mod_Iirr (0 : Iirr (G / H)) = 0.
- -
-Lemma mod_IirrE G H i : H <| G 'chi_(mod_Iirr i) = ('chi[G / H]_i %% H)%CF.
- -
-Lemma mod_Iirr_eq0 G H i :
-  H <| G (mod_Iirr i == 0) = (i == 0 :> Iirr (G / H)).
- -
-Lemma cfQuo_irr G H chi :
-     H <| G H \subset cfker chi
-  ((chi / H)%CF \in irr (G / H)) = (chi \in irr G).
- -
-Definition quo_Iirr G H i := cfIirr ('chi[G]_i / H)%CF.
- -
-Lemma quo_Iirr0 G H : quo_Iirr H (0 : Iirr G) = 0.
- -
-Lemma quo_IirrE G H i :
-  H <| G H \subset cfker 'chi[G]_i 'chi_(quo_Iirr H i) = ('chi_i / H)%CF.
- -
-Lemma quo_Iirr_eq0 G H i :
-  H <| G H \subset cfker 'chi[G]_i (quo_Iirr H i == 0) = (i == 0).
- -
-Lemma mod_IirrK G H : H <| G cancel (@mod_Iirr G H) (@quo_Iirr G H).
- -
-Lemma quo_IirrK G H i :
-  H <| G H \subset cfker 'chi[G]_i mod_Iirr (quo_Iirr H i) = i.
- -
-Lemma quo_IirrKeq G H :
-    H <| G
-   i, (mod_Iirr (quo_Iirr H i) == i) = (H \subset cfker 'chi[G]_i).
- -
-Lemma mod_Iirr_bij H G :
-  H <| G {on [pred i | H \subset cfker 'chi_i], bijective (@mod_Iirr G H)}.
- -
-Lemma sum_norm_irr_quo H G x :
-    x \in G H <| G
-  \sum_i `|'chi[G / H]_i (coset H x)| ^+ 2
-    = \sum_(i | H \subset cfker 'chi_i) `|'chi[G]_i x| ^+ 2.
- -
-Lemma cap_cfker_normal G H :
-  H <| G \bigcap_(i | H \subset cfker 'chi[G]_i) (cfker 'chi_i) = H.
- -
-Lemma cfker_reg_quo G H : H <| G cfker (cfReg (G / H)%g %% H) = H.
- -
-End Coset.
- -
-Section DerivedGroup.
- -
-Variable gT : finGroupType.
-Implicit Types G H : {group gT}.
- -
-Lemma lin_irr_der1 G i :
-   ('chi_i \is a linear_char) = (G^`(1)%g \subset cfker 'chi[G]_i).
- -
-Lemma subGcfker G i : (G \subset cfker 'chi[G]_i) = (i == 0).
- -
-Lemma irr_prime_injP G i :
-  prime #|G| reflect {in G &, injective 'chi[G]_i} (i != 0).
- -
-
- -
- This is Isaacs (2.23)(a). -
- - -
- This is Isaacs (2.23)(b) -
- - -
- Alternative: use the equivalent result in modular representation theory -transitivity #|@socle_of_Iirr _ G @^-1: linear_irr _|; last first. - rewrite (on_card_preimset (socle_of_Iirr_bij _)). - by rewrite card_linear_irr ?algC'G; last apply: groupC. -by apply: eq_card => i; rewrite !inE /lin_char irr_char irr1_degree -eqC_nat. - -
-
- -
-
- -
- A non-trivial solvable group has a nonprincipal linear character. -
-
-Lemma solvable_has_lin_char G :
-    G :!=: 1%g solvable G
-  exists2 i, 'chi[G]_i \is a linear_char & 'chi_i != 1.
- -
-
- -
- A combinatorial group isommorphic to the linear characters. -
-
-Lemma lin_char_group G :
-  {linG : finGroupType & {cF : linG 'CF(G) |
-         [/\ injective cF, #|linG| = #|G : G^`(1)|,
-              u, cF u \is a linear_char
-           & phi, phi \is a linear_char u, phi = cF u]
-       & [/\ cF 1%g = 1%R,
-             {morph cF : u v / (u × v)%g >-> (u × v)%R},
-              k, {morph cF : u / (u^+ k)%g >-> u ^+ k},
-             {morph cF: u / u^-1%g >-> u^-1%CF}
-           & {mono cF: u / #[u]%g >-> #[u]%CF} ]}}.
- -
-Lemma cfExp_prime_transitive G (i j : Iirr G) :
-    prime #|G| i != 0 j != 0
-  exists2 k, coprime k #['chi_i]%CF & 'chi_j = 'chi_i ^+ k.
- -
-
- -
- This is Isaacs (2.24). -
-
-Lemma card_subcent1_coset G H x :
-  x \in G H <| G (#|'C_(G / H)[coset H x]| #|'C_G[x]|)%N.
- -
-End DerivedGroup.
- -
- -
-
- -
- Determinant characters and determinential order. -
-
-Section DetOrder.
- -
-Variables (gT : finGroupType) (G : {group gT}).
- -
-Section DetRepr.
- -
-Variables (n : nat) (rG : mx_representation [fieldType of algC] G n).
- -
-Definition det_repr_mx x : 'M_1 := (\det (rG x))%:M.
- -
-Fact det_is_repr : mx_repr G det_repr_mx.
- -
-Canonical det_repr := MxRepresentation det_is_repr.
-Definition detRepr := cfRepr det_repr.
- -
-Lemma detRepr_lin_char : detRepr \is a linear_char.
- -
-End DetRepr.
- -
-Definition cfDet phi := \prod_i detRepr 'Chi_i ^+ truncC '[phi, 'chi[G]_i].
- -
-Lemma cfDet_lin_char phi : cfDet phi \is a linear_char.
- -
-Lemma cfDetD :
-  {in character &, {morph cfDet : phi psi / phi + psi >-> phi × psi}}.
- -
-Lemma cfDet0 : cfDet 0 = 1.
- -
-Lemma cfDetMn k :
-  {in character, {morph cfDet : phi / phi *+ k >-> phi ^+ k}}.
- -
-Lemma cfDetRepr n rG : cfDet (cfRepr rG) = @detRepr n rG.
- -
-Lemma cfDet_id xi : xi \is a linear_char cfDet xi = xi.
- -
-Definition cfDet_order phi := #[cfDet phi]%CF.
- -
-Definition cfDet_order_lin xi :
-  xi \is a linear_char cfDet_order xi = #[xi]%CF.
- -
-Definition cfDet_order_dvdG phi : cfDet_order phi %| #|G|.
- -
-End DetOrder.
- -
-Notation "''o' ( phi )" := (cfDet_order phi)
-  (at level 8, format "''o' ( phi )") : cfun_scope.
- -
-Section CfDetOps.
- -
-Implicit Types gT aT rT : finGroupType.
- -
-Lemma cfDetRes gT (G H : {group gT}) phi :
-  phi \is a character cfDet ('Res[H, G] phi) = 'Res (cfDet phi).
- -
-Lemma cfDetMorph aT rT (D G : {group aT}) (f : {morphism D >-> rT})
-                (phi : 'CF(f @* G)) :
-  phi \is a character cfDet (cfMorph phi) = cfMorph (cfDet phi).
- -
-Lemma cfDetIsom aT rT (G : {group aT}) (R : {group rT})
-                (f : {morphism G >-> rT}) (isoGR : isom G R f) phi :
-  cfDet (cfIsom isoGR phi) = cfIsom isoGR (cfDet phi).
- -
-Lemma cfDet_mul_lin gT (G : {group gT}) (lambda phi : 'CF(G)) :
-    lambda \is a linear_char phi \is a character
-  cfDet (lambda × phi) = lambda ^+ truncC (phi 1%g) × cfDet phi.
- -
-End CfDetOps.
- -
-Definition cfcenter (gT : finGroupType) (G : {set gT}) (phi : 'CF(G)) :=
-  if phi \is a character then [set g in G | `|phi g| == phi 1%g] else cfker phi.
- -
-Notation "''Z' ( phi )" := (cfcenter phi) : cfun_scope.
- -
-Section Center.
- -
-Variable (gT : finGroupType) (G : {group gT}).
-Implicit Types (phi chi : 'CF(G)) (H : {group gT}).
- -
-
- -
- This is Isaacs (2.27)(a). -
-
-Lemma cfcenter_repr n (rG : mx_representation algCF G n) :
-  'Z(cfRepr rG)%CF = rcenter rG.
- -
-
- -
- This is part of Isaacs (2.27)(b). -
-
-Fact cfcenter_group_set phi : group_set ('Z(phi))%CF.
-Canonical cfcenter_group f := Group (cfcenter_group_set f).
- -
-Lemma char_cfcenterE chi x :
-    chi \is a character x \in G
-  (x \in ('Z(chi))%CF) = (`|chi x| == chi 1%g).
- -
-Lemma irr_cfcenterE i x :
-  x \in G (x \in 'Z('chi[G]_i)%CF) = (`|'chi_i x| == 'chi_i 1%g).
- -
-
- -
- This is also Isaacs (2.27)(b). -
-
-Lemma cfcenter_sub phi : ('Z(phi))%CF \subset G.
- -
-Lemma cfker_center_normal phi : cfker phi <| 'Z(phi)%CF.
- -
-Lemma cfcenter_normal phi : 'Z(phi)%CF <| G.
- -
-
- -
- This is Isaacs (2.27)(c). -
-
-Lemma cfcenter_Res chi :
-  exists2 chi1, chi1 \is a linear_char & 'Res['Z(chi)%CF] chi = chi 1%g *: chi1.
- -
-
- -
- This is Isaacs (2.27)(d). -
-
-Lemma cfcenter_cyclic chi : cyclic ('Z(chi)%CF / cfker chi)%g.
- -
-
- -
- This is Isaacs (2.27)(e). -
-
-Lemma cfcenter_subset_center chi :
-  ('Z(chi)%CF / cfker chi)%g \subset 'Z(G / cfker chi)%g.
- -
-
- -
- This is Isaacs (2.27)(f). -
-
-Lemma cfcenter_eq_center (i : Iirr G) :
-  ('Z('chi_i)%CF / cfker 'chi_i)%g = 'Z(G / cfker 'chi_i)%g.
- -
-
- -
- This is Isaacs (2.28). -
- - -
- This is Isaacs (2.29). -
-
-Lemma cfnorm_Res_lerif H phi :
-    H \subset G
-  '['Res[H] phi] #|G : H|%:R × '[phi] ?= iff (phi \in 'CF(G, H)).
- -
-
- -
- This is Isaacs (2.30). -
-
-Lemma irr1_bound (i : Iirr G) :
-  ('chi_i 1%g) ^+ 2 #|G : 'Z('chi_i)%CF|%:R
-                    ?= iff ('chi_i \in 'CF(G, 'Z('chi_i)%CF)).
- -
-
- -
- This is Isaacs (2.31). -
-
-Lemma irr1_abelian_bound (i : Iirr G) :
-  abelian (G / 'Z('chi_i)%CF) ('chi_i 1%g) ^+ 2 = #|G : 'Z('chi_i)%CF|%:R.
- -
-
- -
- This is Isaacs (2.32)(a). -
- - -
- This is Isaacs (2.32)(b). -
-
-Lemma pgroup_cyclic_faithful (p : nat) :
-  p.-group G cyclic 'Z(G) i, cfaithful 'chi[G]_i.
- -
-End Center.
- -
-Section Induced.
- -
-Variables (gT : finGroupType) (G H : {group gT}).
-Implicit Types (phi : 'CF(G)) (chi : 'CF(H)).
- -
-Lemma cfInd_char chi : chi \is a character 'Ind[G] chi \is a character.
- -
-Lemma cfInd_eq0 chi :
-  H \subset G chi \is a character ('Ind[G] chi == 0) = (chi == 0).
- -
-Lemma Ind_irr_neq0 i : H \subset G 'Ind[G, H] 'chi_i != 0.
- -
-Definition Ind_Iirr (A B : {set gT}) i := cfIirr ('Ind[B, A] 'chi_i).
- -
-Lemma constt_cfRes_irr i : {j | j \in irr_constt ('Res[H, G] 'chi_i)}.
- -
-Lemma constt_cfInd_irr i :
-  H \subset G {j | j \in irr_constt ('Ind[G, H] 'chi_i)}.
- -
-Lemma cfker_Res phi :
-  H \subset G phi \is a character cfker ('Res[H] phi) = H :&: cfker phi.
- -
-
- -
- This is Isaacs Lemma (5.11). -
-
-Lemma cfker_Ind chi :
-    H \subset G chi \is a character chi != 0
-  cfker ('Ind[G, H] chi) = gcore (cfker chi) G.
- -
-Lemma cfker_Ind_irr i :
-  H \subset G cfker ('Ind[G, H] 'chi_i) = gcore (cfker 'chi_i) G.
- -
-End Induced.
- -
-
-
- - - -
- - - \ No newline at end of file -- cgit v1.2.3