From 748d716efb2f2f75946c8386e441ce1789806a39 Mon Sep 17 00:00:00 2001
From: Enrico Tassi
Date: Wed, 22 May 2019 13:43:08 +0200
Subject: htmldoc regenerated
---
docs/htmldoc/mathcomp.algebra.vector.html | 1101 +++++++++++++++--------------
1 file changed, 552 insertions(+), 549 deletions(-)
(limited to 'docs/htmldoc/mathcomp.algebra.vector.html')
diff --git a/docs/htmldoc/mathcomp.algebra.vector.html b/docs/htmldoc/mathcomp.algebra.vector.html
index 7a5ac82..37872ef 100644
--- a/docs/htmldoc/mathcomp.algebra.vector.html
+++ b/docs/htmldoc/mathcomp.algebra.vector.html
@@ -21,7 +21,6 @@
-
Definition free X :=
dimv (
span X)
== size X.
-
Definition basis_of U X :=
(span X == U) && free X.
+
Definition free X :=
dimv (
span X)
== size X.
+
Definition basis_of U X :=
(span X == U) && free X.
End VspaceDefs.
-
Coercion pred_of_vspace : Vector.space >-> pred_class.
-
Notation "\dim U" := (
dimv U) :
nat_scope.
-
Notation "U <= V" := (
subsetv U V) :
vspace_scope.
-
Notation "U <= V <= W" := (
subsetv U V && subsetv V W) :
vspace_scope.
-
Notation "<[ v ] >" := (
vline v) :
vspace_scope.
-
Notation "<< X >>" := (
span X) :
vspace_scope.
-
Notation "0" := (
vline 0) :
vspace_scope.
-
-
-
Notation "U + V" := (
addv U V) :
vspace_scope.
-
Notation "U :&: V" := (
capv U V) :
vspace_scope.
-
Notation "U ^C" := (
complv U) (
at level 8,
format "U ^C") :
vspace_scope.
-
Notation "U :\: V" := (
diffv U V) :
vspace_scope.
-
Notation "{ : vT }" := (@
fullv _ vT) (
only parsing) :
vspace_scope.
-
-
-
Notation "\sum_ ( i <- r | P ) U" :=
- (
\big[addv/0%
VS]_(i <- r | P%
B) U%
VS) :
vspace_scope.
-
Notation "\sum_ ( i <- r ) U" :=
- (
\big[addv/0%
VS]_(i <- r) U%
VS) :
vspace_scope.
-
Notation "\sum_ ( m <= i < n | P ) U" :=
- (
\big[addv/0%
VS]_(m ≤ i < n | P%
B) U%
VS) :
vspace_scope.
-
Notation "\sum_ ( m <= i < n ) U" :=
- (
\big[addv/0%
VS]_(m ≤ i < n) U%
VS) :
vspace_scope.
-
Notation "\sum_ ( i | P ) U" :=
- (
\big[addv/0%
VS]_(i | P%
B) U%
VS) :
vspace_scope.
-
Notation "\sum_ i U" :=
- (
\big[addv/0%
VS]_i U%
VS) :
vspace_scope.
-
Notation "\sum_ ( i : t | P ) U" :=
- (
\big[addv/0%
VS]_(i : t | P%
B) U%
VS) (
only parsing) :
vspace_scope.
-
Notation "\sum_ ( i : t ) U" :=
- (
\big[addv/0%
VS]_(i : t) U%
VS) (
only parsing) :
vspace_scope.
-
Notation "\sum_ ( i < n | P ) U" :=
- (
\big[addv/0%
VS]_(i < n | P%
B) U%
VS) :
vspace_scope.
-
Notation "\sum_ ( i < n ) U" :=
- (
\big[addv/0%
VS]_(i < n) U%
VS) :
vspace_scope.
-
Notation "\sum_ ( i 'in' A | P ) U" :=
- (
\big[addv/0%
VS]_(i in A | P%
B) U%
VS) :
vspace_scope.
-
Notation "\sum_ ( i 'in' A ) U" :=
- (
\big[addv/0%
VS]_(i in A) U%
VS) :
vspace_scope.
-
-
-
Notation "\bigcap_ ( i <- r | P ) U" :=
- (
\big[capv/fullv]_(i <- r | P%
B) U%
VS) :
vspace_scope.
-
Notation "\bigcap_ ( i <- r ) U" :=
- (
\big[capv/fullv]_(i <- r) U%
VS) :
vspace_scope.
-
Notation "\bigcap_ ( m <= i < n | P ) U" :=
- (
\big[capv/fullv]_(m ≤ i < n | P%
B) U%
VS) :
vspace_scope.
-
Notation "\bigcap_ ( m <= i < n ) U" :=
- (
\big[capv/fullv]_(m ≤ i < n) U%
VS) :
vspace_scope.
-
Notation "\bigcap_ ( i | P ) U" :=
- (
\big[capv/fullv]_(i | P%
B) U%
VS) :
vspace_scope.
-
Notation "\bigcap_ i U" :=
- (
\big[capv/fullv]_i U%
VS) :
vspace_scope.
-
Notation "\bigcap_ ( i : t | P ) U" :=
- (
\big[capv/fullv]_(i : t | P%
B) U%
VS) (
only parsing) :
vspace_scope.
-
Notation "\bigcap_ ( i : t ) U" :=
- (
\big[capv/fullv]_(i : t) U%
VS) (
only parsing) :
vspace_scope.
-
Notation "\bigcap_ ( i < n | P ) U" :=
- (
\big[capv/fullv]_(i < n | P%
B) U%
VS) :
vspace_scope.
-
Notation "\bigcap_ ( i < n ) U" :=
- (
\big[capv/fullv]_(i < n) U%
VS) :
vspace_scope.
-
Notation "\bigcap_ ( i 'in' A | P ) U" :=
- (
\big[capv/fullv]_(i in A | P%
B) U%
VS) :
vspace_scope.
-
Notation "\bigcap_ ( i 'in' A ) U" :=
- (
\big[capv/fullv]_(i in A) U%
VS) :
vspace_scope.
+
Coercion pred_of_vspace : Vector.space >-> pred_sort.
+
Notation "\dim U" := (
dimv U) :
nat_scope.
+
Notation "U <= V" := (
subsetv U V) :
vspace_scope.
+
Notation "U <= V <= W" := (
subsetv U V && subsetv V W) :
vspace_scope.
+
Notation "<[ v ] >" := (
vline v) :
vspace_scope.
+
Notation "<< X >>" := (
span X) :
vspace_scope.
+
Notation "0" := (
vline 0) :
vspace_scope.
+
+
+
Notation "U + V" := (
addv U V) :
vspace_scope.
+
Notation "U :&: V" := (
capv U V) :
vspace_scope.
+
Notation "U ^C" := (
complv U) (
at level 8,
format "U ^C") :
vspace_scope.
+
Notation "U :\: V" := (
diffv U V) :
vspace_scope.
+
Notation "{ : vT }" := (@
fullv _ vT) (
only parsing) :
vspace_scope.
+
+
+
Notation "\sum_ ( i <- r | P ) U" :=
+ (
\big[addv/0%
VS]_(i <- r | P%
B) U%
VS) :
vspace_scope.
+
Notation "\sum_ ( i <- r ) U" :=
+ (
\big[addv/0%
VS]_(i <- r) U%
VS) :
vspace_scope.
+
Notation "\sum_ ( m <= i < n | P ) U" :=
+ (
\big[addv/0%
VS]_(m ≤ i < n | P%
B) U%
VS) :
vspace_scope.
+
Notation "\sum_ ( m <= i < n ) U" :=
+ (
\big[addv/0%
VS]_(m ≤ i < n) U%
VS) :
vspace_scope.
+
Notation "\sum_ ( i | P ) U" :=
+ (
\big[addv/0%
VS]_(i | P%
B) U%
VS) :
vspace_scope.
+
Notation "\sum_ i U" :=
+ (
\big[addv/0%
VS]_i U%
VS) :
vspace_scope.
+
Notation "\sum_ ( i : t | P ) U" :=
+ (
\big[addv/0%
VS]_(i : t | P%
B) U%
VS) (
only parsing) :
vspace_scope.
+
Notation "\sum_ ( i : t ) U" :=
+ (
\big[addv/0%
VS]_(i : t) U%
VS) (
only parsing) :
vspace_scope.
+
Notation "\sum_ ( i < n | P ) U" :=
+ (
\big[addv/0%
VS]_(i < n | P%
B) U%
VS) :
vspace_scope.
+
Notation "\sum_ ( i < n ) U" :=
+ (
\big[addv/0%
VS]_(i < n) U%
VS) :
vspace_scope.
+
Notation "\sum_ ( i 'in' A | P ) U" :=
+ (
\big[addv/0%
VS]_(i in A | P%
B) U%
VS) :
vspace_scope.
+
Notation "\sum_ ( i 'in' A ) U" :=
+ (
\big[addv/0%
VS]_(i in A) U%
VS) :
vspace_scope.
+
+
+
Notation "\bigcap_ ( i <- r | P ) U" :=
+ (
\big[capv/fullv]_(i <- r | P%
B) U%
VS) :
vspace_scope.
+
Notation "\bigcap_ ( i <- r ) U" :=
+ (
\big[capv/fullv]_(i <- r) U%
VS) :
vspace_scope.
+
Notation "\bigcap_ ( m <= i < n | P ) U" :=
+ (
\big[capv/fullv]_(m ≤ i < n | P%
B) U%
VS) :
vspace_scope.
+
Notation "\bigcap_ ( m <= i < n ) U" :=
+ (
\big[capv/fullv]_(m ≤ i < n) U%
VS) :
vspace_scope.
+
Notation "\bigcap_ ( i | P ) U" :=
+ (
\big[capv/fullv]_(i | P%
B) U%
VS) :
vspace_scope.
+
Notation "\bigcap_ i U" :=
+ (
\big[capv/fullv]_i U%
VS) :
vspace_scope.
+
Notation "\bigcap_ ( i : t | P ) U" :=
+ (
\big[capv/fullv]_(i : t | P%
B) U%
VS) (
only parsing) :
vspace_scope.
+
Notation "\bigcap_ ( i : t ) U" :=
+ (
\big[capv/fullv]_(i : t) U%
VS) (
only parsing) :
vspace_scope.
+
Notation "\bigcap_ ( i < n | P ) U" :=
+ (
\big[capv/fullv]_(i < n | P%
B) U%
VS) :
vspace_scope.
+
Notation "\bigcap_ ( i < n ) U" :=
+ (
\big[capv/fullv]_(i < n) U%
VS) :
vspace_scope.
+
Notation "\bigcap_ ( i 'in' A | P ) U" :=
+ (
\big[capv/fullv]_(i in A | P%
B) U%
VS) :
vspace_scope.
+
Notation "\bigcap_ ( i 'in' A ) U" :=
+ (
\big[capv/fullv]_(i in A) U%
VS) :
vspace_scope.
Section VectorTheory.
Variables (
K :
fieldType) (
vT :
vectType K).
-
Implicit Types (
a :
K) (
u v w :
vT) (
X Y :
seq vT) (
U V W :
{vspace vT}).
+
Implicit Types (
a :
K) (
u v w :
vT) (
X Y :
seq vT) (
U V W :
{vspace vT}).
-
Fact vspace_key U :
pred_key U.
-
Canonical vspace_keyed U :=
KeyedPred (
vspace_key U).
+
Fact vspace_key U :
pred_key U.
+
Canonical vspace_keyed U :=
KeyedPred (
vspace_key U).
-
Lemma memvE v U :
(v \in U) = (
<[v]> ≤ U)%
VS.
+
Lemma memvE v U :
(v \in U) = (
<[v]> ≤ U)%
VS.
-
Lemma vlineP v1 v2 :
reflect (
∃ k, v1 = k *: v2) (
v1 \in <[v2]>)%
VS.
+
Lemma vlineP v1 v2 :
reflect (
∃ k, v1 = k *: v2) (
v1 \in <[v2]>)%
VS.
Fact memv_submod_closed U :
submod_closed U.
@@ -459,40 +458,40 @@
Canonical memv_submodPred U :=
SubmodPred (
memv_submod_closed U).
-
Lemma mem0v U : 0
\in U.
-
Lemma memvN U v :
(- v \in U) = (v \in U).
-
Lemma memvD U :
{in U &, ∀ u v,
u + v \in U}.
-
Lemma memvB U :
{in U &, ∀ u v,
u - v \in U}.
-
Lemma memvZ U k :
{in U, ∀ v,
k *: v \in U}.
+
Lemma mem0v U : 0
\in U.
+
Lemma memvN U v :
(- v \in U) = (v \in U).
+
Lemma memvD U :
{in U &, ∀ u v,
u + v \in U}.
+
Lemma memvB U :
{in U &, ∀ u v,
u - v \in U}.
+
Lemma memvZ U k :
{in U, ∀ v,
k *: v \in U}.
-
Lemma memv_suml I r (
P :
pred I)
vs U :
-
(∀ i,
P i → vs i \in U) → \sum_(i <- r | P i) vs i \in U.
+
Lemma memv_suml I r (
P :
pred I)
vs U :
+
(∀ i,
P i → vs i \in U) → \sum_(i <- r | P i) vs i \in U.
-
Lemma memv_line u :
u \in <[u]>%
VS.
+
Lemma memv_line u :
u \in <[u]>%
VS.
-
Lemma subvP U V :
reflect {subset U ≤ V} (
U ≤ V)%
VS.
+
Lemma subvP U V :
reflect {subset U ≤ V} (
U ≤ V)%
VS.
-
Lemma subvv U : (
U ≤ U)%
VS.
-
Hint Resolve subvv.
+
Lemma subvv U : (
U ≤ U)%
VS.
+
Hint Resolve subvv :
core.
-
Lemma subv_trans :
transitive subV.
+
Lemma subv_trans :
transitive subV.
-
Lemma subv_anti :
antisymmetric subV.
+
Lemma subv_anti :
antisymmetric subV.
-
Lemma eqEsubv U V :
(U == V) = (
U ≤ V ≤ U)%
VS.
+
Lemma eqEsubv U V :
(U == V) = (
U ≤ V ≤ U)%
VS.
-
Lemma vspaceP U V :
U =i V ↔ U = V.
+
Lemma vspaceP U V :
U =i V ↔ U = V.
-
Lemma subvPn {
U V} :
reflect (
exists2 u, u \in U & u \notin V) (
~~ (
U ≤ V)%
VS).
+
Lemma subvPn {
U V} :
reflect (
exists2 u, u \in U & u \notin V) (
~~ (
U ≤ V)%
VS).
@@ -501,13 +500,13 @@
Empty space.